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INTRODUCTION

Ball, Bass, Sleep and Thames (2005) propose a Warkedescribing knowledge
associated with mathematics for teaching. The framnke consists of four “distinct
domains” (p. 3): (1rommon content knowledge (CCK) — the mathematical knowledge
of the school curriculum, (Zpecialized content knowledge (SCK) — the mathematical
knowledge that teachers use in teaching that geysnol the mathematics of the
curriculum itself, (3knowledge of students and content (KSC) - the intersection of
knowledge about students and knowledge about maitiesnand (4knowl edge of
teaching and content (KTC) - intersection of knowledge about teaching and kndgée
about mathematics (p. 4). This research examireesetationship between the second
(SCK) and third (KSC) domains, with the locus afuiry resting in the third domain
(KSC). The other domains, although described asmdisintersect, if not overlap, most
closely within KSC — making this domain an impottpaoint of contemplation.

KSC is closely linked to assertions made by Mueatd Fuson (2006) about
“learning paths” (p. 424). Murata and Fuson ardua in relation to understanding
students’ mathematical thinking (i.e., KSC) “tharenot [my emphasis] 20 to 35
differentlearning paths [authors’ emphasis] or strategies for teachersterstand and
assist” (p. 424). Rather, student thinking andriey can be isolated to a few specific
and predictable trajectories, or learning paths. Maigatd Fuson make clear that these
few predictable trajectories amet a closed set, and that other trajectories ardlgess
hence, teachers must be open to these other tagsct

The research questions guiding this work are: (igtvare the assumptions
teachers make about student “learning paths” £8C)? And, (2) in analyzing such
assumptions, what conceptual and pedagogical itssiglght be mined to support
knowledge development in the other domains defmeBall et al. (2005)? To explore
these questions, pairs of students and pairs oliéga were given a common
mathematical task. Teachers were asked to modehpaltstudent learning paths.

THEORETICAL FRAMEWORK

Shulman (1986; 1987) was among the first to begaking distinctions between the
types of knowledge needed for teaching in his cptuadization ofPedagogical Content
Knowledge (PCK). According to Shulman PCK “goes beyond kremige of subject
matter . . to the dimension of subject matter kralgkfor teaching [author’s emphasis]”
(Shulman, 1986, p. 9). He says emphatically thethiers must have “ways of
representing and formulating the subject that nie&emprehensible to others”
(Shulman, 1986, p. 9). Ball et al. (2005) attréothteir proposed domains of KSC and
KTC to Shulman (1986; 1987). Ball et al. statd h&C and KTC “are closest to what is
often meant by ‘pedagogical content knowledge’he-unique blend of knowledge of
mathematics and its pedagogy” (p. 4).
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METHODOLOGY

Participants

Data for this research was collected over the 2Z80# school years at multiple sites. In
order to examine teachers’ assumptions about stlelming paths, a common task was
completed by pairs of tenth-grade students (n =aB8)pairs of mathematics teachers (n
= 13). The students were from two classes, eadhtdwy one of the authors of this
paper. The composition of students varied accortrggender, ethnicity, and socio-
economic status. The course, in which the studeete enrolled, was an “advanced”
mathematics course, geared toward students whoaméipating post-secondary
education. Although the range of abilities withire tclasses varied, the majority of
students achieved at least a Level 3- (72%) indbisse.

The mathematics teachers who participated in #ssarch were all mathematic
department heads, in addition to classroom teacfrers various secondary schools ,
some urban and some rural, of one particular bokedlucation. The data were gathered
during a monthly organizational meeting. All of tieachers except for one had greater
than 10 years of teaching experience. All of tleebers had advanced degrees in
mathematics, education, and mathematics educ&immsequently, we describe this
group of teachers as having high SCK. This sampleazhers is a purposive effort to
neutralize concerns over low SCK in relation to meatatics for teaching and to
elaborate on research about teaching mathemadéttatigely focuses on teachers with
low SCK.

The task: What is water pressure?

We developed the tasWhat is water pressure?, as a final assessment for a quadratics
unit that spanned approximately four weeks (Kotsibp®& Lavigne, 2007). Quadratics
appears in each of the subsequent grades of maihsmimstruction in our province.
Therefore, the teachers in this research likelghathis material on multiple occasions,
in multiple courses, during the current school yaarwell as during their careers.

The task involved modeling the water flow from threnking taps in a school,
where the projection of the water from the spoutnf®a parabolic arch. Pairs of teachers
and pairs of students were asked to determineuwsfarms of the quadratic relations
(e.g., standard form, factored form, and vertexnothat modeled the current flow of the
particular tap they were investigating. Additiogathe pairs were asked to determine the
guadratic relation representing an arbitrarily‘skgal’ water flow of 3 cm above the
faucet guard at the fountain. The underlining imapdbr determining the ideal water
flow was based on notions of water conservatioat ity a reduced water flow is
potentially is more cost-effective in terms of adéwater consumption.

Teachers and students had 70 minutes (one classptr complete the
mathematical task. Teachers and students weremdpngaired and assigned a fountain
in either their school or the school in which tlepdrtment heads’ meeting was taking
place. The group as a whole read through the mattieshtask. The assessment rubric
was provided and reviewed prior to beginning thegguiry. Teachers were given the
additional instructions to complete the task akewae! 3™ response that might be

! Level 3 represents the acceptable Ministry of Btina standards of achievement (i.e.,
approximately 75% average) in mathematics.



Running Header: TEACHERS’ ASSUMPTIONS

anticipated from a tenth-grade student. Students wet permitted to use graphing
calculators on the task, but were permitted tothisg own scientific calculators.
Following the completion of the task with the teaish we reconvened for a brief focus
group session to discuss the task, and possilbitepand learning dilemmas.

Data collection and analysis
A content analysis, involving the coding and congtof features within the artifacts, was
completed for all the solutions (Berg, 2004). A ¢oam coding structure was established
initially by each independently completing a pobsitanswer key” for the task. From our
individual solutions, we discussed features thahtbe important or noteworthy if
missed or omitted and modified the coding strucaaeordingly. Each author
independently coded all the solutions from all plag's of teachers and students. We then
compared our coding with each other and contengp@iféerences and omissions with a
goal of reaching consensus. The collective setunfesit and teacher data was compared.
There were seven codes used for the analysis. kaédaf an error, either in the
solutions or the graphical representations (enggrrectx-intercepts on the graphical
representation), was codedaasceptual error. Solutions that did not include a diagram,
make use of the available physical model, werelhighstract in reasoning (i.e.,
factoring or using the quadratic formula to fin@ treros of the quadratic relation), and/or
achieved via graphing calculator (i.e., quadraggression) were coded theoretical
reasoning. Solutions that were incomplete in one or morthefrequirements of the task
were coded ascomplete, regardless of the extent that the solution wesrmplete
Solutions that were completed using fractions ggeped to decimals were coded as
fractions. Transformation of graphical representations ofewéduntains that appear to
flow into the second quadrant of the Cartesianglémthe first quadrant were coded as
transformed model. We also coded instances in which solutions shatedhtentional
use offriendly numbers, indicating that students or teachers understhechtimbers used
were somewhat arbitrary and could be manipulatgtity} to facilitate easier
calculations. Finally, we coded, using the AchieeatiChart from the current curriculum
documents in mathematics (Ontario Ministry of EdiscdOME, 2005), the overall level
of communication of mathematical findings of théusions as either A1, L2, L3, orL4
— with L3 representing current acceptable ministandards, L4 exceeding standards,
and L1 significantly below ministry standards.

RESULTS AND DISCUSSION

Our results suggest that the teachers in this suglg not able to easily anticipate the
learning paths (i.e., KSC) of students (see Tapl&udrprisingly, teachers made
significantly more conceptual errors than studehéachers were more likely to over
theorize as well. The conceptual errors and therétieal reasoning of the teachers are
intertwined and directly related to SCK. For examphany teachers neglected to
transform thex-intercepts of their graphical representationss®@nror was seen as
unrelated to the mathematics, but rather to thegpdion that the model was perhaps
unnecessary in order for them to complete the @sksequently, the physical model
was not fully incorporated into their solution. Teachers showed more dependency on
their theoretical understanding of the quadratiatien (or high SCK). Their results were
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less precise because of this, although we belleatethe teachers’ intentions were
increased precision.

Students adapted to the task somewhat more colycagie did better overall
because of their use of the physical model. Stwlienncrete thinking was further
evidenced by the creative ways in which their gregdlrepresentations were transformed
in order to make the calculations more straightveod (i.e., from the second to the first
guadrant. This was surprisingly not anticipatedh®/teachers or us - the researchers.
This leads us to question whether student leanpatigs might potentially be restricted or
develop at all, if higher SCK informs the decisid@achers make in relation to KTC.
Also compelling is the evidence that many teachsit, significant SCK, were unable to
complete the task. Again, here we assert that themrization was the contributing
factor. In spite of this assertion, we wonder heachers come to zoom in on the
particulars of CCK and KTC in order to develop anlerstanding of KSC, given the
possible interference of SCK.

CONCLUSIONS

Our research demonstrates that more researchdgdé examine, not only those with
limited SCK, but also those with significant SCKdeed, alifferent type of mathematics
for teaching education may be required for thogl Wigh SCK. The teachers in our
research, in our opinion, would have been the tilad to anticipate student learning
paths, given their personal histories in matheraatucation. Yet, the learning paths of
students were not well anticipated, which we coditeas not intentional. Despite a
teacher’s experience and high levels of SCK, stuthanking can still be surprising and
reveal alternative ways of thinking about matheasativhich highlights the merit in
engaging in an exercise of modeling student thipkis professional development for
teachers. High SCK might permit teachers to looktatrnative learning paths and see
the validity and merit in those learning paths, vélas those teachers with limited SCK
may not have the same sort of elasticity.

Our findings demonstrate that indeed the loci oftramatics for teaching, within
Ball et al.’s (2005) domains, does rest in KSC.cheas’ knowledge of the other domains
can be examined, by extension, through an anay${$C. Furthermore, we propose
that our research suggests that perhaps a fratduing point for mathematics teacher
education may be through an examination of stuéamhing paths or KSC.

In our research, we did not return to the teachrdspresent the student results in
relation to their own projection of student leagpaths. This remains an important area
of further inquiry and, as mentioned earlier, cdodda productive way of educating both
current and in-service teachers about the varionsagths of mathematics for teaching.
Furthermore, we do not explore the factors tzatontribute to student learning. Further
analysis is needed to see what other factors tamérito student understanding,
particularly when the learning paths of students differ from those projected by
teachers.

We recognize that our role as these students’ aegldssroom teachers may have
influenced ouown assumptions. However, aside from the common thskindividual
choices each of us made within our classroomsahers, were not common or shared.
We each made independent decisions about our atamspractices. However, like our
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colleagues, who engaged in this research, our eba@ie restricted by the current
policies in mathematics education (i.e., curricul@ssessment, and authorized texts) so
there is a commonality in pedagogy to an extenis €dmmonality between our fellow
teachers and us should have resulted in a moresisghset of learning paths between the
students and the teachers. However, this was aatabe.

The assumptions teachers make about student tgipkitentially correlates to the
ways in which teachers teach. By examining teathssimptions about student
thinking, we can then begin to unpack the assumgptieachers make. Furthermore, we
can begin to understand the kinds of additionalkadge that teachers might need to be
more effective at teaching mathematics.

Table 1: Overall results from the coding, as percentagesoff the teachers and
students

Code Teachers| Students
Conceptual error 69% 26%
Theoretical reasoning 31% 13%
Incomplete 31% 44%
Fractions 54% 48%
Transformed model 38% 74%
Friendly numbers 92% 96%
Overall level of L4: 62% | L4: 74%
communication of L3: 8% L3: 26%
mathematical findings L2:22% | L2:0
L1:8% |L1:0
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