\documentclass[]{ensmath} %% %% Possible options are: %% - onenumber: changes the way formulae are numbered: 1, 2, etc., %% instead of 3.1, 3.2, etc. %% - plainnumbering: changes the way statements are numbered: 1, 2, etc., %% instead of 3.1, 3.2, etc. %% - francais (or french): the various environments appear in French. %% - english (or anglais; this is the default). %% - deutsch (or german), italiano (or italian). %% - cmfonts: for authors who cannot have the Times fonts installed. %% - psamsfonts: corrects certain problems related to the size of %% double subscripts, etc. %% \EnsMath pages 1-2 \usepackage{epsfig} \newcommand{\Tr}{\operatorname{Tr}} \title[TRANSVERSE INTERSECTIONS OF FOLIATIONS]{TRANSVERSE INTERSECTIONS \\ OF FOLIATIONS IN THREE-MANIFOLDS} \author[S. MATSUMOTO \and T. TSUBOI]{Shigenori \sn{Matsumoto}\thanks{The first author is supported in part by Grant-in-Aid for Scientific research (B)~09440042.} \and Takashi \sn{Tsuboi}\thanks{ We thank the second author for his help in providing this model file, whose mathematical content has been profoundly distorted {\it ad usum exempli}.}} \begin{document} \maketitle \begin{abstract} For two foliations of a three-manifold, we consider the question whether their transverse intersection is unique. \end{abstract} \section{Introduction} In this paper we consider the transverse intersection of two foliations of a three-manifold (\cite{Haefliger}). \begin{theorem}\label{Main1} Let $A$ be an element of $\SL(2;\ZZ)$ such that $\nb{\Tr A}>2$. Then the intersection $\Ff^u\cap h^*\Ff^s$ is isotopic to the Anosov flow~$\Ff^u\cap\Ff^s$. \end{theorem} %% Available environments: theorem, lemma, proposition, corollary, conjecture, %% definition, example, remark, notation, %% liketheo, likeexample, likeproof. \begfig{1.1cm} \largeurfig=44mm \figinsert{fig2.ps} \Figure1{} \endfig Our Theorem \ref{Main1} is stronger than that in \cite{Ghys0}. In \S \ref{Preliminary}, we construct several examples of multifoliations. \section{Unit tangent bundles of the hyperbolic surfaces}\label{Preliminary} \begin{lemma} If $\gamma$ is a compact leaf of the intersection $\Ff^u\cap \Ff^s$, then the $\pi_1(M)$ orbit of the image $p(\widetilde{\gamma})$ of the lift $\widetilde{\gamma}\subset \Mtilde$ is discrete in $Q^u\times Q^s$. \end{lemma} \begin{proof} For any compact disk $D$ of $Q^u\times Q^s$, one can take a lift $\Dtilde$ in~$\Mtilde$.\qed \end{proof} \doublefig{0.9cm}{\largeurfig=4.4cm\deplacefig=0mm\montefig=-1mm \figinsert{fig2.ps}\Figure2{}}% {\largeurfig=4.4cm\deplacefig=0mm\montefig=-1mm \figinsert{fig2.ps}\Figure3{}} These foliations are transverse to each other and form a multifoliation. The intersections of several of their leaves are shown in Figure~5. \setcounter{figure}{3} \vskip4mm \begin{figurelist}{3} \includegraphics*[height=.8cm]{fig2.eps} \caption{} & \includegraphics*[height=.8cm]{fig2.eps} \caption{} & \includegraphics*[height=.8cm]{fig2.eps} \caption{} \end{figurelist} \begin{thebibliography}{10} \bibitem{Ghys0} {\sc Ghys, \Emaj.} Flots d'Anosov sur les $3$-vari\'et\'es fibr\'ees en cercles. {\it Ergodic Theory Dynam. Systems 4, no. 1\/} (1984), 67--80. \bibitem{Ghys1} \EMdash Flots transversalement affines et tissus feuillet\'es. Analyse globale et physique math\'ematique (Lyon, 1989). {\it M\'em. Soc. Math. France (N.S.) 46\/} (1991), 123--150. \bibitem{Haefliger} {\sc Haefliger, A.} Groupo\"{\i}des d'holonomie et classifiants. {\it Structure transverse de feuilletages (Toulouse, 1982). Ast\'erisque 116\/} (1984), 70--97. \end{thebibliography} \EMdate{6 f\'evrier 2001} \begin{address} Takashi Tsuboi \\ University of Tokyo Tokyo 153-8914 Japan \email{tsuboi@ms.u-tokyo.ac.jp} \end{address} \end{document}