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The evolution of theoretical frameworks in matheosaeducation research is the
broad umbrella under which this paper is situatieds argued that because the
field of mathematics education concerns peoplethenl learning, every
discipline relevant to humanity is germane to tieisearch. There has been a
movement to broaden the initial focus on psychelegy mathematics education
comes of age—to include sociocultural theory. H@amethis paper focuses on the
usefulness of theories borrowed from literary damsahat address metaphor,
metonymy, and imaginative rationality in semiotitise recent use of semiotics as
a theoretical framework for research includes thersg focus on logical thinking
in mathematics education, but also allows for theognition of creative elements
in the learning and doing of mathematics, includihg abduction that is an
essential component of creative work, precediniiexevely relating to, and
complementing deduction and induction. lllustragx@mples are provided,
drawn from recent research on the learning of tngmetry and geometry.

Already in 1978, in a paper characterizing andresting “Dionysians and
Apollonians”, Gerald Holton questioned and commeras follows.
How do scientists go about obtaining knowledge? Kdbauldthey? Few modern
research scientists tend to be introspective ahese questions. During apprenticeship,
most scientists somehow absorb the necessary ptiagattdude and then go about their
business quite successfully, content to leaveatsmall handful to become interested in
epistemology when some obstinate difficulty bloskeentific advance. (p. 84, his
emphasis)
On opposite ends of the epistemological scale, Yai@ams were characterized as
emphasizing the human elements of the scientibcgss, which include imagination,
affect, insights, and creativity, whereas Apollarsavere seen to concentrate on the final,
rational product of the endeavor, downplaying themanism of the journey there. Holton
considered the goal of the latter group to be dason of “a reality in space and time
which is independent of ourselves” (p. 91). Allginstein—on the basis of his own
averred “basic axiom,” namely, the postulation oéal world in which physics is an
attempt to grasp reality as it is thought indepatigleof its being observed— was placed
in the category of Apollonians. However, Einsteiefgstemology is more balanced than
Holton’s categorization suggests. In an essay @ieftse and religion” written in 1941,
Einstein (1979) claimed that “Science is the centld endeavor to bring together by
means of systematic thought the perceptible phenarokthis world into as
thoroughgoing an association as possible” (p. [4)gating Holton’s classification,
human conceptualization is indispensable in Ein®eagpistemology. He wrote, “To put
it boldly, it [physics] is the attempt at the pasgie reconstruction of existence by the
process of conceptualization” (ibid.). Thus there @ements of humanism in this
reconstruction. Albert Einstein was arguably on¢éhefmost creative theoretical



physicists of the ZBcentury. His well-known claim that the most befltihing we can
experience is the mysterious—which is the sourdaott art and science— places the
origin of his creative imagination squarely in t@cerns of the Dionysians rather than
the Apollonians, contrary to Holton’s attributioFhere is evidence in the writings of
other scholars (Schilpp, 1959), and even in Hol#¢h973, 1978) own analyses, that
visualization and the juxtaposition of images in$fein’s thought were a source of the
imaginative rationality for which his thought expeents are famous. More than that, it
was the Janusian polarity of opposites (Rothend&g9), in his personality and thus
also in his scientific thinking (Holton, 1978, esfaly pp. 275-281), that made his break
with traditional physics possible.

The extreme views of Dionysians and Apolloniaressill rife, and still highly
relevant in the epistemology of mathematics (D&lsersh, 1981). Although it is still
the norm to present the resultsnadithematicatesearch in a published form that hides
the creative processes of their genesis, it isagingly accepted thatathematics
education which involves all the complexity of human leami(Presmeg, 1998),
partakes of both the arts and the sciences, asdhiatitheories from all relevant
disciplines are germane to research on the teaemddearning of mathematics at all
levels.

In this position paper | argue that just as indase of Einstein’s creativity, in
mathematics education and therefore in its resedrshessential to take into account the
sometimes hidden human qualities of imaginatiostheatic sense and feeling, and
creativity, in addition to the logic that is tee qua norf mathematical endeavor.
Semiotics is the study of activity with signs (Qaktro, 1993). Several of the semiotic
triads posited by Charles Sanders Peirce (1998)18® germane to this balanced view
of the teaching and learning of mathematics. Twihe$e triads are presented in the
following sections.

Deduction, induction, and abduction
According to Peirce (1992ichotomicis the art of making three-fold divisions. By his
own admission, he showed a proclivity for the nunthese in his philosophical thinking.
“But it will be asked, why stop at three?” he wr@eirce, 1992, p.251), and his reply to
the question is as follows:
[Wihile it is impossible to form a genuine three gy modification of the pair, without
introducing something of a different nature frone tlmit and the pair, four, five, and every
higher number can be formed by mere complicatidnisrees (ibid.).
Accordingly, he used triads not only in his senuatiodel including object, sign
(sometimes called the representamen), and intergrdiut also in the types of each of
these components. Of the ten triads that Peircedated in his writings over several
decades, two are of particular relevance to thpgae of this paper. The first of these is
Peirce’s recognition of the importance of a thinddkof logic, namelyabduction in
addition to the well known forms of deduction anduction that underlie all
mathematical cognition, and indeed, scientific king in general.

Intuitions or hunches have been demonstratediag bentral features in the
creative thinking that resulted in many scientifinovations (e.g., Hadamard, 1945).
This kind of thinking is an example of what Pei(t898) callechbduction In his own
words, “[The] step of adopting a hypothesis as ¢psinggested by the facts, is what | call
abduction | reckon it as a form of inference, however peobéhtical the hypothesis may




be held” (p. 95). There is no guarantee that ametozh will turn out to be useful, or
even correct, as Peirce (ibid.) suggested:

An Abductionis a method of forming a general prediction withaay positive

assurance that it will succeed either in the speaise or usually, its justification

being that it is the only possible hope of regualgtbur future conduct rationally,
and that Induction from past experience gives sgtencouragement to hope

that it will be successful in the future. (p. 299)

Most of Sherlock Holmes’s so-called deductions siéGtly speaking, abductions,
because they are guesses—based on evidence—almiubak place (Colapietro, 1993).
As Colapietro pointed out, “They are guesses clydhamed and then carefully tested”
(p. 1). An abduction may result from only one imst®, unlike induction, which requires
a number of particular instances to suggest itscpie. Colapietro defines the ways in
which abduction differs from deduction and induntas a means of inference, as
follows:

Deduction is the logical operation by which we derihe necessary

consequences from some purely hypothetical sitngta example, if it is true

that A is greater than B and B is greater tharh€n it is necessarily true that A is
greater than C). Induction is the operation by Wwhi@ test hypotheses in terms
of consequences derived by deduction; abductitimaisby which hypotheses are
framed in the first place. In other words, deducfiwoves that somethingustbe
the case; induction shows that somethantyally isthe case; and abduction

suggests that somethingght bethe case. (p. 2)

In this account, Colapietro does not distinguistieav of inductionas a form of formal
proof—as in mathematical induction—from the lessrfal use of the word to indicate a
process of inferring a general law from particuteatances (Concise Oxford Dictionary).
The essential difference between induction and etimtuis that abduction may be a
guess based on the evidence of only one instantke unduction in which several
particular instances are necessary for the gendesience to be made.

A short example will illustrate the significanckatbduction (in addition to
induction and deduction) in mathematical probletwiag. In spring of 2006, | and two
colleagues (Jeff Barrett and Sharon McCrone) ingatgd the ways that prospective
elementary school teachers progressively consieroéralizations in a course called
Geometric Reasoning: Geometry as Earth Measurely. iBdhe course, the teacher
(Jeff) gave the class, working in groups, the \agn task of finding the best position to
situate a bridge over a river between two townsuich a way that the road distance
between the towns was as short as possible. The lotal negotiated in open discussion
that the towns could be represented by points,dABrand that the bridge should be
perpendicular to the banks of the river. After wogkin groups, the students were
required to propose a solution for homework, whigs collected in the following
session, before further group and whole-class d8oun. Many students in the class
adjusted the task to make the line segment joitiiegwo towns perpendicular to the
river: but this trivialized the situation and wast & general solution. Several students
knew that a straight line segment would give thertgst distance between A and B, but
the problem remained that the bridge had to begmelipular to the banks of the river.
Some students wanted to place the bridge at thpaimtlof intersection of this line with
the banks of the river. In observing the classd, thimking about the task on my own, |



had the abduction that the point of placement bazktnot in the middle, but
proportionate to the distances of the towns froenrter. This abduction led to my
working with similar triangles to solve the probleHowever, one student, Sam
(pseudonym) had a more dynamic abduction thatilad dnd later his group, to a much
simpler and more elegant solution. He realized tiativer could be “shifted” to be
adjacent to either of the towns A or B, without mtiag the structure of the task. AC and
DB represent the width of the river (see figureThen the long sides of the
parallelogram ACBD could be taken to intersect Wit river, wherever it may be,
supplying the position for placement, EF, of thielpe. The path AEFB would then
always be the shortest possible, and it would brl€qg length to sides AD or BC of the
parallelogram plus the width of the river.

D B

A C
Figure 1.A dynamic solution of the bridge placement prohlem

In this case, Sam’s abduction—which appeared radmatively in the discussions at
first—led to an accurate general solution of thebpgm. However, it is always necessary
to check that the results of an abduction are iddedd.

Abductive logic has a role to play along with istlan and deduction in the
teaching and learning of mathematics, as partefeoognition of the human qualities
inherent in this endeavor. A second Peircean thatlis relevant concerns the signs that
are used in representing mathematical objects eowpses.

Iconic, indexical, and symbolic signs

According to Peirce (1998), signs mayibenic, indexical or symbolic These types are
not inherent in the signs themselves, but deperth@mterpretation of the constituent
relationship between a sign vehicle (the represeetd and its object. To illustrate by
using some of Peirce’s examples, ini@mic sign, the sign vehicle and the object share a
physical resemblance, e.g., a photograph of a peegyesenting the actual person. Signs
areindexicalif there is some physical connection between sa&ncle and object, e.g.,
smoke invoking the interpretation that there is,for a sign-post pointing to a road. The
nature ofsymbolicsigns is that there is an element of conventiarliating a particular

sign vehicle to its object (e.g., algebraic syndral.




The literary figures of metaphor and metonymy rnayelated quite closely with
iconic and indexical signs respectively (Presm@@52. Briefly, on the one hand, the
inherent unidirectional structure of metaphor hagcanic propensity to illuminate
comparable structures in two disparate domaingh®mther hand, because metonymy
depends on context for its efficacy it is indexicahature. Both these figures have been
shown to be relevant as lenses for understandpercesof teaching and learning
mathematics (Presmeg, 1998Db, in press). In thailggaof trigonometry, both
idiosyncratic metaphors (such as Alison’s “wateel®) and canonical metaphors (such
as Laura’s “bow tie” metaphor adopted from classaésion) were powerful in helping
students to construct meaning for trigonometricrdiédns in the four quadrants of the
coordinate plane. Along with the ubiquitous symémiliof mathematics, iconic and
indexical signs are essential elements of mathealatieaning.

Theoretical developments that emphasize the higmaoi mathematics education
as a field are an essential aspect of researdtisirfield.

References

Colapietro, V. M. (1993)Glossary of semioticdew York: Paragon House.

Davis, P. & Hersh, R. (1981)he mathematical experiend@oston: Houghton Mifflin
Company.

Einstein, A. (1979)Out of my later yearsSecaucus, NJ: The Citadel Press.

Hadamard, J. (1945The psychology of invention in the mathematic#d fierinceton,
NJ: Princeton University Press.

Holton, G. (1973)Thematic origins of scientific thought: Kepler tm&ein.Cambridge,
MA: Harvard University Press.

Holton, G. (1978)The scientific imagination: Case studiésndon: Cambridge
University Press.

Peirce, C. S. (1992The essential Peirc&/olume 1, edited by N. Houser & C. Kloesel,
Bloomington, IN: Indiana University Press.

Peirce, C. S. (1998The essential Peirc&olume 2, edited by the Peirce Edition Project.
Bloomington, IN: Indiana University Press.

Presmeg, N. C. (1998a). Balancing complex humarndsoMathematics education as an
emergent discipline in its own right. In A. Siergka & J. Kilpatrick (Eds.),
Mathematics education as a research domain: A $efocidentity(pp. 57-70).
Dordrecht: Kluwer Academic Publishers.

Presmeg, N. C. (1998b). Metaphoric and metonyngigification in mathematics.
Journal of Mathematical Behavior, (1), 25-32.

Presmeg, N. C. (2005). Metaphor and metonymy icgsees of semiosis in mathematics
education. In M. Hoffmann, J. Lenhard, & F. Seg@ets.),Activity and sign:
Grounding mathematics educatipp. 105-115. Dordrecht: Springer.

Presmeg, N. C. (in press). The power and peritaetbphor in making internal
connections in trigonometry and geomefyoceedings of the"SConference of
the European Society for Research in Mathematicgc&ibn Larnaca, Cyprus,
February 22-26, 2007.

Schilpp, P. (Ed.) (1959Albert Einstein: Philosopher-scientidtondon: Harper & Row.

Rothenberg, A. (1979Y.he emerging goddess: The creative process irsagnce and
other fields.Chicago: University of Chicago Press.



