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Abstract 
 

The fact that proofs can convey new mathematical techniques to students 
effectively, as shown in recent literature, is an important advantage of the 
classroom use of proof, but it is one that mathematics educators seem to 
have overlooked to a large extent. The paper argues that teachers should 
make use of the potential of proof for presenting new techniques and 
demonstrating their value, and that mathematics educators in general 
should accord this potential its due importance among the many reasons 
for teaching proof.  

 
The teaching of proof in schools has been the topic of extensive investigations over the 
last two decades in the scholarly literature on mathematics education and in particular in 
the proceedings of the International Group for the Psychology of Mathematics. In her 
survey of research on proof in mathematics education, Mariotti (2006) found that most of 
the investigations on this topic have dealt primarily with the logical aspects of proof and 
with the cognitive problems encountered in having students follow deductive arguments. 
Other aspects of proof that have also been investigated include the role of intuition and 
schemata in proving, the usefulness of heuristics for the teaching of proof, the 
explanatory power of proof, the various functions of proof, and justification and proof as 
seen in the context of dynamic software (Hanna, 2000). 
 
There has been little scrutiny however, of an idea recently discussed in Rav's inspiring 
paper “Why do we prove theorems?” (1999). He states that proofs do much more than 
verify mathematical claims, that they are actually bearers of mathematical knowledge and 
also indispensable to the broadening of that knowledge. Rav argues that the very act of 
devising a proof contributes to the development of mathematics, and sees proofs as the 
primary focus of mathematical interest. He goes on to say that proofs can not only yield 
new mathematical insights, giving them a value far beyond establishing the truth of new 
propositions, but can also convey new mathematical strategies and new methods for 
solving problems.  
 
Rav is not the only one who assigns to proofs a role that goes well beyond demonstrating 
that a theorem is true and why a theorem is true. Avigad (2006) lends support to Rav’s 
central thesis when he says that mathematicians value a proof when it “exhibits methods 
that are powerful and informative; that is, we [mathematicians] value methods that are 
generally and uniformly applicable, make it easy to follow a complex chain of inference, 
or provide useful information beyond the truth of the theorem that is being proved” 
(Avigad, 2006, p. 2). 
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Dawson (2006), having analysed the reasons why mathematicians re-prove theorems, 
lends additional support to Rav’s claim that the innovative strategies and methods often 
embodied in proofs, rather than the theorems proved, are the primary value that proofs 
bring to mathematics. Dawson shows persuasively that there are eight reasons that propel 
mathematicians to seek new proofs to theorems that have already been accepted, and 
most of these reasons have to do with methods, such as “To demonstrate the power of 
different methodologies”, “To discover a new route”, and “Concern for methodological 
purity” (Dawson, 2006, pp. 275- 281). 
 
Corfield (2003) would also appear to support this assessment of proof when he says that 
‘‘What mathematicians are largely looking for from each other’s proofs are new concepts, 
techniques, and interpretations’’ (p. 56).  He clearly shares with Rav the view that there is 
more to proof than establishing the truth or falsity of a proposition. It is also enlightening 
to note the following comment by Zeilberger: “The value of a proof of an outstanding 
conjecture should be judged, not by its cleverness and elegance, and not even by its 
‘explanatory power,’ but by the extent in which it enlarges our toolbox.” (as cited in 
Bressoud, 1999, p. 190) 
 
The idea that proof might be most valuable in the school curriculum because it conveys 
methods worth teaching, thus enlarging the students’ toolbox, is unfortunately largely 
absent from curriculum materials that discuss the reasons for teaching proof.  Indeed, in 
most documents addressed to teachers, such as the ones written by the National Council 
of Teachers of Mathematics (NCTM, 1998) and the Education Development Center 
(EDC), the reasons for teaching proof are the following: 1) to establish a fact with 
certainty; 2) to gain understanding; 3) to communicate ideas to others; 4) for the 
challenge; 5) to create something beautiful, meaning “the development of a proof that 
possesses elegance, surprises us, or provides new insight is a creative act.”; 6) to 
construct a larger mathematical theory (EDC, pp. 3-7).  Clearly these items in this list 
encompass the valid considerations of justification, understanding, new insights and 
aesthetics, but they make no mention of the contribution of proof in presenting new 
methods and demonstrating their value.  
 
Following are two examples from mathematics at the school level. Their aim is to show 
that proofs have the capacity to expand the students’ toolbox of techniques and strategies 
for problem solving and to provide new mathematical insights. Note that the emphasis 
here is on properties intrinsic to the proof, not on the ways in which the proof might be 
taught or understood by the students.  Nor are the examples about the logical features of 
the proof or about the degree to which a proof might be convincing (though of course it is 
taken for granted that the proof must justify the correctness of its conclusion). The first 
example is one that is discussed in Rav (1999). 
 
Example I: 
 
Euclid’s Proposition 20 says that the number of primes is infinite (“Prime numbers are 
more than any assigned multitude of prime numbers”, Book IX). In other words, there is 
no largest prime number, just as there is no largest number. There are several proofs of 
this proposition, each with its own concepts and method. 
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Proof  
 
The idea is to show that given any finite list of primes, it is possible to find a prime 
number q distinct from the primes given in the list. 
  
Let npppp ,...,,, 321  be prime numbers. Multiply them together and add 1, calling this 

number a new integer N. 
 

1...321 += nppppN  

 
If N is a prime number, then we have a new prime.  
 
If N is not a prime, it must be divisible by a prime number q. But q cannot be p1 or any 
other from our original list of prime numbers, because if we were to divide N by any of p1 
, p2 , p3 , ... pn we would get a remainder 1, which means that N is not divisible by any of 
these prime numbers. So q is a new prime. So either there is a new prime N, or if N is not 
a prime, then it has a new prime for a prime factor. Hence there is always a prime distinct 
from any number of primes. 
 
The point that Rav (1999) wishes to emphasize in this proof is that there is a key idea, 
that of forming the new number N, which is a creative idea that is specific to the topic of 
this proof, not stemming from any other axiom or proposition. Thus the proof contains a 
method, novel to the students, which could be used in problem solving or in proving 
other propositions when appropriate.   
 
Example II  
 
Some series are referred to as “telescoping” series. Their sums or the proof of their 
convergence can be found by noticing that every term cancels with a succeeding or 
preceding term and using a technique known as the method of differences. To be able to 
do this, one makes use of the method of partial fractions to decompose the fraction that is 
common in some telescoping series. This “telescoping” process of collapsing terms in a 
series so that they are removed from the calculation allows us to manipulate series into 
telescoping forms and greatly simplifies the proof or the determination of the sum.  

An example of the last is the finite sum of the series ∑
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The same telescoping technique can be applied in determining the convergence of an 
infinite series: 
 
Proof: 
 

1
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So the sum of the series which is the limit of the partial sums is 1.  
 
Again the point here is not the actual proof of the mathematical fact that this series is 
convergent, but the way in which the proof introduces a new technique (new to the 
students) and demonstrates its power. Inherent in the use of this proof is the opportunity 
for the students to gain a piece of knowledge important for mathematical practice. 
 
Conclusion 
 
The recognition that proofs can convey new mathematical techniques effectively, and 
thus should be treated as important bearers of mathematical knowledge, is a fertile point 
of view that mathematics educators seem to have overlooked to a large extent. Adopting 
this approach to proof in the classroom does not challenge in any way the accepted 
“Euclidean” definition of a mathematical proof (as a finite sequence of formulae in a 
given system, where each formula of the sequence is either an axiom of the system or is 
derived from preceding formulae by rules of inference of the system), nor does it 
challenge the teaching of proof as a Euclidean derivation. It is rather an acknowledgment 
that the teaching of proof has the potential to further students’ mathematical knowledge 
in other ways. It offers an opportunity to make new connections between the process of 
proving and mathematical techniques, and also gives us an additional reason for keeping 
proof in the mathematics curriculum.  
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