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Paper Rom 

The problem of solid geometry 

(Klaus Volkert, University of Cologne and Archives Henri Poincaré Nancy) 

Some history 

In Euclid’s “Elements” solid geometry is studied in books XI to XIII. Here Euclid gives a 

systematic treatment of geometry in space focussing on polyhedra. He discusses basic notions 

like “being parallel” and “being orthogonal”, gives some simple constructions (like the 

perpendicular from a point to a plane), discusses the problem of creating a vertex and gives 

some hints on volume using equidecomposability (in modern terms). Book XIII is devoted to 

the construction of the five Platonic solids and the proof that there are no more regular 

polyhedra. Certainly there were some gaps in Euclid’s treatment but not much work was done 

on solid geometry until the times of Kepler. In particular there was no conceptual analysis of 

solids – that is a decomposition of them into units of lower dimensions: they were constructed 

but not analyzed. Euler (1750) was very surprised than he noticed that he was the first to do 

so. In his “Harmonice mundi” Kepler formulated the theory of Archimedean solids, a more or 

less new class of semi-regular polyhedra. Picturing polyhedra was a favourite occupation of 

artists since the introduction of perspective but without a theoretical interest.

In Euclid’s “Elements” there is a strict separation between plane geometry (books I to IV, VI) 

and solid geometry (books XI to XIII) [of course the results of plane geometry are used also 

in solid geometry and there are also results of plane geometry in the books dedicated to 

stereometry – in particular on the regular pentagon] which marked the development 

afterwards. Many later editions of Euclid’s “Elements” contained only the books on plane 

geometry. The introduction of the basic objects of geometry started with points and straight 

lines passing over to plane figures and then – perhaps – to solids. A central demand of the 

reform movement at the end of the 19
th

 century was to remove this separation in order to get a 

“fusion” of the plane and the solid. 

The next important step was done by Euler: Starting from the problem how to classify 

polyhedra he discovered his theorem v – e + f = 2 and gave a list of polyhedra with n vertices 

(for n = 4 to 10). Shortly afterwards he also published a proof of his theorem (1750). The 

interest in this theorem exploded in the 19
th

 century: on one hand there were several trials to 

replace Euler’s proof by a more rigoruous one (Legendre, Cauchy, von Staudt and other), on 

the other hand hypotheses were sought which guarantee the truth of the theorem (construction 

of “monsters” by LHuilier, Hessel and others; cf. Volkert 2006).

In 1794 Legendre published the first edition of his textbook on geometry: “Eléments de 

géométrie”. During his lifetime (he died in 1833) there appeared 13 editions of it in France – 

so it is obvious that the book was a great success. There were translations in all important 

languages and its impact on the teaching of geometry were deep (cf. the study by M. 

Menghini for the situation in Italy). I claim that this book was an important step forward in 

solid geometry (it is true that the “Eléments” are mainly remembered because of Legendre’s 

work on the parallel problem, but this is only one aspect of it [and I think not the most 

important one]). Here I list some points: 

- Legendre integrated spherical geometry (this is not his term) in his system as a link between 

plane and solid geometry; in particular he used it to proof Euler’s theorem. 

- Legendre gave a discussion of volume with a clear distinction between the theory of 

exhaustion and the theory of equidecomposability (this is true for plane geometry too). 
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- Legendre took up the riddle of symmetric polyhedra which are not congruent (Kant’s 

famous “incongruent counterparts”); he tried to catch this phenomenon by a precise definition 

using the idea of order (cf. recent work by Hon and Goldstein). Consequently he asked the 

question: Can we proof that two symmetric but not congruent polyhedra have the same 

volume? This was a difficult question because in general two congruent polyhedra were 

supposed to have the same volume by the fact that can be superposed. Exactly this is not true 

for symmetric but non-congruent polyhedra!  This problem was discussed in the 

correspondence of Gauß with Gerling; its definitive answer came in 1900 with Dehn’s work 

(some weeks before Hilbert had formulated his famous third problem citing the letter written 

by Gauß). 

Legendre’s construction of symmetric pyramides 

(for us today: reflection in the plane of the base of the pyramide) 

The problem of incongruent counterparts was taken up by Möbius who remarked in a footnote 

in his “Barycentrischer Calcul” (1827) that two symmetric polyhedra could be superposed by 

a rotation in four space. But he concluded that there is no such space so they can’t be 

superposed. Here we have the starting point of a development which ended in the introduction 

of higher-dimensional space and its geometry – a difficult and complex process which 

stretched until the 1870’s – and of transformations as the objects of geometric study. 

With his axiomatization Hilbert suggested also a solution of the problem of solid geometry 

because he gave an axiomatic system for it. It is surprising that from the axiomatic point of 

view the difference between plane and solid geometry is not that big – the main problem is to 

catch the three dimensions of space by introducing adequate axioms. 

Let me end this section by remarking that around 1800 there were some other fields of 

geometry which raised the question of solid geometry. First there was descriptive geometry 

explicitly constructed to catch three-dimensional objects by two-dimensional representations 

(which was thought to be important for the arriving mass production) and analytical geometry 

which was supplemented at that period by the theory of linear structures in space (lines, 

planes and so on) by Lagrange, Lacroix, Biot and others. The ideas of solid geometry became 

very prominent in science starting with Hauy’s geometric theory of crystals (1784) and 

Ampère’s speculations on chemical affinity which he wanted to explain by the combination of 

polyhedra - an idea which became transformed later into the stereo-chemical theory of Le Bel 

and van’t Hoff. Electromagnetism and the polarisation of light provoked questions on space 

and its orientation.



3

Constructing a rhombic dodecahedron by Hauy 

May be a non-mathematical event was also important for the break-up into space: In 1783 the 

first flight in a balloon – the famous Pilâtre de Rozier – took place – causing an enormous 

public interest in all form of going up into the third dimension.  

Let me conclude this paragraph by some remarks: 

- Until the 19
th

 century solid geometry was the geometry of objects in space not of the 

space itself; 

- During the 19
th

 century “space” became a theme in connection with the following 

topics: a) dimension b) orientation c) transformations; 

- Until the time of Euler solids were not analyzed but constructed; this is holistic point 

of view 

- Logical order was important (from the simple to the complex) not epistemological 

order (what comes first to us?) 

Solid geometry in teaching 

I must confess that I do not know much about the teaching of solid geometry before 1900. 

May be this is so because there was simply no such teaching. At least in the German 

gymnasium geometry was taught with the explicit idea to train the ability of thinking logically 

(the so-called “formale Bildung”). This was done by teaching plane geometry, in particular 

the idea of proofing and the techniques of construction. In the second half of that century 

some people demanded a training in descriptive geometry (which was certainly done in 

France at the Ecole polytechnique since its foundation [1794]) because this is important for 

technical applications and for the development of spatial intuition. This demand was often 

combined with a promotion of projective geometry yielding the “new” geometry (not very 

well defined but a good slogan). 

The way in which geometry was taught at the Gymnasium was strongly influenced by the 

model of Euclid’s geometry. In particular one started with the introduction of points, straight 

lines and circles to go on to plane geometry. Here is a description given by Peter Treutlein in 

1911:
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If one accepts the idea that teaching should be genetic then it is clear that Euclid’s way of 

building up geometry is not the best. What we know – and what pupils know – is basically the 

three-dimensional world with its objects (that is solids). Consequently Treutlein proposed to 

start with a course in “intuitive geometry” which treats the phenomena of the surrounding 

world like the cube, the prisma, the ball and so on. Straight lines and squares are obtained by 

considering the cube and so on. So Euclid’s way is completely reversed. But it must be noted 

that Treutlein didn’t vote for a systematic treatment of solid geometry at this state (the 

“propädeutische Raumlehre”); for him this is only the way to connect the experiences of the 
pupils with the basic facts needed to do geometry.  
But since the days of the Meran conference (1905) of the GdNÄ there was the demand to 
develop spatial intuition (Raumanschauung) by teaching geometry. This couldn’t be done 
only by a propedeutic teaching in the way Treutlein proposed, but should propose also a 
systematic treatment of solid geometry in later classes. There was one topic in the classic 
curriculum which had a certain relation to solid geometry: the theory of conic sections (think 
of Dandelin’s spheres e.g.). 

Let me note some intrinsic difficulties of solid geometry which hindered certainly the 
introduction of its systematic teaching: 

1. Solid geometry is much more complicated than its plane counterpart. Whereas in plane 
geometry there is one sort of angles in solid geometry you have three, in plane 
geometry the relation “being orthogonal” is defined for lines, in solid geometry it is 
defined for lines, lines and planes and planes. And so on. There is a factor of about 
three! 

2. The objects of solid geometry are in generally represented on paper, but our “paper-
tools” (U. Klein) are essentially two-dimensional. The representations are therefore 
difficult to understand, the resemblance to the objects represented is much weaker than 
in plane geometry. 
Here is an illustration (XI, 11: From a given elevated point to draw a straight line 
perpendicular to a given plane, that is the construction of the perpendicular to a given 
plane):
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AD is orthogonal to BD, 

AF is orthogonal to GH and to ED 

3. The problem of intuition and evidence is virulent in solid geometry. Because the 

situation is that complex it is not easy to grasp it by “pure” thinking completely. Often 

there are implicit suppositions. The history of the Euler theorem is a very nice 

illustration for this topic. Another example is given by Euclid’s definition of the 

“congruence” of polyhedra (“Equal and similar solid figures are those contained by 

similar planes equal in multitude and magnitude” [XI, def. 10]), which had to be 

corrected more than once.  As a last example I cite the missing “sixth” postulate in 

Euclid: It is always possible to draw a plane through three given points if they are not 

on a straight. This is used by Euclid in books XI to XIII time and again but he didn’t 

mention it at all. 

In concluding we may state the following conviction which was seemingly widespread: 

Because the teaching of geometry in school should be rigorous solid geometry is a dangerous 

theme. Otherwise said: the needs of teaching tend to petrify its contends!  

There were at least two aspects in which the teaching of solid geometry (or should we say: the 

non-teaching?) was influenced by the development of the science itself: 

a) Euclid’s decision for rigour and the resulting ordering of themes put solid geometry at 

the very end of the themes treated. 

b) Following Euclid there was a strict separation between plane and solid geometry. 

c) The need of rigour made it suspicious to treat with solid geometry because of its 

logical and intuitive complexity.  

At the end of this short overview I want to cite a recent plea for solid geometry by Chr. 

Zeeman (2005): 

Zeeman uses more or less the traditional arguments in favour of solid geometry (as we have 

met them above). The idea that solid geometry gives us an over-all view of the things is new – 
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it reminds us to the big discussions between the analytic and the synthetic point of view (in 

particular in France during the 19
th

 century). 

Here is Zeeman’s list of themes he proposed to treat in school: 

It is remarkable that there are only few themes in this list which are classic (let’s say 

Euclidean); once again we see that solid geometry was (re-)born in modern times. 
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