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The evolution of theoretical frameworks in mathematics education research is the 
broad umbrella under which this paper is situated. It is argued that because the 
field of mathematics education concerns people and their learning, every 
discipline relevant to humanity is germane to this research. There has been a 
movement to broaden the initial focus on psychology—as mathematics education 
comes of age—to include sociocultural theory. However, this paper focuses on the 
usefulness of theories borrowed from literary domains that address metaphor, 
metonymy, and imaginative rationality in semiotics. The recent use of semiotics as 
a theoretical framework for research includes the strong focus on logical thinking 
in mathematics education, but also allows for the recognition of creative elements 
in the learning and doing of mathematics, including the abduction that is an 
essential component of creative work, preceding, reflexively relating to, and 
complementing deduction and induction. Illustrative examples are provided, 
drawn from recent research on the learning of trigonometry and geometry. 

 
 Already in 1978, in a paper characterizing and contrasting “Dionysians and 
Apollonians”, Gerald Holton questioned and commented as follows. 

How do scientists go about obtaining knowledge? How should they? Few modern 
research scientists tend to be introspective about these questions. During apprenticeship, 
most scientists somehow absorb the necessary pragmatic attitude and then go about their 
business quite successfully, content to leave it to a small handful to become interested in 
epistemology when some obstinate difficulty blocks scientific advance. (p. 84, his 
emphasis) 

On opposite ends of the epistemological scale, Dionysians were characterized as 
emphasizing the human elements of the scientific process, which include imagination, 
affect, insights, and creativity, whereas Apollonians were seen to concentrate on the final, 
rational product of the endeavor, downplaying the humanism of the journey there. Holton 
considered the goal of the latter group to be description of “a reality in space and time 
which is independent of ourselves” (p. 91). Albert Einstein—on the basis of his own 
averred “basic axiom,” namely, the postulation of a real world in which physics is an 
attempt to grasp reality as it is thought independently of its being observed— was placed 
in the category of Apollonians. However, Einstein’s epistemology is more balanced than 
Holton’s categorization suggests. In an essay on “Science and religion” written in 1941, 
Einstein (1979) claimed that “Science is the century-old endeavor to bring together by 
means of systematic thought the perceptible phenomena of this world into as 
thoroughgoing an association as possible” (p. 24). Mitigating Holton’s classification, 
human conceptualization is indispensable in Einstein’s epistemology. He wrote, “To put 
it boldly, it [physics] is the attempt at the posterior reconstruction of existence by the 
process of conceptualization” (ibid.). Thus there are elements of humanism in this 
reconstruction. Albert Einstein was arguably one of the most creative theoretical 



physicists of the 20th century. His well-known claim that the most beautiful thing we can 
experience is the mysterious—which is the source of both art and science— places the 
origin of his creative imagination squarely in the concerns of the Dionysians rather than 
the Apollonians, contrary to Holton’s attribution. There is evidence in the writings of 
other scholars (Schilpp, 1959), and even in Holton’s (1973, 1978) own analyses, that 
visualization and the juxtaposition of images in Einstein’s thought were a source of the 
imaginative rationality for which his thought experiments are famous. More than that, it 
was the Janusian polarity of opposites (Rothenberg, 1979), in his personality and thus 
also in his scientific thinking (Holton, 1978, especially pp. 275-281), that made his break 
with traditional physics possible. 
 The extreme views of Dionysians and Apollonians are still rife, and still highly 
relevant in the epistemology of mathematics (Davis & Hersh, 1981). Although it is still 
the norm to present the results of mathematical research in a published form that hides 
the creative processes of their genesis, it is increasingly accepted that mathematics 
education, which involves all the complexity of human learning (Presmeg, 1998), 
partakes of both the arts and the sciences, and thus that theories from all relevant 
disciplines are germane to research on the teaching and learning of mathematics at all 
levels. 
 In this position paper I argue that just as in the case of Einstein’s creativity, in 
mathematics education and therefore in its research, it is essential to take into account the 
sometimes hidden human qualities of imagination, aesthetic sense and feeling, and 
creativity, in addition to the logic that is the sine qua non of mathematical endeavor. 
Semiotics is the study of activity with signs (Colapietro, 1993). Several of the semiotic 
triads posited by Charles Sanders Peirce (1992, 1998) are germane to this balanced view 
of the teaching and learning of mathematics. Two of these triads are presented in the 
following sections. 
Deduction, induction, and abduction 
According to Peirce (1992), trichotomic is the art of making three-fold divisions. By his 
own admission, he showed a proclivity for the number three in his philosophical thinking. 
“But it will be asked, why stop at three?” he wrote (Peirce, 1992, p.251), and his reply to 
the question is as follows: 

[W]hile it is impossible to form a genuine three by any modification of the pair, without 
introducing something of a different nature from the unit and the pair, four, five, and every 
higher number can be formed by mere complications of threes (ibid.).  

Accordingly, he used triads not only in his semiotic model including object, sign 
(sometimes called the representamen), and interpretant, but also in the types of each of 
these components. Of the ten triads that Peirce introduced in his writings over several 
decades, two are of particular relevance to the purpose of this paper. The first of these is 
Peirce’s recognition of the importance of a third kind of logic, namely abduction, in 
addition to the well known forms of deduction and induction that underlie all 
mathematical cognition, and indeed, scientific thinking in general. 
 Intuitions or hunches have been demonstrated as being central features in the 
creative thinking that resulted in many scientific innovations (e.g., Hadamard, 1945). 
This kind of thinking is an example of what Peirce (1998) called abduction. In his own 
words, “[The] step of adopting a hypothesis as being suggested by the facts, is what I call 
abduction. I reckon it as a form of inference, however problematical the hypothesis may 



be held” (p. 95). There is no guarantee that an abduction will turn out to be useful, or 
even correct, as Peirce (ibid.) suggested: 

An Abduction is a method of forming a general prediction without any positive 
assurance that it will succeed either in the special case or usually, its justification 
being that it is the only possible hope of regulating our future conduct rationally, 
and that Induction from past experience gives us strong encouragement to hope 
that it will be successful in the future. (p. 299) 

Most of Sherlock Holmes’s so-called deductions are, strictly speaking, abductions, 
because they are guesses—based on evidence—about what took place (Colapietro, 1993). 
As Colapietro pointed out, “They are guesses carefully framed and then carefully tested” 
(p. 1). An abduction may result from only one instance, unlike induction, which requires 
a number of particular instances to suggest its principle. Colapietro defines the ways in 
which abduction differs from deduction and induction as a means of inference, as 
follows: 

Deduction is the logical operation by which we derive the necessary 
consequences from some purely hypothetical situation (for example, if it is true 
that A is greater than B and B is greater than C, then it is necessarily true that A is 
greater than C). Induction is the operation by which we test hypotheses in terms 
of consequences derived by deduction; abduction is that by which hypotheses are 
framed in the first place. In other words, deduction proves that something must be 
the case; induction shows that something actually is the case; and abduction 
suggests that something might be the case. (p. 2) 

In this account, Colapietro does not distinguish a view of induction as a form of formal 
proof—as in mathematical induction—from the less formal use of the word to indicate a 
process of inferring a general law from particular instances (Concise Oxford Dictionary). 
The essential difference between induction and abduction is that abduction may be a 
guess based on the evidence of only one instance, unlike induction in which several 
particular instances are necessary for the general inference to be made. 
 A short example will illustrate the significance of abduction (in addition to 
induction and deduction) in mathematical problem solving. In spring of 2006, I and two 
colleagues (Jeff Barrett and Sharon McCrone) investigated the ways that prospective 
elementary school teachers progressively construct generalizations in a course called 
Geometric Reasoning: Geometry as Earth Measures. Early in the course, the teacher 
(Jeff) gave the class, working in groups, the very open task of finding the best position to 
situate a bridge over a river between two towns  in such a way that the road distance 
between the towns was as short as possible. The class had negotiated in open discussion 
that the towns could be represented by points, A and B, and that the bridge should be 
perpendicular to the banks of the river. After working in groups, the students were 
required to propose a solution for homework, which was collected in the following 
session, before further group and whole-class discussion. Many students in the class 
adjusted the task to make the line segment joining the two towns perpendicular to the 
river: but this trivialized the situation and was not a general solution. Several students 
knew that a straight line segment would give the shortest distance between A and B, but 
the problem remained that the bridge had to be perpendicular to the banks of the river. 
Some students wanted to place the bridge at the midpoint of intersection of this line with 
the banks of the river.  In observing the class, and thinking about the task on my own, I 



had the abduction that the point of placement had to be not in the middle, but 
proportionate to the distances of the towns from the river. This abduction led to my 
working with similar triangles to solve the problem. However, one student, Sam 
(pseudonym) had a more dynamic abduction that led him, and later his group, to a much 
simpler and more elegant solution. He realized that the river could be “shifted” to be 
adjacent to either of the towns A or B, without changing the structure of the task. AC and 
DB represent the width of the river (see figure 1). Then the long sides of the 
parallelogram ACBD could be taken to intersect with the river, wherever it may be, 
supplying the position for placement, EF, of the bridge. The path AEFB would then 
always be the shortest possible, and it would be equal in length to sides AD or BC of the 
parallelogram plus the width of the river. 
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Figure 1. A dynamic solution of the bridge placement problem. 
 
In this case, Sam’s abduction—which appeared rather tentatively in the discussions at 
first—led to an accurate general solution of the problem. However, it is always necessary 
to check that the results of an abduction are indeed valid. 
 Abductive logic has a role to play along with induction and deduction in the 
teaching and learning of mathematics, as part of the recognition of the human qualities 
inherent in this endeavor. A second Peircean triad that is relevant concerns the signs that 
are used in representing mathematical objects and processes. 
Iconic, indexical, and symbolic signs 
According to Peirce (1998), signs may be iconic, indexical, or symbolic. These types are 
not inherent in the signs themselves, but depend on the interpretation of the constituent 
relationship between a sign vehicle (the representamen) and its object. To illustrate by 
using some of Peirce’s examples, in an iconic sign, the sign vehicle and the object share a 
physical resemblance, e.g., a photograph of a person representing the actual person. Signs 
are indexical if there is some physical connection between sign vehicle and object, e.g., 
smoke invoking the interpretation that there is fire, or a sign-post pointing to a road. The 
nature of symbolic signs is that there is an element of convention in relating a particular 
sign vehicle to its object (e.g., algebraic symbolism). 



 The literary figures of metaphor and metonymy may be related quite closely with 
iconic and indexical signs respectively (Presmeg, 2005). Briefly, on the one hand, the 
inherent unidirectional structure of metaphor has an iconic propensity to illuminate 
comparable structures in two disparate domains. On the other hand, because metonymy 
depends on context for its efficacy it is indexical in nature. Both these figures have been 
shown to be relevant as lenses for understanding aspects of teaching and learning 
mathematics (Presmeg, 1998b, in press). In the learning of trigonometry, both 
idiosyncratic metaphors (such as Alison’s “water level”) and canonical metaphors (such 
as Laura’s “bow tie” metaphor adopted from class discussion) were powerful in helping 
students to construct meaning for trigonometric definitions in the four quadrants of the 
coordinate plane. Along with the ubiquitous symbolism of mathematics, iconic and 
indexical signs are essential elements of mathematical meaning. 
 Theoretical developments that emphasize the humanism of mathematics education 
as a field are an essential aspect of research in this field. 
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