Recovering Social Networks from Outcome Data: Identification and an Application to Tax Competition

Áureo de Paula ${ }^{1} \quad$ Imran Rasul ${ }^{2}$ Pedro CL Souza ${ }^{3}$
${ }^{1}$ University College London and EESP
${ }^{2}$ University College London

${ }^{3}$ PUC-Rio

Solari Lecture

41 Cl

Networks are Everywhere

- Social and economic networks mediate many aspects of individual choice and outcomes:
- Development: technology adoption, insurance.
- Peer Effects: learning, delinquency, consumption.
- IO: buyer-supplier networks, strategic interactions.
- Macro, Finance and Trade: contagion, gravity equations.
- Political Economy: yardstick competition.
- More examples: Jackson [2009], de Paula [forthcoming].

But ...

- Network information are not available in most datasets.
- When available, usually imperfect:
- Self-reported data (censoring, \neq econ int $\Rightarrow \neq$ ties);
- Postulated (e.g., classroom, zip code).
- Hence, empirical analysis of network effects may be challenging.
- Existing models are conditioned on postulated network.
- Potential for misspecification.

This Project

- We study identification of the unobserved networks and parameters of interest in a social interactions model ...
(spatial model with unobserved neighbourhood matrix)
- ... under standard network "intransitivity" hypothesis ...
- ... and explore estimation strategies.
- N individuals $\Rightarrow O\left(N^{2}\right)$ parameters to estimate.
- High-dimensional model techniques.
- Consistency and asymptotic distribution.

The Model

- Many interdependent outcomes are mediated by connections ("networks").
- A popular representation follows the "linear-in-means" specification suggested in Manski [1993]. For example,

$$
\begin{aligned}
& y_{i t}=\alpha_{t}+\rho_{0} \sum_{j=1}^{N} W_{0, i j} y_{j t}+\beta_{0} x_{i t}+\gamma_{0} \sum_{j=1}^{N} W_{0, i j} x_{j t}+\epsilon_{i t} \\
& \Leftrightarrow \\
& \mathbf{y}_{t, N \times 1}=\alpha_{t} \mathbf{1}_{N \times 1}+\rho_{0} W_{0, N \times N} \mathbf{y}_{t, N \times 1}+\beta_{0} \mathbf{x}_{t, N \times 1}+\gamma_{0} W_{0, N \times N} \mathbf{x}_{t, N \times 1}+\epsilon_{t, N \times 1} \\
& \text { with } \mathbb{E}\left(\epsilon_{i t} \mid \mathbf{x}_{t}, \alpha_{t}\right)=0 .
\end{aligned}
$$

- Customary to assume $W_{0} \mathbf{1}=1$ and $\left|\rho_{0}\right|<1$.
- Here we do not observe W_{0}.

A Motivating Example

- Besley and Case [AER, 1995]: "Incumbent Behavior: Vote-Seeking, Tax-Setting, and Yardstick Competition"
"This paper develops a model of the political economy of tax-setting in a multijurisdictional world, where voters' choices and incumbent behavior are determined simultaneously. Voters are assumed to make comparisons between jurisdictions to overcome political agency problems. This forces incumbents in to a (yardstick) competition in which they care about what other incumbents are doing."
- From data on state tax liabilities from 1962 until 1988, the authors estimate (essentially):

$$
\Delta \tau_{i t}=\alpha_{t}+\rho_{0} \sum_{j=1}^{N} W_{0, i j} \Delta \tau_{j t}+\beta_{0} x_{i t}+\gamma_{0} \sum_{j=1}^{N} W_{0, i j} x_{j t}+\epsilon_{i t}
$$

- Neighbouring states are geographically adjacent ones.
- In other words...

- Could there be relevant, non-adjacent states? Do all adjacent states matter?

(Some) Literature

1. Spatial Econometrics, conditional on W_{0}.

- Kelejian and Prucha [1998, 1999], Lee [2004], Lee, Liu and Lin [2010] and Anselin [2010].

2. Identification.

- ... conditional on W_{0} : Manski [1993], Bramoullé, Djebbari and Fortin [2009], De Giorgi, Pellizzari and Redaelli [2010];
- ...not conditional on W_{0} : Rose [2015], see also Blume, Brock, Durlauf and Jayaraman [2015].

3. Estimating W_{0}.

- Lam and Souza [various].
- Manresa [2015], Rose [2015], Gautier and Rose [2016].

Identification (Known W_{0})

- Manski [1993] and the "reflection problem." ($W_{0, i j}=(N-1)^{-1}$ if $\left.i \neq j, W_{0, i i}=0\right)$

Identification (Known W_{0})

- Potential avenue: "exclusion restrictions" in W_{0}.

If $\rho_{0} \beta_{0}+\gamma_{0} \neq 0$ and $\mathbf{I}, W_{0}, W_{0}^{2}$ are linearly independent, ($\rho_{0}, \beta_{0}, \gamma_{0}$) is point-identified. (Assuming $\alpha_{t}=0$.)
(Bramoullé, Djebbari and Fortin [2009])

- Linear independence valid generally. In fact,
$\sum_{j=1}^{N} W_{0, i j}=1$ and $\mathbf{I}, W_{0}, W_{0}^{2}$ linearly dependent $\Rightarrow W_{0}$ block diagonal with blocks of the same size and nonzero entries are $\left(N_{l}-1\right)^{-1}$.
(Blume, Brock, Durlauf and Jayaraman [2015])

Figure: High School Friendship Network

What if W_{0} is unknown?

- "If researchers do not know how individuals form reference groups and perceive reference-group outcomes, then it is reasonable to ask whether observed behavior can be used to infer these unknowns" (Manski [1993])

Identification

- The model has reduced-form (assuming, for simplicity that $\alpha_{t}=0$)

$$
\mathbf{y}_{t}=\Pi_{0} \mathbf{x}_{t}+\mathbf{v}_{t}
$$

where

$$
\Pi_{0}=\left(\mathbf{I}-\rho_{0} W_{0}\right)^{-1}\left(\beta_{0} \mathbf{I}+\gamma_{0} W_{0}\right)
$$

- If $\left(\rho_{0}, \beta_{0}, \gamma_{0}\right)$ were known, W_{0} would be identified:

$$
W_{0}=\left(\Pi_{0}-\beta_{0} \mathbf{I}\right)\left(\rho_{0} \Pi_{0}+\gamma_{0} \mathbf{I}\right)^{-1}
$$

- In practice, $\left(\rho_{0}, \beta_{0}, \gamma_{0}\right)$ is not known.

Identification

- Further assumptions are necessary to identify $\theta_{0}=\left(\rho_{0}, \beta_{0}, \gamma_{0}, W_{0}\right)$.
- Take, for example, θ_{0} and θ such that $\beta_{0}=\beta=1, \rho_{0}=0.5$, $\rho=1.5, \gamma_{0}=0.5, \gamma=-2.5$,

$$
W_{0}=\left[\begin{array}{ccccc}
0 & 0.5 & 0 & 0 & 0.5 \\
0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 \\
0.5 & 0 & 0 & 0.5 & 0
\end{array}\right] W=\left[\begin{array}{ccccc}
0 & 0 & 0.5 & 0.5 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0.5 & 0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0.5 & 0 & 0
\end{array}\right]
$$

- Then $\left(I-\rho_{0} W_{0}\right)^{-1}\left(\beta_{0} I+\rho_{0} W_{0}\right)=(I-\rho W)^{-1}(\beta I+\rho W)$.
- (Notice that I, W_{0} and W_{0}^{2} are LI and so are I, W and $\left.W^{2}!\right)$

But ...

- If the spectral radius of $\rho_{0} W_{0}$ is less than one, then an eigenvector of W_{0} is also an eigenvector of Π_{0}.

Take the reduced-form parameter matrix:

$$
\begin{aligned}
\Pi_{0} & =\left(I+\rho_{0} W_{0}+\rho_{0}^{2} W_{0}^{2}+\cdots\right)\left(\beta_{0} \mathbf{I}+\gamma_{0} W_{0}\right) \\
& =\beta_{0} \mathbf{I}+\left(\rho_{0} \beta_{0}+\gamma_{0}\right) W_{0}+\rho_{0}\left(\rho_{0} \beta_{0}+\gamma_{0}\right) W_{0}^{2}+\cdots
\end{aligned}
$$

Postmultiplying by v_{j}, an eigenvector of W_{0},

$$
\Pi_{0} v_{j}=\frac{\beta_{0}+\gamma_{0} \lambda_{j, 0}}{1-\rho_{0} \lambda_{j, 0}} v_{j}
$$

- If W_{0} is nonnegative and irreducible, e.g., only one eigenvector can be chosen to have positive entries.

Local Identification

- Can the model identify $\theta_{0}=\left(\rho_{0}, \beta_{0}, \gamma_{0}, W_{0}\right)$?
- Assume:
(A1) $\left(W_{0}\right)_{i i}=0, i=1, \ldots, N$ (no self-links);
(A2) $\sum_{j=1}^{N}\left|\left(W_{0}\right)_{i j}\right| \leq 1$ for every $i=1, \ldots, N$ and $\left|\rho_{0}\right|<1$;
(A3) There is i such that $\sum_{j=1}^{N}\left(W_{0}\right)_{i j}=1$ (normalization);
(A4) There are I and k such that $\left(W_{0}^{2}\right)_{\|} \neq\left(W_{0}^{2}\right)_{k k}\left(\Rightarrow \mathbf{I}, W_{0}, W_{0}^{2}\right.$
LI as in Bramoullé, Djebbari and Fortin [2009]);
(A5) $\beta_{0} \rho_{0}+\gamma_{0} \neq 0$ (social effects do not cancel).
- Under (A1)-(A5) $\left(\rho_{0}, \beta_{0}, \gamma_{0}, W_{0}\right)$ is locally identified. (Application of Rothenberg [1971].)

Global Identification

- Under (possibly strong) conditions it is straightforward to obtain global identification.
- Under Assumptions (A1) and (A3), if $\rho_{0}=0$, then ($\gamma_{0}, \beta_{0}, W_{0}$) is globally identified. (As in, e.g., Manresa [2015].)
- Under Assumptions (A1)-(A3) and (A5), if $\gamma_{0}=0$, then ($\rho_{0}, \beta_{0}, W_{0}$) is globally identified. ($\gamma_{0}=0 \Rightarrow$ exclusion restrictions.)

Global Identification

- It is nevertheless possible to strengthen local identification conclusions obtained previously.
- Assume (A1)-(A5). $\left\{\theta: \Pi(\theta)=\Pi\left(\theta_{0}\right)\right\}$ is finite. (This obtains as $\Pi(\theta)$ is a proper mapping.)
- Let $\Theta_{+}=\{\theta \in \Theta: \rho \beta+\gamma>0\}$. Then we can state that:

Assume (A1)-(A5), then for every $\theta \in \Theta_{+}$we have that $\Pi(\theta)=\Pi\left(\theta_{0}\right) \Rightarrow \theta=\theta_{0}$. That is, θ_{0} is globally identified with respect to the set Θ_{+}.

Global Identification

- This uses the following result:

Suppose the function $\Pi(\cdot)$ is continuous, proper and locally invertible with a connected image. Then the cardinality of $\Pi^{-1}(\{\bar{\Pi}\})$ is constant for any $\bar{\Pi}$ in the image of $\Pi(\cdot)$. (see, e.g., Ambrosetti and Prodi [1995], p.46)

- We show that the mapping $\Pi: \Theta_{+} \rightarrow \mathbb{R}^{N \times N}$ is proper with connected image, and non-singular Jacobian at any point.
- This implies that the cardinality of the pre-image of $\{\Pi(\theta)\}$ is finite and constant.
- Take $\theta \in \Theta_{+}$such that $\gamma=0$. The cardinality of $\Pi^{-1}(\{\Pi(\theta)\})$ is one for such θ and the result follows.

Global Identification

- Since an analogous result holds for $\Theta_{-}=\{\theta \in \Theta$ such that $\rho \beta+\gamma<0\}$, we can state that:
Assume (A1)-(A5). The identified set contains at most two elements.
- Furthermore, if $\rho_{0}>0$ and $\left(W_{0}\right)_{i j} \geq 0$ one is able to sign $\rho_{0} \beta_{0}+\gamma_{0}$ and obtain that:
Assume (A1)-(A5), $\rho_{0}>0$ and $\left(W_{0}\right)_{i j} \geq 0$. Then θ_{0} is globally identified.
- Finally, if W_{0} is non-negative and irreducible, one is also able to sign $\rho_{0} \beta_{0}+\gamma_{0}$! Assume (A1)-(A5). $\left(W_{0}\right)_{i j} \geq 0$ and W_{0} irreducible. Then θ_{0} is globally identified if W_{0} has at least two real eigenvalues or $\left|\rho_{0}\right| \leq \sqrt{2} / 2$.

A Few Remarks

- \mathbf{v}_{j} is an eigenvector of Π_{0} and W_{0} : eigencentralities are identified even when W_{0} is not.
- Row-sum normalization of W_{0} implies that row-sum of Π is constant: testable hypothesis.
- We also allow for individual and time specific effects.
- Analysis extends to multivariate $\mathbf{x}_{i, t}$. The reduced-form model is

$$
\mathbf{y}_{t}=\sum_{s=1}^{k} \Pi_{0, s} \mathbf{x}_{t, s}+\mathbf{v}_{t}
$$

where $\mathbf{x}_{t, s}$ refers to the s-th column of \mathbf{x}_{t} and

$$
\Pi_{0, s}=\left(\mathbf{I}-\rho_{0} W_{0}\right)^{-1}\left(\beta_{0, s}+\gamma_{0, s} W_{0}\right)
$$

Estimation Strategies

- Π has N^{2} parameters, and possibly $N T \ll N^{2}$.
- Feasible if W or Π are sparse. (e.g., Atalay et al. [2011] < 1\%; Carvalho [2014] $\approx 3 \%$; AddHealth $\approx 2 \%$).
- Sparsity on W or Π ?
- Explore the relation between structural- and reduced-form sparsities (in paper).
- Rewrite the model as

$$
y_{i}=x_{i}^{\top} \pi_{i}+v_{i}
$$

stacking all observations for individual i at $t=1, \ldots, T$.

- Penalization in the reduced form (e.g., AdaLasso of Kock and Callot [2015]:

$$
\tilde{\pi}_{i}=\underset{\pi_{i} \in \mathbb{R}^{N}}{\arg \min } \frac{1}{T}\left\|y_{i}-x_{i}^{\top} \pi_{i}\right\|_{2}+2 \lambda_{T}\left\|\pi_{i}\right\|_{1}
$$

and

$$
\hat{\pi}_{i}=\underset{\pi_{i} \in \mathbb{R}^{N}}{\arg \min } \frac{1}{T}\left\|y_{i}-x_{i}^{\top} \pi_{i}\right\|_{2}+2 \lambda_{T} \sum_{\tilde{\pi}_{i j} \neq 0}\left|\frac{\pi_{i j}}{\tilde{\pi}_{i j}}\right|
$$

with λ_{T} chosen by BIC).

- Penalization in the structural form (e.g., Adaptive Elastic Net GMM of Caner and Zhang [2014]:
- $\mathbf{x}_{t} \perp \epsilon_{t} \Rightarrow$ moment conditions.
$\tilde{\theta}=\left(1+\lambda_{2} / T\right) \cdot \underset{\theta \in \mathbb{R}^{p}}{\arg \min }\left\{g(\theta)^{\top} M_{T} g(\theta)+\lambda_{1} \sum_{i, j=1}^{n}\left|w_{i, j}\right|+\lambda_{2} \sum_{i, j=1}^{n}\left|w_{i, j}\right|^{2}\right\}$
and
$\hat{\theta}=\left(1+\lambda_{2} / T\right) \cdot \underset{\theta \in \mathbb{R}^{\rho}}{\arg \min }\left\{g(\theta)^{\top} M_{T} g(\theta)+\lambda_{1}^{*} \sum_{\tilde{w}_{i, j} \neq 0} \frac{\left|w_{i, j}\right|}{\left|\tilde{w}_{i, j}\right|^{\gamma}}+\lambda_{2} \sum_{i, j=1}^{n}\left|w_{i, j}\right|^{2}\right\}$
where $\theta=\left(\operatorname{vec}(W)^{\top}, \rho, \beta, \gamma\right)^{\top}$ and $\lambda_{1}^{*}, \lambda_{1}$ and λ_{2} chosen by BIC.)

Simulations

- Estimators: GMM Adaptive Elastic Net, Adaptive Lasso, SCAD, OLS.
- $\rho_{0}=0.3, \beta_{0}=0.4, \gamma_{0}=0.5$.
- 1,000 simulations.
- In the paper: $N=15,30,50 . T=50,100,150$.
- Many versions in the paper: time and individual effects, correlated effects, other network generating processes.
- Here: High School Friendship (Coleman [1964]), $N=73, T=50,100$.

Figure: High School Friendship Network

Figure: High School Friendship Network Degree Distribution

Out-degree

In-degree

Simulations: High School Friendships

	\emptyset	EN	AL	SC	OLS	\emptyset	EN	AL	SC	OLS
	$\mathrm{n}=73, \mathrm{~T}=50$					$\mathrm{n}=73, \mathrm{~T}=100$				
$m s e(\hat{\Pi})$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.083 \\ & (0.188) \end{aligned}$	$\underset{(0.133)}{0.356}$	$\begin{gathered} 0.331 \\ (0.127) \end{gathered}$	-	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.064 \\ & (0.163) \end{aligned}$	$\underset{(0.014)}{0.244}$	$\underset{(0.038)}{0.256}$	$\begin{aligned} & 3.447 \\ & (0.242) \end{aligned}$
$m s e(\hat{W})$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\underset{(0.183)}{0.082}$	$\begin{aligned} & 0.480 \\ & (0.183) \end{aligned}$	$\begin{aligned} & 0.682 \\ & (0.309) \end{aligned}$	-	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.047 \\ (0.118) \end{gathered}$	$\begin{gathered} 0.507 \\ (0.083) \end{gathered}$	${ }_{(0.129)}^{0.618}$	$\begin{aligned} & 3.627 \\ & (0.637) \end{aligned}$
\% true 0s	$\begin{aligned} & 1.000 \\ & (0.000) \end{aligned}$	$\begin{array}{r} 0.989 \\ (0.024) \end{array}$	$\begin{array}{r} 0.998 \\ (0.001) \end{array}$	$\begin{aligned} & 0.995 \\ & (0.005) \end{aligned}$	-	$\begin{aligned} & 1.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.994 \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.991 \\ & (0.003) \end{aligned}$	$\begin{gathered} 0.991 \\ (0.004) \end{gathered}$	$\begin{aligned} & 0.005 \\ & (0.001) \end{aligned}$
\% true 1s	$\begin{aligned} & 1.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (0.122) \end{aligned}$	$\begin{aligned} & 0.287 \\ & (0.268) \end{aligned}$	$\begin{array}{r} 0.354 \\ (0.257) \end{array}$	-	$\begin{aligned} & 1.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.980 \\ & (0.052) \end{aligned}$	$\begin{gathered} 0.556 \\ (0.055) \end{gathered}$	${ }_{(0.131)}^{0.546}$	$\begin{aligned} & 0.999 \\ & (0.004) \end{aligned}$
$\hat{\rho}-\rho_{0}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\underset{(0.063)}{-0.252}$	$\underset{(0.029)}{-0.252}$	$\underset{(0.020)}{-0.270}$	-	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{gathered} -0.149 \\ (0.066) \end{gathered}$	$\underset{(0.025)}{-0.258}$	$\underset{(0.023)}{-0.265}$	$\begin{aligned} & 0.026 \\ & (0.068) \end{aligned}$
$\hat{\beta}-\beta_{0}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.013) \end{aligned}$	$\underset{(0.131)}{-0.351}$	$\underset{(0.130)}{-0.337}$	-	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.009) \end{aligned}$	$\underset{(0.040)}{-0.257}$	$\underset{(0.051)}{-0.270}$	$\underset{(0.077)}{-0.039}$
$\hat{\gamma}-\gamma_{0}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\underset{(0.234)}{0.101}$	$\underset{(0.093)}{0.013}$	$\underset{(0.088)}{-0.057}$	-	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.039 \\ & (0.104) \end{aligned}$	$\underset{(0.082)}{-0.053}$	$\underset{(0.084)}{-0.127}$	$\begin{aligned} & 0.499 \\ & (0.035) \end{aligned}$

Figure: Sparsity pattern

\% true 0s
\% true non-0s

41 Cl

Yardstick Competition

- Besley and Case estimate

$$
\Delta \tau_{i t}=\alpha_{t}+\rho_{0} \sum_{j=1}^{N} W_{0, i j} \Delta \tau_{j t}+\beta_{0} x_{i t}+\gamma_{0} \sum_{j=1}^{N} W_{0, i j} x_{j t}+\epsilon_{i t}
$$

using W_{0} as the geographically neighbouring states.

- We revisit the yardstick competition, estimating and identifying neighbouring states W

Yardstick Competition (B\&C [1995])

- Yardstick competition applies to governors not facing term limits.
- Compare main effects across two subsamples: governor can run for reelection and cannot run for reelection.
- Endogeneity:
- Neighbours tax rates are endogenous.
- IVs: neighbour's change of income per capita lagged and neighbours' change of unemployment rate lagged.
- Specification:
- Controls: neighbors' tax change, state income per capita, state unemployment rate, proportion of young and elderly.
- All specifications contain state fixed effects and time effects.

Empirical Application

- Sample extension:
- Continental US states, $N=48$
- Original B\&C sample: 1962-1988, $T=26$ time periods.
- Extended sample: 1962-2015, $T=53$ time periods.

Empirical Application

Table 1: Geographic Neighbors

Dependent variable: Change in per capital income and corporate taxes Coefficient estimates, standard errors in parentheses

| | $\begin{array}{c}\text { Besley and Case [1995] Sample } \\ \text { (1) OLS }\end{array}$ | | Extended Sample | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | (2) 2 SLS | | | |$)$

Empirical Application

Table 2: Economic Neighbors
Dependent variable: Change in per capital income and corporate taxes Coefficient estimates, standard errors in parentheses

	Not Penalizing Geographic Neighbors			Penalizing Geographic Naighbors			Penalizing Geographic Neighbors			
	No Exogenous Social Effects			No Exogenous Social Effects			Exogenous Social Effects			
	(1) Initial	(2) OLS	(3) 2 SLS	(4) Initial	(5) OLS	(6) 2 SLS	(7) Initial	(8) OLS	(9) 2SLS: IV8 are Characteristics of Neighbors	(10) 2SLS: IVs are Characteristics of Neighbore-of Neighbors
Economic Neighbors' Tax Change ($\mathrm{t}-\mathrm{t} \mathbf{t}-2 \mathrm{l}$. 824	274***	.652***	. 886	. $378{ }^{\text {m }}$. $641^{\text {m }}$. 645	.145**	332*	608**
		(.057)	(.061)		(.061)	(.060)		(.072)	(.190)	(.220)
Period	1962-2015			1962-2015			1962-2015			
First Stage ($\mathbf{F - s t a t , ~ p - v a l u e) ~}$. 000			. 000			. 000	. 000
Controla	Yes									
State and Year Fixed Effecte	Yes									
Obeervations	2,952	2,952	2,544	2,952	2,052	2,544	2,952	2,952	2,544	2.502

Empirical Application

Panel A: In-degree distribution

Panel B: Out-degree distribution

Empirical Application

Relative to BC network	
Total number of edges	144
\ldots new edges	65
... removed edges	135
Reciprocated edges	29.7%
Clustering	0.0259

green = new edges relative to $\mathrm{B} \& \mathrm{C}$
blue = existing edges
red $=$ removed edges

- Large discrepancies between estimated network and geo neighbours
- Fewer edges relative to Besley and Case
- Geographically dispersed US tax competition

Empirical Application

Figure: Impulse Response Comparison

Empirical Application

Table 4: Predicting Links to Economic Neighbors

Columns 1-7: Linear Probability Model; Column 8: Tobit
Dependent variable (Cols 1-7): $=1$ it Economic Link Between States Identitied
Dependent variable (Col 8): =Weighted Link Between States
Coetticient estimates, standard errors in parentheses

	Geography			Economic and Demographic Homophyly (4)	Labor Mobility(5)	Political Homophyly(6)	Tax Havens (7)	Tobit, Partial Avg Effects
	(1)	(2)	(3)					
Geographic Neighbor	.699***		.701***	.701***	.698***	.698***	.697***	.068***
	(.030)		(.032)	(.030)	(.031)	(.031)	(.031)	(.006)
Distance		$-.453{ }^{* * *}$	-. 008					
		(.033)	(.024)					
Distance sq.		.0949***	. 003					
		(.007)	(.006)					
GDP Homophyly				2.409**	2.369*	2.296*	1.046	. 322
				(1.183)	(1.186)	(1.193)	(1.150)	(.302)
Demographic Homophyly				. 222	. 235	. 241	. 256	. 077
				(.226)	(.226)	(.228)	(.225)	(.067)
Net Migration					. $044{ }^{*}$. $044{ }^{*}$	-0.032	0.001
					(.025)	(.025)	(.025)	(.002)
Political Homophyly						-. 057	-.083**	-.025*
						(.042)	(.042)	(.014)
Tax Haven Sender							.107***	.021***
							(.024)	(.005)
Adjusted R-squared	0.427	0.152	0.427	0.428	0.429	0.429	0.440	-
Observations	2,256	2,256	2,256	2,256	2,256	2,256	2,256	2,256

Empirical Application

Table 5: Gubernatorial Term Limits

Dependent variable: Change in per capital income and corporate taxes
Coefficient estimates, standard errors in parentheses
IVs: Characteristics of Neighbors-of Neighbors
Penalizing Geographic Neighbors
Exogenous Social Eftects
All Governors
Governor Cannot Run tor Reelection

Governor Can Run tor Reelection

	(1) OLS	(2) 2SLS	(3) OLS	(4) 2SLS	(5) OLS	(6) 2SLS
Economic Neighbors' tax change (t-[t-21)	.145**	.608***	. 016	.937*	.182**	
	(.072)	(.220)	(.105)	(.534)	(.084)	(237)
Period	1962-2015		1962-2015		1962-2015	
First Stage (F-stat, p-value)		. 000		. 073		. 000
Controls	Yes	Yes	Yes	Yes	Yes	Yes
State and Year Fixed Ettects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	2,592	2,592	640	640	1,917	1,917

Conclusion

- In this project, we study identification of social connections under standard hypothesis in the literature on social interactions.
- Sparsity inducing methods can be used for estimation (though further research is welcome!).
- Empirical application (Besley and Case [1995]).

Thank You!

