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 Research in learning with technological tools has been showing much promise with respect to 

their use in the generation of learning environments where students have richer opportunities to construct 

mathematical meanings, to explore and experiment with mathematical ideas and to express these using a 

wealth of representations.  

– from Discussion Document of W4 

I would like to focus particularly on the use of some digital tools based on actual physical 

models for exploring geometrical ideas and to give my perspective on two of the questions raised 

in discussion document: 

 ! What kind of change does the Internet bring to mathematics education?  

 ! What is the relation between human thinking and the tools that have been developed 

throughout our history? 

 Let us narrow this last question just about geometrical thinking – how different technologies 

historically have affected geometrical thinking? 

I think that the main aspects of geometry today emerged from four strands of early human 

activity that seem to have occurred in most cultures: art/pattern, building structures, 

navigation/stargazing, and motion, machines. These strands developed more or less 

independently into varying studies and practices that eventually from the 19th century on were 

woven into what we now call geometry. [4]  Early human societies used the wheel for 

transportation, for making pottery, in pulleys, and in pumps. In ancient Greece, Archimedes, 

Heron, and other geometers used linkages and gears to solve geometrical problems — such as 

trisecting an angle, duplicating a cube, and squaring a circle. These solutions were not accepted 

by the followers of Plato’s tradition, and this leads to a common misconception that these 

problems are unsolvable and/or that Greeks did not allow motion in geometry. See, for example, 

[8] and [5]. It was mentioned in discussion document that:  “Euclid’s Elements may be 

considered a modeling theory of geometrical drawing by means of ruler and compasses.” It is an 

interesting paradox here: to do Euclidean constructions one has to use technology - straightedge 

and compass – and obviously there will be motion involved in this use.    

It seems like the motion was first explored in connection with astronomy – geometry of the 

heavens – planetary motion was translated into geometrical terms while on the plane mostly there 

were discussed Euclid’s constructions. About 365 B.C., Eudoxus visited Egypt where he acquired 

from the priests of Heliopolis a knowledge of planetary motions and Chaldean astrology, later he 

completed his book On Speeds on motions within our solar system (perhaps his greatest but lost 

writing). Eudoxus became the first mathematician seriously to attempt to describe the intricate 

motions of celestial bodies using a mathematical model based on spherical geometry. [2]  

Geometry and motion came close together for ancient engineers. Problems of trisecting an angle, 



squaring the circle, and doubling the cube can be easy solved if one involves motion. One of the 

first mechanical solutions was offered by Menaechmus – he constructed a mechanical device that 

would trace two appropriate conic curves. As mentioned before, Plato criticized this mechanistic 

approach and called instead for a purely theoretical solution. 

The Romans and Greeks made wide use of gearing in clocks and astronomical devices. Gears 

were also used to measure distance or speed. One of the most interesting relics from ancient 

Greece is the "Antikythera machine" which is an astronomical computer. It had many gears in it – 

some of which were planetary. Problems that originated from the construction of appropriate 

gears had to be solved geometrically and involved the understanding of motion. 

One of the most significant turning points in the development of technology was learning 

how to transform continuous circular motion into reciprocal or straight-line motion. Rotary 

motion was available to humans using nature forces – waterwheels, windmills. But this kind of 

motion was not enough – for example, to saw logs into boards rectilinear motion was needed. 

This was achieved by the use of gears and linkages. Both later became important subjects of 

mathematical interest.  To construct the most efficient shape of gear teeth, geometers were 

studying cycloids (Nicolas of Cusa, 1451, Galileo 1599) and epicycloids (Albrecht Durer, 1525). 

In 1557 Girolamo Cardano first published a mathematical theory of gears. In 1694 Philip de la 

Hire published a full mathematical analysis of epicycloids and recommended involute curve for 

designing gear teeth, but in practice it was not used for another 150 years. In 1733 Charles Camus 

expanded la Hire’s work and developed theories of mechanisms. In 1754 Leonard Euler worked 

out design principles for involute gearing. 

Another interesting application of linkages was pantographs. The idea of a pantograph is 

based on geometrical proportions that were known since ancient times. It can be called the 

earliest copying machine, making exact enlarged or reduced copies of written documents. Artists 

adopted the pantograph for duplicating drawings. It is known that Leonardo da Vinci was using a 

pantograph to enlarge his sketches and possibly to duplicate them onto canvas. Later pantographs 

were adapted for duplicating paintings – first the pantograph would be used to trace the outlines 

and then the shapes would be filled with the paint. Sculptors and carvers adapted the pantograph 

for tracing master drawings onto blocks of marble or wood. In 18th century the pantograph was 

used to cut out the typeset letters for printing and engravings. In 19th century pantographs were 

advanced to even duplicate sculptures. One of the first duplicated sculptures was Michelangelo’s 

sculpture David. Heavy-duty pantographs are still used for engraving and contour milling. 

Leonardo da Vinci had ideas about several mechanisms that would trace various 

mathematical curves. Mechanical devices for drawing curves were used also by Albrecht D rer 

(1471-1528). When French mathematician Rene Descartes (1596-1650) published his Geometry 

(1637) he did not create a curve by plotting points from an equation (as students and computers 

do now). Descartes always first gave geometrical methods for drawing each curve with some 

apparatus, and often these apparatus were linkages. This tradition of seeing curves as the result of 

geometrical actions can be found also in works of Roberval (1602-1675), Pascal (1623-1662) and 

Leibniz (1646-1716). 

A philosophical approach to the description of motion mathematically was developed in the 

13th century in the so called Merton School by Thomass Bradwardine (ca.1290-1349) and others, 

later in 14th century motion was discussed in the writings of Jean Buridan (ca.1300- ca.1358) and 

Nicole Oresme (ca.1320-1382). Oresme represented motions geometrically by plotting primitive 

graphs. [2] Many authors talk about motion entering mathematics in the end of the 16th century or 

17th century with Tycho Brahe or Galileo’s works (see, for example [1],  [5]). It is a widely held 

opinion that calculus started in 17th century when mathematicians started to investigate motion. 



Was there really no motion earlier in mathematics? Was motion in mathematics only connected 

with calculus?  

As we can see already from the previous examples, designing devices that would create some 

particular type of motion was a geometrical problem already in ancient geometry. I will show by 

examples of historical kinematic model collections, how we can use motion to elucidate many 

geometric ideas. 

In November 2003, the American Society of Mechanical Engineers (ASME) designated the 

Cornell Reuleaux Kinematic Model Collection as a (United States) National Historic Landmark 

Collection. It took another year until the official designation ceremony was possible in the newly 

opened Duffield Hall that now is the permanent display place for portions of this collection. What 

is this collection and how it is connected with mathematics? 

A distinguished 19th century professor of mechanical engineering, Franz Reuleaux (1829-

1905), believed in the use of demonstration models to express mathematical and kinematic ideas. 

For that purpose he built a large collection of 800 mechanism models in Berlin and marketed 350 

of them to universities around the world. Unfortunately much of these collections were destroyed 

during World War II, but some originals and reproductions of these models can be found in the 

Deutsche Museum in Munich, the University of Hanover, Kyoto University, and Moscow 

Bauman Technical School, Karlov University in Prague, and possibly in some other places we do 

not know yet. But the largest collection of these models is in Cornell University where there are 

220 (from the originally acquired 266) Reuleaux models. Since 2002 we are working on 

developing “Kinematic Models for Design Digital Library” and you can explore these models on 

our website [7]. There have been added to these Clark models from Museum of Science in 

Boston, Redtenbacher models from Karlsrue, and models from Illinois Gear. On the website. 

besides having still images of models, there is historical information, and interactive movies that 

allow exploring how these models work. The website also has scanned rare books that are 

important in the history of technology. A significant part of this project is connecting models and 

mathematical ideas behind those models for the purpose of using them in the classroom. We have 

developed teaching materials that can be found in the section website called “Tutorials”. In this 

section one can find also a list of biographies for names of people appearing in the historical 

descriptions of the models and authors of rare books.   

F. Reuleaux believed that there were scientific principles behind the invention and the 

creation of new machines – what we call “synthesis” today. This belief in the primacy of 

scientific principles in the theory and design of machines became the hallmark of his worldwide 

reputation, especially in the subject of machine kinematics [9]. He also devoted serious attention 

to education and the role of mathematics: 

 …The forces of nature which advance taught us to look to for service are mechanical, physical 

and chemical; but the prerequisite to their utilization was a full equipment of mathematics and natural 

sciences. This entire apparatus we now apply, so to say, as a privilege. 

…The instruction in the polytechnic school has of necessity to adopt as fundamental principles the 

three natural sciences – mechanics, physics, and chemistry, and the all-measuring master art of 

mathematics. [12] 

Franz Reuleaux incorporated mathematics into design and invention of machines in his work 

Kinematics of Machinery [11]. For mathematicians he is best known for the "Reuleaux triangle", 

which is one of the curves of constant width. This curved triangle can be seen in some gothic 

windows, it also appears in some drawings of Leonardo da Vinci and Leonard Euler, but 

Reuleaux in his Kinematics gave the first applications and complete analysis of such triangles, 

and he also noticed that similar constant-width curves could be generated from any regular 



polygon with an odd number of sides. We have developed a tutorial about the Reuleaux triangle 

that can be used in school mathematics classes [17]. 

Many of the Reuleaux models show change in motion: circular to trigonometric (slider 

crank), circular to elliptical (double slider crank), circular to straight-line motion (straight-line 

mechanisms) – analyses of some of these mechanisms involve calculus and inversive geometry 

(Peaucellier-Lipkin linkage, [14]). Gear mechanisms in the collection use properties of 

epicycloids and hypocycloids. 

Several of Reuleaux models were included in Walter Dyck's Katalog mathematischer und 

mathematisch-physikalischer Modelle, Apparate und Instrumente [3]. Walter von Dyck (1856-

1934) was one of the creators of the Deutsches Museum of Natural Science and Technology, and 

he was also appointed as the second Director of the Museum in 1906. The Deutsches Museum 

was first of its kind and its ideas were soon copied by other science museums around the world. 

For his catalogue Dyck chose from the Reuleaux models three that demonstrate properties of a 

cycloid on a sphere. Essentially in that time models served the same purpose as computer 

animation today. Some of Reuleaux mechanisms demonstrate the effective use of a M"ebius 

band. Another mathematical application, which appears in the Reuleaux model collection, is the 

use of involutes of circle and the combining of other geometrical figures into the design of pumps 

[13]. The universal joint used to be a standard mechanism in the drive shaft of all automobiles. A 

mathematical explanation of the change of the motion in the universal joint can be explained 

easily using spherical geometry. For more details, see [18, 19]. 

Reuleaux classified his mechanisms using an alphabet, that is, assigning letters to different 

groups of his mechanisms. That way he was stressing that each individual mechanism is like a 

letter in an alphabet and combining them together we are getting words and sentences which 

denote machines. His style of classification resembles later classification ideas used in topology 

and theoretical computer science. The largest number (39) of Reuleaux mechanisms is in the so-

called S-series – straight line mechanisms. It had been a challenge in technology since ancient 

times – how to change circular motion into straight-line motion [6]. This problem was crucial for 

James Watt (1736-1819) when he was working on improving the steam engine. In [16] we 

describe a short history of this problem and its solution in the 19th century.  The mathematical 

aspects of the Peaucellier-Lipkin linkage involve inversive geometry that is described also in our 

tutorials [14]. There is renewed interest in the design of different linkages:  For example: in 

mathematics, linkages are discussed in rigidity theory; and, in engineering, linkages are widely 

used in robotics. 

We hope that material from our digital library can be used in schools not only in science or 

technology courses but also as examples of using mathematical ideas in machine motion design.  

We have added to the KMODDL library stereo lithographic files that allow 3-d printing of some 

of the models.  

Cornell faculty in mechanical engineering, mathematics, and architecture are using the 

KMODDL website in the classroom to teach mathematical principles of mechanisms as well as 

machine design and drawing. Mathematical ideas from this collection have found their place in a 

geometry textbook [4]. Over the past four years, students and teachers from area schools have 

visited the collection. We have had visitors to the website seeking ideas for 

microelectromechanical machines (MEMS), robotic machines, space satellite applications, and 

biomechanical prostheses. The collection also has attracted scholars from Japan, Italy, Germany 

and Australia in one year alone.  See [10].  

This Digital library of Kinematic Models is one of the examples of how the Internet can 

enrich mathematical education. It is allowing this originally constructed classroom set of models 

to become widely available – anywhere where there is an access to the Internet one can play with 



these models interactively. Besides the direct use in the classroom this digital library allows 

further exploration on your own. It is an interesting example of historic models transformed into 

digital tools and this way opening new possibilities in geometric design of motion. It is also a rich 

resource to show our students interdisciplinary connections and practical applications of pure 

geometric ideas. 
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