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INTRODUCTION 
Ball, Bass, Sleep and Thames (2005) propose a framework describing knowledge 
associated with mathematics for teaching. The framework consists of four “distinct 
domains” (p. 3): (1) common content knowledge (CCK) — the mathematical knowledge 
of the school curriculum, (2) specialized content knowledge (SCK) — the mathematical 
knowledge that teachers use in teaching that goes beyond the mathematics of the 
curriculum itself, (3) knowledge of students and content (KSC) - the intersection of 
knowledge about students and knowledge about mathematics, and (4) knowledge of 
teaching and content (KTC) - intersection of knowledge about teaching and knowledge 
about mathematics (p. 4). This research examines the relationship between the second 
(SCK) and third (KSC) domains, with the locus of inquiry resting in the third domain 
(KSC). The other domains, although described as distinct, intersect, if not overlap, most 
closely within KSC – making this domain an important point of contemplation.  

KSC is closely linked to assertions made by Murata and Fuson (2006) about 
“learning paths” (p. 424). Murata and Fuson argue that in relation to understanding 
students’ mathematical thinking (i.e., KSC) “there are not [my emphasis] 20 to 35 
different learning paths [authors’ emphasis] or strategies for teachers to understand and 
assist” (p. 424). Rather, student thinking and learning can be isolated to a few specific 
and predictable trajectories, or learning paths. Murata and Fuson make clear that these 
few predictable trajectories are not a closed set, and that other trajectories are possible; 
hence, teachers must be open to these other trajectories. 

The research questions guiding this work are: (1) what are the assumptions 
teachers make about student “learning paths” (i.e., KSC)? And, (2) in analyzing such 
assumptions, what conceptual and pedagogical insights might be mined to support 
knowledge development in the other domains defined by Ball et al. (2005)? To explore 
these questions, pairs of students and pairs of teachers were given a common 
mathematical task. Teachers were asked to model potential student learning paths.  

 
THEORETICAL FRAMEWORK 
Shulman  (1986; 1987) was among the first to begin making distinctions between the 
types of knowledge needed for teaching in his conceptualization of Pedagogical Content 
Knowledge (PCK). According to Shulman PCK “goes beyond knowledge of subject 
matter . . to the dimension of subject matter knowledge for teaching [author’s emphasis]” 
(Shulman, 1986, p. 9). He says emphatically that teachers must have “ways of 
representing and formulating the subject that make it comprehensible to others” 
(Shulman, 1986, p. 9).  Ball et al. (2005) attribute their proposed domains of KSC and 
KTC to Shulman (1986; 1987).  Ball et al. state that KSC and KTC “are closest to what is 
often meant by ‘pedagogical content knowledge’ –– the unique blend of knowledge of 
mathematics and its pedagogy” (p. 4).  
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METHODOLOGY 
Participants 
Data for this research was collected over the 2005-2006 school years at multiple sites. In 
order to examine teachers’ assumptions about student learning paths, a common task was 
completed by pairs of tenth-grade students (n = 23) and pairs of mathematics teachers (n 
= 13). The students were from two classes, each taught by one of the authors of this 
paper. The composition of students varied according to gender, ethnicity, and socio-
economic status. The course, in which the students were enrolled, was an “advanced” 
mathematics course, geared toward students who were anticipating post-secondary 
education. Although the range of abilities within the classes varied, the majority of 
students achieved at least a Level 3- (72%) in this course.  

The mathematics teachers who participated in this research were all mathematic 
department heads, in addition to classroom teachers, from various secondary schools , 
some urban and some rural, of one particular board of education. The data were gathered 
during a monthly organizational meeting. All of the teachers except for one had greater 
than 10 years of teaching experience. All of the teachers had advanced degrees in 
mathematics, education, and mathematics education. Consequently, we describe this 
group of teachers as having high SCK. This sample of teachers is a purposive effort to 
neutralize concerns over low SCK in relation to mathematics for teaching and to 
elaborate on research about teaching mathematics that largely focuses on teachers with 
low SCK. 
 
The task: What is water pressure? 
We developed the task, What is water pressure?, as a final assessment for a quadratics 
unit that spanned approximately four weeks (Kotsopoulos & Lavigne, 2007). Quadratics 
appears in each of the subsequent grades of mathematics instruction in our province. 
Therefore, the teachers in this research likely taught this material on multiple occasions, 
in multiple courses, during the current school year, as well as during their careers.  

The task involved modeling the water flow from the drinking taps in a school, 
where the projection of the water from the spout forms a parabolic arch. Pairs of teachers 
and pairs of students were asked to determine various forms of the quadratic relations 
(e.g., standard form, factored form, and vertex form) that modeled the current flow of the 
particular tap they were investigating. Additionally, the pairs were asked to determine the 
quadratic relation representing an arbitrarily set ‘ideal’ water flow of 3 cm above the 
faucet guard at the fountain. The underlining impetus for determining the ideal water 
flow was based on notions of water conservation; that is, a reduced water flow is 
potentially is more cost-effective in terms of overall water consumption.  

Teachers and students had 70 minutes (one class period) to complete the 
mathematical task. Teachers and students were randomly paired and assigned a fountain 
in either their school or the school in which the department heads’ meeting was taking 
place. The group as a whole read through the mathematical task. The assessment rubric 
was provided and reviewed prior to beginning the inquiry. Teachers were given the 
additional instructions to complete the task as a “level 3”1 response that might be 

                                                 
1 Level 3 represents the acceptable Ministry of Education standards of achievement (i.e., 

approximately 75% average) in mathematics. 
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anticipated from a tenth-grade student. Students were not permitted to use graphing 
calculators on the task, but were permitted to use their own scientific calculators. 
Following the completion of the task with the teachers, we reconvened for a brief focus 
group session to discuss the task, and possible teaching and learning dilemmas. 
 
Data collection and analysis 
A content analysis, involving the coding and counting of features within the artifacts, was 
completed for all the solutions (Berg, 2004). A common coding structure was established 
initially by each independently completing a possible “answer key” for the task. From our 
individual solutions, we discussed features that might be important or noteworthy if 
missed or omitted and modified the coding structure accordingly. Each author 
independently coded all the solutions from all the pairs of teachers and students. We then 
compared our coding with each other and contemplated differences and omissions with a 
goal of reaching consensus. The collective set of student and teacher data was compared.  

There were seven codes used for the analysis. Evidence of an error, either in the 
solutions or the graphical representations (e.g., incorrect x-intercepts on the graphical 
representation), was coded as conceptual error. Solutions that did not include a diagram, 
make use of the available physical model, were highly abstract in reasoning (i.e., 
factoring or using the quadratic formula to find the zeros of the quadratic relation), and/or 
achieved via graphing calculator (i.e., quadratic regression) were coded as theoretical 
reasoning. Solutions that were incomplete in one or more of the requirements of the task 
were coded as incomplete, regardless of the extent that the solution was incomplete. 
Solutions that were completed using fractions as opposed to decimals were coded as 
fractions. Transformation of graphical representations of water fountains that appear to 
flow into the second quadrant of the Cartesian plane, to the first quadrant were coded as 
transformed model. We also coded instances in which solutions showed the intentional 
use of friendly numbers, indicating that students or teachers understood the numbers used 
were somewhat arbitrary and could be manipulated slightly to facilitate easier 
calculations. Finally, we coded, using the Achievement Chart from the current curriculum 
documents in mathematics (Ontario Ministry of Education/OME, 2005), the overall level 
of communication of mathematical findings of the solutions as either a L1, L2, L3, or L4 
– with L3 representing current acceptable ministry standards, L4 exceeding standards, 
and L1 significantly below ministry standards.  
 
RESULTS AND DISCUSSION 
Our results suggest that the teachers in this study were not able to easily anticipate the 
learning paths (i.e., KSC) of students (see Table 1). Surprisingly, teachers made 
significantly more conceptual errors than students. Teachers were more likely to over 
theorize as well. The conceptual errors and the theoretical reasoning of the teachers are 
intertwined and directly related to SCK. For example, many teachers neglected to 
transform the x-intercepts of their graphical representations. This error was seen as 
unrelated to the mathematics, but rather to the perception that the model was perhaps 
unnecessary in order for them to complete the task. Consequently, the physical model 
was not fully incorporated into their solution. The teachers showed more dependency on 
their theoretical understanding of the quadratic relation (or high SCK). Their results were 
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less precise because of this, although we believe that the teachers’ intentions were 
increased precision.  

Students adapted to the task somewhat more concretely and did better overall 
because of their use of the physical model. Students’ concrete thinking was further 
evidenced by the creative ways in which their graphical representations were transformed 
in order to make the calculations more straight forward (i.e., from the second to the first 
quadrant. This was surprisingly not anticipated by the teachers or us - the researchers. 
This leads us to question whether student learning paths might potentially be restricted or 
develop at all, if higher SCK informs the decisions teachers make in relation to KTC.  
Also compelling is the evidence that many teachers, with significant SCK, were unable to 
complete the task. Again, here we assert that over-theorization was the contributing 
factor. In spite of this assertion, we wonder how teachers come to zoom in on the 
particulars of CCK and KTC in order to develop an understanding of KSC, given the 
possible interference of SCK. 
 
CONCLUSIONS 
Our research demonstrates that more research is needed to examine, not only those with 
limited SCK, but also those with significant SCK. Indeed, a different type of mathematics 
for teaching education may be required for those with high SCK. The teachers in our 
research, in our opinion, would have been the most likely to anticipate student learning 
paths, given their personal histories in mathematics education. Yet, the learning paths of 
students were not well anticipated, which we contend was not intentional. Despite a 
teacher’s experience and high levels of SCK, student thinking can still be surprising and 
reveal alternative ways of thinking about mathematics, which highlights the merit in 
engaging in an exercise of modeling student thinking as professional development for 
teachers. High SCK might permit teachers to look at alternative learning paths and see 
the validity and merit in those learning paths, whereas those teachers with limited SCK 
may not have the same sort of elasticity. 

Our findings demonstrate that indeed the loci of mathematics for teaching, within 
Ball et al.’s (2005) domains, does rest in KSC. Teachers’ knowledge of the other domains 
can be examined, by extension, through an analysis of KSC. Furthermore, we propose 
that our research suggests that perhaps a fruitful starting point for mathematics teacher 
education may be through an examination of student learning paths or KSC.  
 In our research, we did not return to the teachers and present the student results in 
relation to their own projection of student learning paths. This remains an important area 
of further inquiry and, as mentioned earlier, could be a productive way of educating both 
current and in-service teachers about the various domains of mathematics for teaching. 
Furthermore, we do not explore the factors that do contribute to student learning. Further 
analysis is needed to see what other factors contribute to student understanding, 
particularly when the learning paths of students and differ from those projected by 
teachers. 

We recognize that our role as these students’ regular classroom teachers may have 
influenced our own assumptions. However, aside from the common task, the individual 
choices each of us made within our classrooms, as teachers, were not common or shared. 
We each made independent decisions about our classroom practices. However, like our 
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colleagues, who engaged in this research, our choices are restricted by the current 
policies in mathematics education (i.e., curriculum, assessment, and authorized texts) so 
there is a commonality in pedagogy to an extent. This commonality between our fellow 
teachers and us should have resulted in a more cohesive set of learning paths between the 
students and the teachers. However, this was not the case. 

The assumptions teachers make about student thinking potentially correlates to the 
ways in which teachers teach. By examining teachers’ assumptions about student 
thinking, we can then begin to unpack the assumptions teachers make. Furthermore, we 
can begin to understand the kinds of additional knowledge that teachers might need to be 
more effective at teaching mathematics.  

 
Table 1: Overall results from the coding, as percentages, for the teachers and 
students 

Code Teachers Students 
Conceptual error 69% 26% 
Theoretical reasoning 31% 13% 
Incomplete 31% 44% 
Fractions 54% 48% 
Transformed model 38% 74% 
Friendly numbers 92% 96% 
Overall level of 
communication of 
mathematical findings 

L4: 62% 
L3: 8% 
L2: 22% 
L1: 8% 

L4: 74% 
L3: 26% 
L2: 0 
L1: 0 

 
References 

 
Ball, D. L., Bass, H., Sleep, L., & Thames, M. (2005). A theory of mathematical 

knowledge for teaching. Paper presented at the The Fifteenth ICMI Study: The 
Professional Education and Development of Teachers of Mathematics, 15-21 May 
2005, State University of Sao Paolo at Rio Claro, Brazil. Retrieved December 1, 
2006 from http://stwww.weizmann.ac.il/G-math/ICMI/log_in.html. 

Berg, B. L. (2004). Qualitative research methods for the social sciences, 5th edition. 
Boston, MA: Pearson Education, Inc. 

Kotsopoulos, D., & Lavigne, S. (2007). What is water pressure? Reflecting on a grade 10 
academic performance task. The Ontario Mathematics Gazette, 45(3), 25-28. 

Murata, A., & Fuson, K. (2006). Teaching as assisting individual constructive paths 
within an interdependent class learning zone: Japanese first graders learning to 
add using 10. Journal for Research in Mathematics Education, 37(5), 421-456. 

Ontario Ministry of Education/OME. (2005). The Ontario curriculum Grades 9 and 10 
mathematics - Revised. Toronto: Queen's Printer for Ontario. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. 
Educational Researcher, 15(2), 4-14. 

Shulman, L. S. (1987). Knowledge and teaching: Foundation of the new reform. Harvard 
Educational Review, 57(1), 1-22. 


