Les mathématiques occupent une place prépondérante dans la plupart des curriculums scolaires occidentaux. Considérées comme un bagage indispensable, tout élève se doit d’acquérir et doit maîtriser. Mais il est à noter que cette prépondérance est conditionnelle. Dès lors, les mathématiques sont enseignées dans des cultures scolaires différentes. Par exemple, en Suisse romande, les mathématiques sont enseignées de manière directe ou en filigrane, sur ce qui impliquerait la prise en compte de ces prises en compte de ces « autres mathématiques » dans l’enseignement formel. (Diversification des curriculums, pédagogie interculturelle, etc.) et sur les enjeux politiques, idéologiques et didactiques de cette proposition.

Cet article examine la situation des ethnomathématiques dans la culture suisse romande et propose quelques exemples d’utilisation de ces cultures en Suisse romande.

Des ethnomaths dans le curriculum en Suisse romande ?

Numération maya

Les Mayas, du VIIe au XVIe siècle, avaient une numération de position (verticale, l’unité se trouvant en bas I), mais de base vingt, avec cinq comme base auxiliaire. Dans ce système, trois symboles (ou chiffres) suffisent:

- pour l’unité
- pour le cinq
- pour le zéro

Ainsi, le nombre

<table>
<thead>
<tr>
<th>4 s’écrit</th>
<th>6 s’écrit</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐☐☐☐</td>
<td>(5 + 1)</td>
</tr>
<tr>
<td>19 s’écrit</td>
<td>20 s’écrit</td>
</tr>
<tr>
<td>☐☐☐☐</td>
<td>(1x20) + 0</td>
</tr>
<tr>
<td>21 s’écrit</td>
<td>248 s’écrit</td>
</tr>
<tr>
<td>☐☐☐☐</td>
<td>(12x20) + 8</td>
</tr>
</tbody>
</table>

Extrait de l’activité « Un monde de chiffres » des manuels ECOLE. Référence complète dans la bibliographie en fin d’article.
et les outils développés par les mathématiques informelles sont rejetés dans notre passé historique et la limite de leur place dans l'école est spécifiée. Ainsi: «Les bouliers, abaques, configurations, parties du corps (doigts) ont été utilisés très largement par nos ancêtres, avec profit ils devraient avoir toujours leur place dans l'école, pour autant qu'ils conservent leur statut de modèle ou d'instruments personnels» (Gagnebin et al 1998, p 87).

A un autre niveau, les manuels d'éducation et d'ouverture aux langues à l'école (ÉOLE) dans les écoles primaires de Suisse romande (Balsiger, Berger, Dufour, Gremion, de Pietro & Zurbriggen, 2003) comprennent des activités centrées sur des mathématiques de différentes cultures, aussi bien historiques (numérations écrites chinoise, égyptienne, maya et romaine) que actuelles (numérations parlées arabes, cotonaise, finnoise, grecque nahuatl et tamoule). Les activités sont fondées sur des pratiques quotidiennes telles qu'épeler des numéros de téléphone en allemand et en français pour découvrir l'inversion dizienné/centaurie (Balsiger et al., 2003).

Tout comme le programme ÉOLE ne revient pas à remplacer l'apprentissage de la langue scolaire, mais attire l'attention des élèves sur la diversité des langues, il ne s'agit pas, comme le craignent Rowlands et Carson (2002), de remplacer le curriculum par des ethnomathématiques, mais de reconnaître la complémentarité des approches et des objectifs. Ainsi, ces deux approches se rejoignent dans une pédagogie interculturelle qui s'adresse à tous axée sur ce qui est universel aussi bien que sur la diversité et qui a déjà eu lieu sur la diversité de l'enseignement des langues et des mathématiques (Alleman-Ghionda, 2000).

Apprentissages mathématiques et interculturels

Parmi les quelques travaux ethnomathématiques publiés en français, l'ouvrage de Girodet (1996) souligne l'intérêt que peuvent représenter les «chocs ethnomathématiques» au sein de la classe. Il s'agit par exemple de situations où un élève migrant apporte avec lui des conventions qui sont différentes de celles du pays d'accueil. Ainsi, non seulement les systèmes de numération parlée sont très variables d'une langue à l'autre (on dit «dix-huit» en français mais «uit-huit» en allemand), mais les marqueurs (point virgule espace) diffèrent largement d'un pays à l'autre et les quatre opérations ne sont pas effectuées de la même façon.

Selon l'auteur, la confrontation avec d'autres savoirs mathématiques peut être saisie par les enseignants comme autant d'occasions pour la mise en place d'un apprentissage interculturel et d'un enseignement en mathématiques. La prise en compte des connaissances mathématiques des élèves étrangers - par exemple le fait de savoir effectuer différemment une division ou une multiplication - peut non seulement modifier positivement le statut de cet élève dans le groupe et donc être un facteur d'intégration mais également faciliter l'appropriation du savoir mathématique par l'ensemble de la classe, en démontrant une autre voie possible.

A titre d'exemple, Girodet (1996, p. 8-9) cite notamment le cas d'un enfant d'origine turque récemment arrivé en France dans une classe de niveau primaire qui résout l'opération 978 x 4837, en utilisant la méthode de la multiplication arabe.

Pour faire une multiplication arabe, on inscrit dans chaque case coupée diagonalement le produit des deux chiffres placés l'un en haut de la colonne (4-8-3-7), l'autre à droite de la ligne du tableau (9-7-8). Par exemple 7 x 9 = 63. La partie supérieure de la case contient la dizaine (6) et l'autre les unités (3). Les nombres de chaque rangée oblique sont additionnés, en commençant par la droite. Attention aux retenues.

En didactique des mathématiques, l'enseignant apprend à utiliser des pratiques quotidiennes en classe pour créer un lien entre la classe et la maison ou la rue. Girodet (1996) donne quelques exemples dont les enseignants peuvent s'inspirer: systèmes monétaires, mesures traditionnelles comparées au système métrique, tailles de chaussures ou de vêtements, ou encore lecture de tickets de caisse. Parce que ces exemples restent assez proches de nos vies de consommateurs quotidiens, l'ouvrage de Girodet devrait également être utilisé dans des cours d'alphabétisation des adultes.

Les bénéfices de cette expérience sont pluriels. Premièrement, le fait de devoir expliquer sa méthode au reste de la classe a permis à l'enfant d'exercer et d'améliorer son expression en langue française tout en valorisant un savoir lié à sa culture. De leur côté, les autres élèves ont appris une nouvelle technique opératoire efficace; ils ont également découvert que d'autres techniques existaient, ce qui les a motivé à vouloir en connaître d'autres, en provenance d'autres cultures et/ou époques. Finalement, cela a permis à certains élèves de réexaminer la technique enseignée par l'école, de l'analyser différemment, et au demeurant, de mieux la comprendre et l'approuver.
En guise de conclusion
Une sensibilisation à la diversité des langues et des cultures présentes à l'école devrait prendre, dans notre société dont la multiculturalité n'est plus mise en doute, une place de plus en plus importante. Mais aussi bien en Suisse (Allemann-Ghionda, de Goumônoëns & Perregaux, 1999ab) que dans le reste de l'Europe (Allemann-Ghionda 1999; Clanet, 2000) les approches interculturelles restent encore trop marginales. Il s'agit de la plupart du temps de cours à options, et l'offre est circonscrite, liée à l'initiative d'un enseignant intéressé. Or, pour Allemann-Ghionda (2000), cette sensibilisation devrait faire partie de la « pédagogie générale », c'est-à-dire ne pas se cantonner dans un apport supplémentaire, marginalisé et un peu exotique, mais toucher en fait toutes les façons de penser l'enseignement et toutes les branches enseignées. En ce qui concerne les ethnomathématiques, leur intérêt pour les didactiques des mathématiques est bien sûr d'appuyer l'apprentissage des mathématiques formelles elles-mêmes; en ce sens, leur introduction dans l'enseignement de cette discipline semble se justifier en soi. Cependant, elles représentent aussi, et peut-être surtout, une ressource inestimable pour questionner les savoirs mathématiques et scientifiques dans leur universalité et leur diversité et contribuer ainsi à un apprentissage interculturel dans une des disciplines les plus importantes du curriculum scolaire.

Notes
1 Contact: AnaHy.Gajardo@pse.unige.ch
2 Contact: Pierre.Dansen@pse.unige.ch

Bibliographie

L'ÉDITO DE LA REDACTION - Voyages en ethnomathématiques

L'idée de consacrer un numéro de CREOLE aux mathématiques ou plutôt aux ethnomathématiques est née d'une conjonction d'intérêts: nous avions demandé, il y a quelques années, à une des rares ethnomathématiciens de langue française, Marie-Alix Girodet, de participer à un atelier sur les façons de compter et de calculer dans différentes langues et cultures (voir rubrique littéraire). Il nous semblait alors nécessaire de pouvoir rompre avec une perspective universaliste des pratiques mathématiques. Aujourd'hui, nos collègues Anany Gajardo et Pierre Dassen, puis Nacita Maria Acioy-Régnier (voir leurs textes dans ce numéro) ont publié plusieurs articles montrant l'intérêt:

- de (re)connaître les ressources mathématiques des élèves développées dans des milieux extra-scolaires,
- de se questionner sur les logiques du système numérique de certains élèves et sur la façon dont ils vont s'approprier celui en vigueur dans un autre espace culturolinguistique.

Avons que l'écrit nous conduit habituellement dans une double modalité entre le oral (tomad') et l'écrit (tomate), la numération, dans certaines langues, nous entraîne dans un triple système: voir le nombre (25e), écrire le nombre (vingt-six) et dire le nombre (vietsix), comme si nous avions besoin, pour les mathématiques précisément, d'utiliser deux représentations écrites, l'une utilisant le système graphique habituel et le second une autre forme d'abstraction (Itfah, 1994), dans son histoire universelle des chiffres montre bien qu'après avoir donné des valeurs numériques aux lettres (ce qui a mené à une interprétation symbolique des mots en fonction du nombre qu'il représentait), une nouvelle abstraction, de nouveaux symboles graphiques sont apparus pour représenter les nombres.

Dénominations et langues

Nous avons donc à disposition deux représentations symboliques: une représentation (le 4) que nous pourrions appeler translinguistique ou transculturelle (dans la mesure où elle est partagée par plusieurs langues et plusieurs cultures - comme nos chiffres actuels indo-arabes utilisés dans de nombreuses langues). Cette représentation permet les manipulations en mathématiques non formelles et formelles et conduit à des niveaux différents d'abstraction en fonction de la (dé)contextualisation. Une autre représentation, particulière à la langue concernée, en reprend les traits linguistiques de l'écrit (un, deux) en français - et, deux, trois en allemand). Les chiffres (1, 2, 3, 15) vont pouvoir être reconnus dans un texte écrit dans une langue étrangère, quelque soit la langue, pour autant qu'elle utilise ces symboles. Or, comme nous l'avons vu précédemment, la logique sous-jacente à leur expression paraît être différente? Dans certains systèmes linguistiques, il sera plus facile que dans d'autres de faire des hypothèses sur la signification des chiffres (→ 1 en chinois / י) en arabe).

Dans la même langue aussi, la logique du comptage n'est pas toujours identique et dépend des habitudes de la région (quatrevingtquattrante = septante-soixante-dix, par exemple). Selon le contexte, la forme d'attention et d'attente pour le compréhension du nombre n'est pas la même. Il suffit d'essayer, pour un Suisse romand, de réfléchir à la façon dont il est surpris lorsqu'il doit écrire un numéro de téléphone dicté par un locuteur français (exemple: 679 95 74 - six cent soixante-dix neuf, quatre-vingt-quinze, soixante-quatre) ou un locuteur germanique (exemple: 429 94 27 - vierhundertneunundsiebzig, vierenundneunzig, siebenschüttzig). D'une langue, d'une culture à l'autre on peut remarquer que l'organisation du comptage (vingt et un/éinnundsiebzig), l'écriture des nombres, les conventions mathématiques et les techniques opératoires vont dépendre de logiques propres qui ne demandent aux élèves le même travail cognitif souvent lorsqu'il s'agit de grands nombres. Ainsi, dès l'enculuturation, la structuration cognitive demandée par et pour l'organisation spécifique de la triade culture/langue/chiffres lors du comptage (voir le boulier japonais, chinos ou russe) provoquera des automatisations différentes. On voit donc remise en question l'affirmation courante qui voudrait qu'avec les nombres nous soyons dans une référence universelle. Eux aussi jouent de la dialecce entre universale et spécificité.

Compteur sur ses doigts

Il vaut la peine, ici, de s'arrêter sur la façon de compter sur les doigts, pratique qui va jusqu'à influencer la matricielle fine de la main. L'exercice mille fois répété «naturalise» le geste et rend du même coup la pratique d'un autre comptage sur les doigts très étrange et périlleuse. Des malentendus peuvent surgir dans une classe où ces élèves ont diverses habitudes de comptage sur les doigts. Prenons un exemple: un enseignant raconte le conte de Cendrillon aux élèves et leur demande de noter avec leurs doigts combien de filles avait la maîtresse de Cendrillon (→ 2): des élèves lèvent le pouce et l'index, d'autres peut-être l'aucunulce et l'annulaire, d'autres encore... un bon questionnement pour l'enseignant avant de penser que les élèves se sont trompés! Nous sommes ici dans une représentation corporelle différente d'une même signification.

Voici des perspectives pour élargir l'horizon de tous les élèves. La connaissance d'autres systèmes, connus ou non par certains élèves, participe alors à une ouverture nouvelle qui permet de mieux jouer entre universalité des mathématiques et spécificités des systèmes culturels. La proximité d'une telle réflexion avec la perspective des approches EOLE est assez claire et il est intéressant de noter que les auteurs des activités EOLE (Perregaux & al, 2003) ont consacré une activité aux nombres tels qu'ils sont employés dans différentes langues. C'est une adaptation (et prolongation) de celle-ci qui est proposée dans l'encart didactique de ce numéro. Les jeux mathématiques dont certains déclenchent de véritables passions (le Sudoku japonais à la mode actuellement en Occident, le carré magique d'origine arabe, le jeu d'Awele africain) et les pratiques culturelles utilisant des notions mathématiques se retrouvent dans de nombreuses cultures.

Notes
1 Alphabet phonétique international (API)
2 A noter que plusieurs recherches en mathématiques se posent aujourd'hui la question de la place de l'élève - avec ses savoirs appris dans le cadre extra-scolaire - et des savoirs institués dans l'école. Voir par exemple Matheron et Menner (2005)
3 http://perso.orange.fr/therese.veilleau/
 pages/truc_matheuses/boulier.htm
Ont collaboré à la conception de ce numéro:

Nadja Acioly-Régnier. IUFM de Lyon – Pôle école et Société EA3729 - Psychologie de la Santé et du Développement – Université Lyon2
Email: Acioly.Regnier@wanadoo.fr

Pierre Dasen. Faculté de Psychologie et des Sciences de l’Éducation Université de Genève. Bd du Pont-d’Arve 40 - 1205 GENEVE
Email: Pierre.Dasen@pse.unige.ch

Carole-Anne Deschoux. Faculté de Psychologie et des Sciences de l’Éducation Université de Genève. Bd du Pont-d’Arve 40 - 1205 GENEVE
Email: Carole.Deschoux@pse.unige.ch

Anaïs Gajardo. Faculté de Psychologie et des Sciences de l’Éducation Université de Genève. Bd du Pont-d’Arve 40 - 1205 GENEVE
Email: Anaïs.Gajardo@pse.unige.ch

Email: Valerie.Hutter@pse.unige.ch

Christiane Perregaux. Faculté de Psychologie et des Sciences de l’Éducation Université de Genève. Bd du Pont-d’Arve 40 - 1205 GENEVE
Email: Christiane.Perregaux@pse.unige.ch

Adresse de contact:
CREOLE, Faculté de Psychologie et des Sciences de l’Éducation Université de Genève.
Bd du Pont-d’Arve 40 - 1205 Genève
Tél: +41 22 379 91 99
Fax: + 41 22 379 91 39
E-mail: Valerie.Hutter@pse.unige.ch

Conception graphique:
Marie-Eve Laurent

Mise en page et illustrations:
Helder da Silva

Impression:
Atelier d’impression de l’Université de Genève

Vous souhaitez vous abonner? Vous aimeriez adhérer à notre association?
Plusieurs démarches sont possibles:
- remplir le bulletin d’abonnement - adhésion ci-dessous et le retourner à l’adresse indiquée sur cette page
- téléphoner au +41 22 379 91 99
- écrire un mail à Valérie à l’adresse suivante: Valerie.Hutter@pse.unige.ch

BULLETIN D’ABONNEMENT 2007

☐ Je m’abonne au journal CREOLE pour un prix de 15 - CHF par année civile (2 numéros)

Nom : .. Prénom : ..
Profession : .. Institution*: ..
Adresse : .. NPA/Ville : ..
Adresse email : ..

* Si votre institution prend en charge le paiement de votre abonnement, prière de lui demander de mentionner votre nom dans la case communication du BVR, merci