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Understanding and reducing the incidence of accidental bycatch,
particularly for vulnerable species such as sharks, is a major chal-
lenge for contemporary fisheries management worldwide. Bycatch
data, most often collected by at-sea observers during fishing trips, are
clustered by trip and/or vessel and typically involve a large number
of zero counts and very few positive counts. Though hurdle models
are very popular for count data with excess zeros, models for clus-
tered forms have received far less attention. Here we present a novel
random-effects hurdle model for bycatch data that makes available
accurate estimates of bycatch probabilities as well as other cluster-
specific targets. These are essential for informing conservation and
management decisions as well as for identifying bycatch hotspots,
often considered the first step in attempting to protect endangered
marine species. We validate our methodology through simulation and
use it to analyse bycatch data on critically endangered hammerhead
sharks from the U.S. National Marine Fisheries Service Pelagic Ob-
server Program.

1. Introduction. The oceanic ecosystem is by far the largest on Earth,
covering more than 70% of the planet. Human impacts on this ecosystem
including overfishing, habitat destruction, pollution and climate change are
causing serious conservation concern. In particular, industrial fishing has
profoundly changed the biological state of the oceans and while the direct
impacts of overfishing on target species are increasingly being addressed,
accidental bycatch of nontarget species is a key challenge for contemporary
fisheries management. Excess bycatch is particularly threatening for long-
lived marine species like sharks (Lewison et al. 2004, Hall et al. 2000) so
a core objective of the ecosystem approach to fisheries management is to
reduce and eliminate bycatch (Pikitch et al. 2004).

Bycatch data are most often collected by at-sea observer programs and
are composed of the presence (counts or mass) and absence (zeros) of non-
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target species along with information on vessel and gear specification, fishing
effort, and environmental covariates. Specifically, we analyse bycatch data
for a critically endangered marine species, the hammerhead shark obtained
by Julia Baum (see Baum et al., 2003, Baum, 2007 and Myers et al., 2007
for further details) from the U.S. National Marine Fisheries Service Pelagic
Observer Program (http://www.sefsc.noaa.gov/pop.jsp). In the spring of
2013 these sharks, which are commercially valuable and whose numbers have
been declining dramatically in recent years, were given added protection by
CITES (the Convention on International Trade in Endangered Species of
Wild Fauna and Flora). We consider 1825 records of hammerhead shark by-
catch from 292 fishing trips where 85% of these counts are zeros, indicating
that no hammerhead sharks were caught as bycatch in many of the hauls.
The few positive counts (obtained if one or more hammerhead sharks were
caught as bycatch in a haul) range from 1 to 46. Counts are clustered be-
cause hauls are clustered within trips which may also be clustered within
vessels, for example. The covariates considered are: year (YEAR, from 1 to
14, representing the period 1992-2005), average hook depth (AVGHKDEP,
from 6.40 to 182.88 fathoms), area (4=South Atlantic Bight and 5=Mid
Atlantic Bight), and season (SEASON, 464 observations in autumn, 543 in
spring, 525 in summer and 293 in winter). The catch effort is measured us-
ing the logarithm of the number of hooks (TOTHOOK, ranging from 25 to
1548).

An excess of zeros is a feature of count data arising in many areas, par-
ticularly health research and ecology more broadly. For independent data,
excess zeros reduce the usefulness of Poisson and negative binomial mod-
els (Welsh et al. 2000) because they underfit the probability of observing
zeros. The simplest solution is a hurdle model (also two-part, zero-altered,
separated or conditional model, see Mullahy 1986) or an overlapping model
(or zero-inflated model, Lambert 1992). We describe these two alternative
models in Section 2.

Further complications arise when we consider clustered counts with excess
zeros like bycatch data. Incorporating the clusters into the analysis can be
achieved via a marginal GEE approach as in Dobbie & Welsh (2001) or a
conditional random-effects approach, the latter being a more natural way to
account for within-cluster dependence when the interest is in within-cluster
effects. Yau & Lee (2001) and Hur et al. (2002) extended overlapping mod-
els to include random effects to evaluate injury prevention strategies and
model health care outcomes, respectively. Min & Agresti (2005) proposed
a hurdle model with random effects for repeated measures count data with
extra zeros and Liu et al. (2010) applied this type of model to correlated
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medical cost data. Alfò & Maruotti (2010) used correlated random effects
to analyse data on health care utilization and Neelon et al. (2013) recently
presented a spatial Poisson hurdle model for emergency department vis-
its. Finally, Molas & Lesaffre (2010) have suggested fitting random-effects
hurdle models by h-likelihood. As highlighted in some of these papers, and
fully demonstrated by our simulation study (Section 4), bias can be induced
for fixed-effects regression coefficients when the two parts of these kinds of
models are misspecified as independent.

We propose a new random-effects hurdle model framework for estimat-
ing the probability of bycatch and other management targets from bycatch
data. It is applicable to any form of clustered count data with excess zeros
and also readily extendable to small-area estimation problems where the
variables of interest are small counts. The model has two parts: the first
determines the presence or absence of bycatch in a haul and the second de-
termines the size of the bycatch. To allow for dependence between the two
parts of the model we introduce parameters which, if nonzero, indicate that
the two parts are dependent: a simple classical test can be used here. For our
bycatch data, we show that the two parts are dependent. We develop inferen-
tial procedures which, in contrast to all existing approaches, make available
empirical best predictors of the random effects (Jiang & Lahiri 2001) and
other cluster-specific targets (e.g. the probability of nonzero bycatch on a
particular fishing trip). We are the first to provide a way of assessing the
mean squared error of prediction of these quantities. For this we propose a
new fast bootstrap procedure whose asymptotic distribution is the same as
that of the maximum likelihood estimator. We apply these procedures to
our data and show that bycatch of hammerhead sharks is declining through
time.We also show the effect of the number of hooks, average hook depth
and season on shark bycatch.

We show that our random-effects hurdle model is a powerful tool for deal-
ing with bycatch data on endangered species. It generates reliable estimates
and predictions that are essential for both understanding the processes un-
derlying bycatch and those needed to help reduce and possibly eliminate its
occurrence.

2. The Model. Here we describe our random-effects hurdle model for
estimating probabilities of bycatch and other management targets from by-
catch data. This model is applicable to any form of clustered count data
with excess zeros and its full generalization is provided in the Supplemen-
tary Material, Section 1.

The hurdle model for independent counts of bycatch Yi, i = 1, . . . , n, can
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be written as

P (Yi = yi) =

{
1− p(xi) yi = 0
p(xi)f(yi, λ(zi)) yi = 1, 2, 3, . . .

where p(xi) is the probability of crossing the hurdle, f(yi, λ(zi)) is a discrete
distribution on the positive integers (the truncated Poisson distribution, for
example) and xi and zi are two sets of covariates, possibly overlapping. It
is usual to model p(xi) as logit{p(xi)} = xT

i α and λ(zi) as log{λ(zi)} =
zT
i β. Alternatively, an overlapping model (often referred to as a zero-inflated

Poisson or ZIP model) is a mixture model where

P (Yi = yi) =

{
π(xi) + (1− π(xi))f̃(0, λ(zi)) yi = 0

(1− π(xi))f̃(yi, λ(zi)) yi = 1, 2, . . .

where f̃(yi, λ(zi)) is a discrete distribution (the Poisson distribution, for
example), logit{π(xi)} = xT

i α̃ and log{λ(zi)} = zT
i β̃. Min & Agresti (2002)

give a good review of these models. The advantage of the hurdle model for
both computation and interpretation is that it has two distinct parts that,
for independent data, can be fitted and interpreted separately.

Now suppose that the data are clustered and each of the c clusters con-
tains ni (i = 1, . . . , c) units (e.g. hauls within trips). That is, on the jth
haul of the ith trip, we observe a univariate count of bycatch yij and we
consider two (possibly overlapping) sets of covariates, which can be written
as xij and zij, j = 1, . . . , ni, i = 1, . . . , c. For our bycatch data these co-
variates include information on gear specification (e.g. average fishing hook
depth) and fishing effort (e.g. the number of fishing hooks utilized) as well
as environmental information. We assume that the dependence structure in
the data is described by unobserved independent random intercepts ui and
vi. Building on the hurdle model for independent data our random-effects
hurdle model specifies that, given ui and vi, the yij are independent with
probability mass function

(2.1) [yij | ui, vi] =
{

1− p(xij, ui) yij = 0
p(xij , ui)f{yij , λ(zij, ui, vi),ν} yij = 1, 2, 3, . . .

where [w|s] denotes the probability mass function of w given s, p is the proba-
bility of observing a positive count (i.e., “crossing the hurdle”), f{yij, λ(zij , ui, vi),ν}
is the probability mass function of a discrete distribution defined on the
positive integers with parameter λ which is a function of the covariates, the
random effects ui and vi, and possibly additional nuisance parameters ν.
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The hurdle model involves two random processes. For bycatch data, one
process determines the presence or absence of bycatch in a haul, and in those
hauls for which nonzero bycatch occurs, a second process determines the
number sharks in the bycatch. Random intercepts in both random processes
account for clustering in hauls during the same trip.

We model the probability of observing nonzero bycatch in the jth haul of
the ith trip by

(2.2) logit{p(xij , ui)} = xT
ijα+ σuui.

We assume that the number of sharks in the nonzero bycatch event can be
described using the truncated Poisson density

(2.3) f(yij, λ(zij, ui, vi)) =
exp(−λ(zij , ui, vi))λ(zij , ui, vi)

yij

yij!(1− exp(−λ(zij, ui, vi)))

(which has no ν parameter) and we model λ as

(2.4) log(λ(zij, ui, vi)) = zT
ijβ + γσuui + σvvi.

We can extend what follows to incorporate other link functions in (2.2) and
(2.4); the logit and log links are those most commonly used in hurdle models.
In (2.2) and (2.4), α and β are regression parameters, σu and σv are non-
negative spread parameters and γ is a scalar parameter which controls the
dependence between the random process determining the presence (or not)
of bycatch p(xij , ui) and that determining its amount f(yij, λ(zij , ui, vi)).
When γ = 0, p and λ are independent. Finally, we assume that the random
intercepts ui and vi follow a N(0, 1) distribution. This assumption corre-
sponds to considering a random intercept ũi1 = σuui in the first part of the
model and a random intercept ũi2 = γσuui + σvvi in the second part, with
the distributional assumption (ũi1, ũi2)

T ∼ N2(0,Σ), where

Σ =

(
σ2
u γσ2

u

γσ2
u γ2σ2

u + σ2
v

)
.

This particular model as defined by (2.1)-(2.4), is equivalent to that pro-
posed by Min & Agresti (2005), but our general formulation (see Appendix)
encompasses a much larger class of models.

2.1. Estimation. Under the hurdle model defined by (2.1)-(2.4), for clus-
ter i, the vector yi = (yi1, . . . , yini

)T has conditional density [yi|ui, vi] =∏ni

j=1[yij |ui, vi] and hence

[yi] =

∫ ∫ ni∏

j=1

[yij |ui, vi]φ(ui)φ(vi)duidvi,
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where φ denotes the density function of a N(0, 1) random variable. It follows
that the likelihood for θ = (α, σu,β, σv, γ), the vector of all the parameters,
is

L(θ) =
c∏

i=1

[yi] =
c∏

i=1

∫ ∫ ni∏

j=1

[yij|ui, vi]φ(ui)φ(vi)duidvi

=
c∏

i=1

∫ ∫
exp




ni∑

j=1

log{1− p(xij , ui)}

+
ni∑

j=1

ι(yij > 0) log[p(xij, ui)/{1 − p(xij, ui)}]

+
ni∑

j=1

ι(yij > 0) log f(yij, λ(zij , ui, vi))


 φ(ui)φ(vi)duidvi

where ι() is an indicator function. The advantage of using the likelihood
is that we can apply standard asymptotic theory to obtain the fixed-effects
estimates for the covariates appearing in the two parts of the model. See, for
example, Theorem 2.1 in the Supplementary Material, Section 2. In our case,
the maximisation of the likelihood is complicated by the integrals. Many
approaches exist for computing the likelihood, including analytical approx-
imation techniques like the Laplace approximation (De Bruijn 1981, Huber
et al. 2004) or adaptive Gaussian quadrature used in Rabe-Hesketh et al.
(2002), data cloning (Lele et al. 2007) as well as Monte Carlo approaches
such as simple Monte Carlo or importance sampling. We use simple Monte
Carlo in this paper and approximate the likelihood by

L(θ) ≃ L̃(θ) =
1

Kc

c∏

i=1

K∑

k=1

exp




ni∑

j=1

log{1− p(xij, u
∗
k)}

+
ni∑

j=1

ι(yij > 0) log[p(xij , u
∗
k)/{1 − p(xij, u

∗
k)}]

+
ni∑

j=1

ι(yij > 0) log f(yij, λ(zij, u
∗
k, v

∗
k))


 ,

where K is the number of Monte Carlo replications and u∗k and v∗k are
independent realizations of random N(0, 1) variables.

We maximise the approximated log-likelihood log(L̃(θ)) numerically, us-
ing the function optim in R (R Development Core Team 2011) and use the
inverse of the corresponding Hessian matrix to estimate the variances of
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all of the parameter estimates in θ, namely the fixed-effect parameters, the
variance components and γ as well as associated confidence intervals. See
the help file for optim in R for additional computational details.

2.2. Prediction. With bycatch data many quantities need to be predicted
at the cluster-specific level or estimated marginally with respect to the clus-
ters. This requires predictions of the random effects ui and vi, hereafter
denoted by u and v for ease of notation, along with expressions for the
mean and variance of the response under our random-effects hurdle model.
The mean and variance of the truncated Poisson distribution of the positive
observations (see (2.3)) are

m{λ(zij , u, v)} = λ(zij, u, v)/[1 − exp {−λ(zij , u, v)}]

and

var{λ(zij , u, v)} =λ(zij, u, v)/[1 − exp {−λ(zij, u, v)}]
− λ2(zij , u, v) exp {−λ(zij , u, v)}/[1− exp {−λ(zij, u, v)}]2

respectively. The expected bycatch, and its variance during the jth haul of
the ith trip are given by the conditional mean and variance of the count Yij

given u, v. That is,

E(Yij |u, v) = p(xij , u)m{λ(zij, u, v)}

and

var(Yij |u, v) =p(xij , u) var{λ(zij , u, v)}
+ p(xij, u){1 − p(xij , u)}m{λ(zij, u, v)}2.

We also need to predict the probability of nonzero bycatch for a particular
haul of a trip

P (Yij > 0|u) = p(xij, u),

and the expected number of sharks in the nonzero bycatch

E(Yij |Yij > 0, u, v) = m{λ(zij, u, v)}.

Analogous marginal estimates are also of interest. These are obtained
by integrating the analogous cluster-specific quantities over u and v. Some
examples are the probability of nonzero bycatch defined by

P (Yij > 0) =

∫
p(xij, u)φ(u)du,
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the expected number of sharks in the nonzero bycatch

E(Yij |Yij > 0) =

∫ ∫
m{λ(zij , u, v)}φ(u)φ(v)dudv,

and finally the expected bycatch often used as a proxy for abundance

E(Yij) =

∫ ∫
p(xij, u)m{λ(zij , u, v)}φ(u)φ(v)dudv.

A unified treatment is possible since the cluster-specific prediction targets
of interest are all of the form t(u, v,x,z,θ), and the marginal estimation
targets are

(2.5)

∫ ∫
t(u, v,x,z,θ)φ(u)φ(v)dudv.

The marginal estimation targets can be estimated by substituting the es-
timated parameters θ̂ into expression (2.5) and evaluating the integral by
Monte Carlo integration. To assess their precision, we need to compute at
least an approximation to their standard errors. We treat the integral as be-
ing approximated to a high order, and obtain approximate standard errors

as (δ̂
T
V̂ δ̂)1/2, where V̂ is the estimated variance of θ̂, and δ̂ is obtained by

evaluating

δ =

∫ ∫
∂θ{t(u, v,x,z,θ)}φ(u)φ(v)dudv

at θ̂, where ∂θ means the derivative with respect to θ. The integrals in δ̂

can be evaluated using the same methods as for estimating the targets.
Two main approaches exist for predicting functions of random effects, see

for example Section 3.6.2 of Jiang (2007). The first approach uses the pre-
dictor t(û, v̂,x,z, θ̂), where û and v̂ are predictors of u and v. For example,
û and v̂ may be the values that maximize [u, v|y1, . . . ,yc], referred to as the
conditional modes. This approach is used by Breslow & Clayton (1993), Lee
& Nelder (1996), Jiang et al. (2001), and, to some extent, Booth & Hobert
(1998) who also proposed using a conditional prediction mean squared er-
ror to measure variability. It is a straightforward approach for prediction
in clusters from which we have observations (and hence estimates of their
random effects) but it is not clear how to proceed for clusters for which
yi is not observed. A more satisfactory approach uses the minimum mean
squared error predictor or “best predictor” of Jiang (2003) which, by Bayes’
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Theorem, is

Tt(x,z,θ;yi) =

∫ ∫
t(u, v,x,z,θ)[u, v|yi]dudv

=

∫ ∫
t(u, v,x,z,θ)[yi|u, v]φ(u)φ(v)dudv∫ ∫

[yi|u, v]φ(u)φ(v)dudv
.

The expression for Tt(x,z,θ;yi) shows that the best predictor for t(u, v,x,z,θ)
is a ratio of integrals. These integrals can be estimated using the same meth-
ods as for the likelihood. By Monte Carlo approximation we obtain the em-
pirical best predictor (EBP)

T̂t(x,z, θ̂;yi) =

∑K
k=1 t(u

∗
k, v

∗
k,x,z, θ̂)[yi|u∗k, v∗k]∑K

k=1[yi|u∗k, v∗k]
,

where u∗k and v∗k are sampled from independent N(0, 1) distributions. We
used the same u∗k and v∗k in the numerator and in the denominator to reduce
computation; this also reduces the Monte Carlo variability of the predictor.

The mean squared error of prediction for the empirical best predictor
T̂t(x,z, θ̂;yi) is

(2.6) msepij(T̂t, t) = Eu,v,yi
{T̂t(xij,zij, θ̂;yi)− t(u, v,xij ,zij ,θ)}2.

This quantity is not straightforward to estimate, arguably the main reason
these predictors have not been much used in practice. We tried to follow
Jiang (2007, p. 156) and linearize T̂t(xij,zij , θ̂;yi)−T̂t(xij,zij ,θ;yi) around
θ and then use the additional approximations suggested by him to simplify
the expressions, but this approach did not produce sensible results likely
because of the series of approximations involved (in particular the “trick”
producing Jiang’s formula (3.57)). As an alternative here one could use
the jackknife (Jiang et al. 2002). A second option to estimate the mean
squared error of prediction (2.6) is the parametric bootstrap approach which
is conceptually straightforward and can be used in the following way:

• Compute the estimate θ̂ from the data.
• For b = 1, . . . , B

– use the parametric bootstrap to generate θ̂
∗

b from (2.1)–(2.4)

– generate each of u∗b1, u
∗
b0, v

∗
b1, v

∗
b0 independently from N(0, 1) and

y∗
bi from [yi|u∗b1, v∗b1].

• Compute the bootstrap estimate of msepij(T̂t, t) as

(2.7)
1

B

B∑

b=1

{T̂t(xij,zij, θ̂
∗

b ;y
∗
bi)− t(u∗b0, v

∗
b0,xij,zij , θ̂)}2.
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By randomly generating u, v and yi we are taking into account all of the
sources of variability (they are all random variables) in the mean squared
error of prediction.

The full parametric bootstrap option above is simple but the repeated
estimation of θ makes it very time-consuming to implement. We therefore
developed a fast bootstrap scheme based on turning the estimating equation
which defines our estimator θ̂ into a fixed-point equation and then using an
adjusted one-step bootstrap estimator (Salibian-Barrera et al. 2008). This
approach is described in detail in the Supplementary Material, Section 3
along with a theorem that states that the asymptotic distribution of the
fast bootstrap estimator is the same as that of the maximum likelihood
estimator. This holds when the model is correct and regular (so we can
interchange the order of integration and differentiation).

3. Analysis of the Bycatch Data. We fitted our random-effects hur-
dle model (2.1)–(2.4) (hereafter referred to as our dependent hurdle model)
to the hammerhead shark bycatch data. For the Monte Carlo approximation
to the log-likelihood, we used K = 5000 random points to evaluate the in-
tegrand. (Generally, K = 1000 provides a sufficiently good approximation,
but we chose to be conservative here.) We maximized the log-likelihood from
30 distinct starting points for the parameters generated using the package
fields (see Furrer et al. 2012) and retained the solution with the largest
log-likelihood. We then used our fast bootstrap procedure with B = 1000
to obtain estimates of the variability of the parameter estimates and the
predicted functions of random effects.

We also fitted the two parts of the hurdle model separately, hereafter
referred to as the independent hurdle model, using the R package glmmADMB

(Skaug et al. 2012, Fournier et al. 2012).
Table 1 presents estimates of the fixed-effect regression parameters and

the parameters describing the random structure for both the dependent and
independent hurdle models. For our dependent hurdle model, two sets of
standard errors and confidence intervals are provided: those based on the
numerical Hessian matrix and those obtained from the fast bootstrap, these
are in agreement. The dependence parameter γ of our dependent hurdle
model is estimated at 1.116 and is significantly different from 0, indicating
that the two parts of the model are indeed correlated. This information is
important as it implies that it is (i) incorrect to use the independent model
for these data and (ii) inappropriate to consider only the nonzero bycatch
events, both of which are often done in practice without first testing for
dependence. As we will see below, doing (i) or (ii) can translate into incorrect
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Table 1

Estimated coefficients and standard errors with significant effects shown in bold. (SE-H,
standard errors from the numerical Hessian; SE-b, standard errors from the bootstrap;
CI-H, 95% confidence interval based on normal approximation with SE-H, CI-b, 95%

confidence interval based on normal approximation with SE-b.)

Dependent hurdle model Independent hurdle model
Presence-absence

Variable Coeff. SE-H SE-b CI-H CI-b Coeff. SE CI
Intercept −2.123 1.453 1.636 (−4.970; 0.724) (−5.330; 1.084) −1.951 1.508 (−4.908; 1.006)
YEAR −0.059 0.028 0.027 (−0.115;−0.004) (−0.113;−0.006) −0.044 0.030 (−0.103; 0.015)
AVGHKDEP −0.011 0.011 0.016 (−0.031; 0.010) (−0.042; 0.021) 0.007 0.010 (−0.011; 0.026)
AREA5 −0.241 0.242 0.317 (−0.716; 0.234) (−0.862; 0.381) −0.053 0.254 (−0.552; 0.446)
SEASONspring 1.609 0.341 0.351 (0.940; 2.277) (0.920; 2.297) 1.630 0.358 (0.928; 2.333)
SEASONsummer 0.074 0.362 0.372 (−0.635; 0.784) (−0.655; 0.803) 0.096 0.366 (−0.622; 0.814)
SEASONwinter 1.068 0.369 0.342 (0.345; 1.792) (0.397; 1.739) 0.950 0.393 (0.180; 1.720)
log(TOTHOOK) −0.008 0.212 0.206 (−0.424; 0.407) (−0.412; 0.396) −0.170 0.222 (−0.606; 0.267)
σu 1.413 0.145 0.134 (1.129; 1.698) (1.150; 1.676) 1.387 n.a. –

Abundance
Intercept −4.871 0.661 0.678 (−6.167;−3.576) (−6.200;−3.542) −3.322 1.148 (−5.571;−1.072)
YEAR −0.132 0.032 0.029 (−0.195;−0.069) (−0.187;−0.076) −0.105 0.042 (−0.188;−0.023)
AVGHKDEP −0.067 0.008 0.013 (−0.084;−0.051) (−0.092;−0.043) −0.052 0.013 (−0.077;−0.027)
AREA5 −0.151 0.230 0.257 (−0.602; 0.300) (−0.654; 0.352) −0.182 0.249 (−0.669; 0.306)
SEASONspring 0.850 0.362 0.236 (0.139; 1.560) (0.387; 1.312) −0.121 0.519 (−1.138; 0.896)
SEASONsummer −0.435 0.488 0.401 (−1.392; 0.522) (−1.221; 0.350) −0.843 0.590 (−1.998; 0.312)
SEASONwinter 1.278 0.342 0.226 (0.608; 1.948) (0.835; 1.721) 0.288 0.574 (−0.836; 1.413)
log(TOTHOOK) 1.020 0.096 0.122 (0.831; 1.208) (0.780; 1.259) 0.944 0.171 (0.608; 1.280)
σv 1.248 0.144 0.179 (0.966; 1.530) (0.897; 1.599) 1.544 n.a. –
γ 1.116 0.159 0.157 (0.804; 1.429) (0.808; 1.425) – – –

conservation and management decisions.
For both models, the coefficient of each covariate summarizes the effect

of that covariate after adjusting for the contributions of the other covari-
ates, and further, some that are significant (based on the confidence interval
containing zero or not) in the abundance part are not significant in the
presence-absence part. The latter is quite common in ecological problems;
more factors tend to affect the abundance process than the presence-absence
process. Table 1 also shows that fitting the independent hurdle model (rather
than the dependent one) would lead us to mistakenly conclude that there is
no effect of YEAR in the presence-absence part of the model and no effect
of SEASON in the abundance part of the model. Further we would also
underestimate the size of nonzero bycatch events.

In the dependent hurdle model, we find that YEAR is significant in both
parts and has a negative sign. This means that hammerhead sharks are
being (or at least reported as being) caught as bycatch less often through
time, and additionally, when they are caught as bycatch there are fewer
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of them. That is, with each additional year the adjusted odds of observing
a nonzero bycatch event decrease by 1 − exp(−0.059) = 5.7% (but not at
all according to the independent hurdle model), whereas λ is reduced by
1 − exp(−0.132) = 12.4% (but only by 10% according to the independent
hurdle model) so the expected number of sharks in the nonzero bycatch
m(λ) = λ/{1− exp(−λ)} is reduced. Initially one might interpret positively
this reduction in the number of nonzero bycatch events through time. How-
ever, the second part of the model indicates that the number of sharks in
the bycatch is reducing even more quickly. Both are cause for alarm as they
suggest a decrease in abundance of this critically endangered species (as-
suming fishing practices have remained stable). SEASON too plays a role in
both parts, with spring and winter significantly different from the autumn
reference. The catch effort (log(TOTHOOK)) does not impact the presence-
absence part, but is significant in the abundance part. Its estimated coeffi-
cient is very close to 1. This value is consistent with using log(TOTHOOK)
as an offset as is often done in statistical analyses of catch data. The hook
depth (AVGHKDEP) impacts the number of sharks in the bycatch (given
it is nonzero) significantly. Such information is useful to managers for de-
termining time-area closures of fisheries for the prevention/reduction of by-
catch.

For the independent hurdle model predictions of vi are only possible for
those clusters which have at least one positive outcome. Desirably, with our
dependent hurdle model we can predict vi for all the clusters even those trips
that didn’t report any bycatch. This is a nice feature given the reduction
in bycatch events that we are seeing through time. Figure 1 displays the
predicted values for the random components ui and vi, for all of the i =
1, . . . , 292 trips (clusters). The predictions for vi are in general smaller in
magnitude than the predictions for ui and sometimes very close to zero.
These very small v̂i correspond to negative ûi (as can be seen from the
leftmost panel of Figure 1). The clusters for which this happens are clusters
whose responses are all equal to zero (172 and all have v̂i close to zero). The
ûi for these clusters are negative, which reduces the estimated probability
of crossing the hurdle.

The predicted values (black dots) are shown in the two rightmost panels
of Figure 1 with their corresponding prediction intervals (constructed by
subtracting and adding 1.96 times the square-root of the msep estimates).
The results are presented with the ûi and v̂i ordered separately. By exam-
ining the predicted ui and vi in the lower and upper tails we can look for
structure related to covariates. We found the pattern to be mainly seasonal.
That is, small values of ûi (which reduce the probability of crossing the
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Fig 1. Predictions (leftmost panel) of the random components ui and vi for the i =
1, . . . , 292 trips. Prediction intervals for the ordered predictions of ui (middle panel) and
vi (rightmost panel) for i = 1, . . . , 292.

hurdle) tended to be associated with spring and winter rather than summer
and fall.

Figure 2 shows the predicted probability of nonzero bycatch P (Yij >
0|ui, vi) and the conditional expectations E(Yij |Yij > 0, ui, vi) with their
corresponding prediction intervals (±1.96

√
msep) for the first five fishing

trips. In the left panel of Figure 2, trip 01A019 suggests two groups of pre-
dictions. The covariates of the observations for this trip only differ for av-
erage hook depth (AVGHKDEP) and catch effort (log(TOTHOOK)), with
the coefficient of the latter being virtually zero in the presence-absence part
of the model. For this trip AVGHKDEP has two values, one resulting in
both higher predicted probabilities of bycatch and larger expected counts.
This is useful information, for bycatch mitigation. In the right panel of Fig-
ure 2, the length of the prediction intervals can be quite variable. For trip
01A019, the two much larger prediction intervals correspond to a combina-
tion of AVGHKDEP and log(TOTHOOK), which is significant in the abun-
dance part of the model and therefore has an impact on the estimation of
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Fig 2. Prediction intervals for the predictions of P (Yij > 0|ui, vi) (left) and E(Yij |Yij >

0, ui, vi) (right) for trips i = 1, . . . , 5.

E(Yij |Yij > 0, ui, vi). Similarly, the longer prediction interval for trip 01A029
corresponds to its dissimilar value of AVGHKDEP. The smaller variations
in length are associated with the values of log(TOTHOOK).

To better understand the coverage of the prediction intervals in Figure 2
we revisit the random-effects’ distributional assumptions. In Table 1 we see
that the estimates for σu and σv are quite large with σv overestimated in
the independent hurdle model. McCulloch & Neuhaus (2011) have suggested
that for the goal of predicting the random effects one can expect only modest
impacts on the mean squared error of prediction due to misspecification.
For confirmation we did a sensitivity analysis (as summarized in Figure 3)
where we assume mixtures of normal distributions for the predicted random
effects (as suggested by their empirical distributions) and found that the
estimated coefficients and corresponding errors are generally robust to these
misspecifications.
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Fig 3. Estimates (left panel) and standard errors (right panel) for the intercept and vari-
ables (YEAR, AVGHKDEP, AREA5, SEASON, and log(TOTHOOK)) corresponding to
two different specifications of the random-effects distribution. α and β correspond to the
presence-absence and abundance part of the model, respectively.
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4. Simulation Study. We carried out a simulation study to assess
whether parameters are estimated accurately using our methodology as well
as to understand the properties of our cluster-specific predictions. We sim-
ulated data from our hurdle model (2.1)–(2.4). Each simulated data set
comprised c = 100 clusters, half with 5 measurements and half with 10 mea-
surements per cluster, for a total of 750 observations. We included in xij an
intercept, aN(0, 1) covariate and a Bernoulli(1/2) covariate (all independent
of each other). The covariates zij included an intercept, the same N(0, 1)
variable as in xij , a Bernoulli(1/2) variable and another N(0,1) variable, so
that xij and zij were partially overlapping. For each of 400 simulations, we
used K = 1000 for the Monte Carlo approximation to the likelihood, 10
starting points for its numerical optimisation and took B = 1000 in the fast
bootstrap.

For the parameters, we considered four settings:

• Setting I: α = (0.5, 0.5, 1)T , β = (−0.5, 0.5, 1, 0.5), γ = 1, σu = 0.75
and σv = 0.5, which gives 30% zeros on average.

• Setting II: Same as Setting I but with γ = 0.
• Setting III: α = (−2, 0.5, 1)T , β = (−0.5, 0.5, 1, 0.5), γ = 1, σu = 0.75

and σv = 0.5, which gives 75% zeros on average.
• Setting IV: Same as Setting III, but with γ = 0.

Setting III produces smaller, simplified versions of the bycatch data; the
other settings are included to allow comparison with simpler situations.

4.1. Results for parameter estimation. In interpreting the results of fit-
ting models for data with excess zeros, it is important to keep in mind that,
although in general it is more difficult to fit models with random effects
to binary data (i.e. the presence-absence part) than to count data (i.e. the
abundance part), fewer observations contribute to estimation of the param-
eters in the abundance part of the model than the presence-absence part,
so, in general, it tends to be more difficult to estimate and make inferences
about the abundance parameters.

Figure 4 presents boxplots of the sampling distributions of the centered
parameter estimates for Settings III and IV (analogous results for Settings
I and II are given in the Supplementary Material, Figure 1). For the depen-
dent hurdle model, all the regression parameters are estimated unbiasedly
in all four settings. The dependence parameter γ is also estimated approxi-
mately unbiasedly, but has quite large variability. The spread parameters σu
and σv are slightly underestimated on average when γ 6= 0 (Settings I and
III), but this is expected given the negative bias associated with maximum
likelihood estimation of variance components. The larger bias and variance
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Fig 4. Setting III and IV: boxplots of (θ̂l − θl) for l = 1, . . . , 10.

in the estimates of σv relative to σu are due to the smaller contributing
sample sizes.

For the independent hurdle model, some of the regression parameter esti-
mates are biased when γ 6= 0 (Setting I) and particularly in Setting III when
the proportion of zeros is larger. This finding agrees with observations by
Su et al. (2009), who considered two-part models for semicontinuous data,
as well as those of Fulton et al. (2015), who modelled multivariate binary
responses. As noted, an incorrect assumption of independence between the
random parts of the model produces biases in the parameter estimates, in
particular, the intercept for the abundance part, because correlated random
effects are informative about cluster size (since parameters in the binary part
influence the number of observations in the abundance part of the model).
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Table 2

The couple (l, r) represents the percentage of confidence intervals that miss the true
value, on the left (l) and on the right side (r), for a nominal 95% confidence interval.

Since 400 simulations were run each percentage must be a multiple of 0.25%. If the true
value of l and r is 2.5% then the simulation standard error of their estimates is 0.78

percentage points. Similarly, if the true coverage is 95% the simulation standard error of
an estimate of coverage or non-coverage is 1.09 percentage points. (SE-H, standard
errors from the numerical Hessian; SE-b, standard errors from the bootstrap; boot.,

bootstrap percentile method.)

Setting III Setting IV
dependent hurdle model indep. hurdle dependent hurdle model indep. hurdle

SE-H SE-b boot. SE-H SE-b boot.
α1 (3.75, 1.75) (3.75, 1.50) (2.00, 1.25) (3.00, 2.75) (4.00, 1.50) (4.25, 2.00) (1.75, 1.50) (4.50, 1.50)
α2 (1.75, 2.50) (2.50, 2.75) (0.50, 3.00) (2.75, 3.25) (2.75, 3.50) (2.25, 4.25) (1.25, 4.25) (2.50, 3.75)
α3 (2.50, 3.00) (3.00, 3.25) (0.50, 3.50) (3.25, 4.25) (2.25, 3.50) (3.00, 3.00) (0.75, 4.00) (2.00, 3.25)
σu (2.00, 3.75) (3.00, 5.75) (1.25, 5.75) n.a. (1.25, 3.25) (1.50, 3.25) (0.50, 3.25) n.a.
β1 (3.25, 3.00) (3.75, 3.50) (2.00, 3.25) (2.50, 2.75) (2.00, 3.00) (2.25, 4.00) (1.25, 3.25) (2.75, 3.00)
β2 (2.75, 2.50) (4.00, 5.00) (1.75, 5.50) (2.75, 3.00) (2.25, 3.00) (3.50, 3.75) (1.50, 3.25) (2.00, 3.25)
β3 (2.75, 1.50) (4.25, 4.50) (1.25, 4.50) (3.50, 3.00) (2.75, 2.50) (4.25, 3.25) (1.00, 3.50) (2.50, 2.50)
β4 (3.00, 1.25) (5.00, 3.75) (1.25, 4.25) (2.25, 3.00) (3.25, 4.00) (3.50, 4.50) (1.25, 4.00) (3.00, 4.00)
σv (13.50, 15.25) (17.25, 30.00) (12.50, 30.75) n.a. (0.50, 5.00) (1.25, 10.00) (0.50, 9.25) n.a.
γ (1.25, 14.50) (5.50, 16.50) (2.00, 17.00) – (2.00, 3.50) (3.50, 6.25) (0.75, 6.00) –

Further, when γ = 0 (Settings II and IV), the independent hurdle model is
correct, but our dependent hurdle model performs as well as the independent
hurdle model.

Table 2 shows the complement of coverage of 95% confidence intervals
for Settings III and IV (analogous results for Settings I and II are given in
the Supplementary Material, Table 1). For the dependent model such inter-
vals are constructed using (i) a normal approximation with standard error
estimates obtained from either the numerical Hessian or the bootstrap, or
(ii) the bootstrap percentile method. For the independent hurdle model, a
normal approximation is used with the (numerical) standard errors from
the glmmADMB output. For the dependent hurdle model, the three methods
give similar results. For the regression parameters α and β the confidence
intervals have good coverage and are fairly symmetric. Results are less sat-
isfactory for the parameters related to the random-effects structure where
missing to the right is more probable (due to the underestimation of the
variances) and the coverage is below the 95% nominal level. These parame-
ters are more difficult to estimate; in particular σv and γ are more variable
because they are estimated only from the nonzero observations which are a
small proportion of the total number of observations. In Setting IV, where
γ = 0, the actual coverage is better. For the independent hurdle model,
only the standard errors for the regression parameters are available from
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glmmADMB. The same comments apply for Settings I and II.
One clear advantage of our model is the ability to perform tests on γ. In

fact, our simulation results support the use of a simple significance test (t-
test). For a 5% nominal level, the actual level of such a test can be deduced
from the confidence interval results. That is, for Setting II and IV (based
on the standard errors from the numerical Hessian, for example) the actual
levels are: 6.5% for Setting II and 5.5% for Setting IV. In cases where γ is
found to be non-zero we should always favor our dependent hurdle model as
failing to do so by using instead the independent hurdle model could lead
to incorrect conclusions regarding the fixed-effects. We did explore both
likelihood ratio testing and information criterion based procedures as alter-
natives here but difficulties in establishing their distributions (in particular
the appropriate degrees of freedom) necessarily precluded their use.

4.2. Results for prediction. For a prediction target t(ui, vi,xij,zij,θ) we
decompose the mean squared error of prediction as

msepi = E
{
T̂t(xij,zij, θ̂;yi)− t(ui, vi,xij ,zij ,θ)

}2

= E
[
T̂t(xij ,zij , θ̂;yi)− E{T̂t(xij,zij, θ̂;yi)}

]2

+
[
E{T̂t(xij ,zij , θ̂;yi)} − E{t(ui, vi,xij,zij,θ)}

]2

+E [E{t(ui, vi,xij,zij,θ)} − t(ui, vi,xij ,zij ,θ)]
2

= se{T̂t(xij,zij, θ̂;yi)}2 + bias2 + sd{t(ui, vi,xij ,zij,θ)}2,
and we estimate se, bias and sd empirically via 5%-trimmed means of the 400
predictions obtained by simulation. Results for predictions in four distinct
clusters (two with ni = 5 and two with ni = 10) are given in the Supplemen-
tary Material, Tables 2-9. The bias is generally quite small, but more often
negative. This is due to the underestimation of the spread parameters and
the built-in shrinkage effect in optimal prediction. There is reasonable agree-
ment between

√
msep (estimated using 5%-trimmed means) and

√
msep∗t

(5%-trimmed mean of
√
msep∗), but with some exceptions.

Finally, in Table 3 we present the actual coverage of the normal predic-
tion intervals (constructed by normal approximation using the bootstrap
estimates of msep) for ui and vi for these clusters. There is good coverage
for ui, but not so good for vi, when γ 6= 0 (Settings I and III) because vi is
estimated from a smaller sample.

5. Discussion. In this paper we propose a random-effects hurdle model
for bycatch data and address all aspects of estimation, prediction and in-
ference. In so doing we make available much anticipated tools for marine
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Table 3

Actual coverages of nominal 95% prediction intervals for ui and vi.

CI(ûi, ui) CI(v̂i, vi)
Setting I II III IV I II III IV
Cluster 1 (ni = 5) 0.955 0.970 0.978 0.978 0.895 0.948 0.900 0.922
Cluster 2 (ni = 5) 0.928 0.945 0.968 0.962 0.910 0.955 0.932 0.950
Cluster 51 (ni = 10) 0.952 0.962 0.952 0.958 0.908 0.975 0.922 0.948
Cluster 52 (ni = 10) 0.958 0.948 0.950 0.958 0.918 0.950 0.912 0.910

conservation research, specifically to predict cluster-specific targets like the
probablity of bycatch of endangered hammerhead sharks for particular fish-
ing trips. Although we develop our estimation, prediction and inference pro-
cedures for a random-effects hurdle model, they are easily adapted to a
broad variety of situations. In fact, they can be used to obtain predictions
and their mean squared errors for the entire class of generalized linear mixed
models and models with multiple mixed linear predictors, where no alterna-
tive methods are currently available. As well, our general model formulation
(Supplementary Material) contains numerous special cases for the random
structure, including, for example, a two-level nested structure.

The random effects, used to describe the dependence structure of bycatch
data, are parametrized so as to be independent, which is convenient for
non-Gaussian random effects and, additionally, allows dependence between
the two parts of the model to be both optional and simply tested. For our
bycatch data, the dependence parameter is found to be significantly different
from zero, leading us to conclude that the random process determining the
presence/absence of bycatch is not independent of that determining the size
of the nonzero bycatch events. As a result it would be inappropriate to
model the nonzero bycatch events separately as is often done in practice.
Further, our data analysis and simulation results demonstrate that ignoring
this dependence can lead to bias in the fixed-effects regression parameters as
well as an inability to predict random effects in some cases. In fact we would
underestimate both the extent to which the probablity of hammerhead shark
bycatch events is decreasing with time and the size of these events.

We derive empirical best predictors and obtain estimates of the mean
squared error of these predictions using a fast bootstrap approach. Valuable
insight can be gained from these predictions and their variability. For exam-
ple we can predict the probability of nonzero bycatch for particular trips as
well as the expected number of hammerhead sharks in these events. A com-
prehensive simulation study demonstrates the effectiveness and reliability of
our proposals, for both the fixed-effects and the predictions. In particular,
we see that the asymptotic theory applies well for the fixed-effects regres-
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sion parameters but that the parameters of the random structure are more
difficult to estimate. For the random-target predictions, we observe across
simulations almost no bias and mean squared error estimates that are very
often in agreement with those computed by bootstrap. Prediction intervals
constructed using normal approximations are found to be reliable.

A natural next step is to incorporate spatially structured random effects
into our framework so that we can more fully describe the spatial dependence
in bycatch data and more accurately identify bycatch hotspots.
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SUPPLEMENTARY MATERIAL

Supplementary material for the paper “A random-effects hurdle

model for predicting bycatch of endangered marine species”:

(doi: 10.1214/00-AOASXXXXSUPP; .pdf). The supplementary file contains
four sections. In the first section we give a general formulation of the ran-
dom effects hurdle model. The second section presents a result about maxi-
mum likelihood estimation of the model. The third section introduces a fast
bootstrap estimator and establishes its asymptotic distribution. Finally the
fourth section gives additional simulation results, as discussed in this paper.
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