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Abstract. In this surveyarticlewe discuss the structureofproperlydiscontinuousgroupsofaf¢ne
transformations and in particular of af¢ne crystallographic groups. One of the main open
questions is Auslander's conjecture claiming that every af¢ne crystallographic group is virtually
solvable.
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1. Introduction

The motivating questions are the following:

QUESTION (Milnor). Is every properly discontinuous group of af¢ne transform-
ations virtually solvable?

QUESTION (L. Auslander). Is every crystallographic group of af¢ne transform-
ations virtually solvable?

It turns out that already in dimension three the answer to Milnor's question is
negative. Concerning the Auslander conjecture, a number of positive results have
been obtained. They will be described below But the question in general is still open.

The contents of the paper are as follows. Roughly speaking, Sections 2 through 5
present the questions mentioned above and put them into perspective. Sections 6
through 9 deal with answers and Section 10 gives further results. In more detail,
after establishing notation in Section 2, the questions mentioned above are presented
and put into context in Section 3. Their geometric signi¢cance, namely for £at af¢ne
manifolds, is discussed in Section 4. The case of crystallographic ^ and more
generally properly discontinuous ^ groups of af¢ne isometries is covered by
Bieberbach's theory. One part of this theory is described in Section 5, another part
in Section 10, Subsection 5. At these places it is also discussed how and to which
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extent this theory generalizes to the situation of arbitrary af¢ne groups. Coming to
the answers, we see in Section 6 that every properly discontinuous af¢ne group
in dimension at most two is virtually solvable, we describe all of them and discuss
which of their features survive in higher dimensions. For dimension three, we present
in Section 7 a proof of the key case of the Auslander conjecture. In Section 8 the
signed displacement function a of Margulis is de¢ned. It is essential for his con-
struction of a free properly discontinuous af¢ne group on af¢ne three-space. We
try to give the reader a geometric intuition of the relevance of this invariant. In
Section 9 we generalize this to SO�n� 1; n�, a key case for higher dimensions.
Further results are collected in Section 10.

2. A¤ne Space

In this section we give the basic de¢nitions concerning af¢ne spaces and establish
notation.

Throughout this article, all vector spaces are over R and of ¢nite dimension.
Af¢ne space may be thought of as a vector space where you forget the zero. To
be precise, an af¢ne space E is a set together with a simply transitive action of
a vector space V . The action is usually denoted as addition V �E! E,
�v; x� 7ÿ! x� v. So for any two points x; y in E there is a unique vector v 2 V such
that x� v � y. This vector is usually written as the difference of the two points:
v � yÿ x. For every v 2 V the map Tv: E! E, Tv�x� � x� v, is called the trans-
lation by v. And V is called the vector space of translations of E and denoted
V � TE. Given two af¢ne spaces E and F a map f : E! F is called an af¢ne
map if there is a point x0 2 E and a linear map A: TE! TF such that
f �x0 � v� � f �x0� � Av. Then f �x� v� � f �x� � Av holds for every x 2 E and every
v 2 TE with the same linear map A. The map A is called the linear part of f
and denoted Lf . One can regard TE as the tangent space of E at every point of
E and Lf as the tangent map of f at every point of E. We have the chain rule
L�f � g� � Lf � Lg: An af¢ne map f : E! F of af¢ne spaces is an isomorphism
iff Lf : TE! TF is a linear isomorphism. Let Aff�E� be the group of af¢ne
automorphisms of E, also called the group of af¢ne transformations of E. We have
an exact sequence of groups

1! TE! Aff�E� ! GL�TE� ! 1:

For every x 2 E this exact sequence has a splitting homomorphism sx: GL�TE� !
Aff�E�; given by sx�A��x� v� � x� Av: So the af¢ne group is isomorphic to the
semidirect product of V � TE with GL�V �, where GL�V � acts on V in the natural
way: Aff�E� � V �j GL�V �:
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2.1. HOMOGENIZATION

It is sometimes useful to think of an af¢ne space as an af¢ne hyperplane in a vector
space of one dimension more, as follows. Let V be a vector space and let F be
the af¢ne hyperplane F � f�v; 1�; v 2 Vg in the vector space V �R. Then F is
an af¢ne space with V � TE. Conversely, given an af¢ne space E with TE � V
then for every x 2 E the map ix: E! F, ix�x� v� � �v; 1�, is an isomorphism of
af¢ne spaces. As a consequence we obtain a group isomorphism between Aff�E�
and the subgroup

A t
0 1

� �
; A 2 GL�V �; t 2 V

� �
:

of GL�V �R� given by sending the above matrix in GL�V �R� to g�A; t� 2 Aff�E�
with g�A; t��x� v� � x� t� A v. In particular, we may regard Aff�E� as a linear
group, namely as a subgroup of GL�V �R�.

3. The Questions

De¢nition 3.1. Let G be a group acting on a locally compact space X . The action is
called properly discontinuous if for every compact subset K of X the set of returns
fg 2 G ; gK \ K 6� ;g is ¢nite. The action is called crystallographic if it is properly
discontinuous and the orbit space GnX is compact.

Now letE be an n-dimensional real af¢ne space and let G be a subgroup of Aff�E�.
A group G together with a ¢xed embedding into the group Aff�E� of some af¢ne
space E will sometimes be called an af¢ne group. Since Aff�E� acts on E it makes
sense to say that the subgroup G of Aff�E� is properly discontinuous or
crystallographic. The question is: What is the structure of G ? More precisely:

QUESTION 3.2 (L. Auslander 1964 [Au 1]). Is every crystallographic subgroup G of
Aff�E� virtually solvable?

Actually, Auslander stated as a theorem a positive answer to this question. But the
proof turned out to be false. The content of the Auslander conjecture is that the
answer is yes, i.e. that every af¢ne crystallographic group is virtually solvable.

Later, Milnor asked the following more general question.

QUESTION 3.3 (Milnor 1977 [Mi]). Is every properly discontinuous subgroup G of
Aff�E� virtually solvable?

Here and in what follows a group G is said to have a certain property P virtually
if G contains a subgroup D of ¢nite index which has the property P.
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To put these questions into perspective recall the following

THEOREM 3.4 (Tits alternative [Ti]). Let G be a subgroup of GL�n;C�. Then G is
either virtually solvable or contains a free non-Abelian subgroup.

The Tits alternative applies to Aff�E� and its subgroups since Aff�E� is isomorphic
to a subgroup of GL�n� 1;R�, as explained at the end of Section 2. So the questions
above really ask to which of the two types of groups described by the Tits alternative
do our groups G belong. It was expected that the answers to these questions were yes.
It turned out that the answer to Milnor's question is no. The ¢rst counterexample is
due to Margulis [Ma 1, Ma 2], and we will explain below the geometry behind this
counterexample, see Section 8. The answer to Auslander's question is not known,
in general. So far only positive answers have been obtained.

Why is one interested in these questions? We will give an algebraic motivation in
this paragraph and a geometric motivation in the next section. Much is known about
discrete subgroups and in particular lattices in solvable Lie groups, see, e.g.,
Raghunathan's book [Ra], and also for lattices in semisimple Lie groups, see
Margulis's book [Ma 4]. The af¢ne group is a Lie group which is of none of these
types, neither solvable nor semisimple, it is of what is sometimes called mixed type.
And it is one of the simplest and most natural groups of mixed type, namely
the semidirect product of GL�n;R� with Rn. And yet we do not know the answer
to Auslander's question.

A remark concerning the relation between the notions `discrete' and `properly
discontinuous' is in order here. The group Aff�E� is a Lie group in a natural
way. Every properly discontinuous subgroup G of Aff�E� is discrete, as follows
immediately from the de¢nition. The converse is not true. For instance, if we regard
GL�n;R� as the group of af¢ne transformations ¢xing a point O 2 Rn, then every
discrete in¢nite subgroup of GL�n;R� is not properly discontinuous, since the very
de¢nition of proper discontinuity implies that for a properly discontinuous action
the isotropy group Gx � fg 2 G ; gx � xg of every point x 2 E be ¢nite.

On the other hand, properly discontinuous subgroups of the af¢ne group are geo-
metrically more interesting than just discrete subgroups, as explained in the next
section. There is an important case, however, where the two notions coincide,
see Section 5.

Remark 3.5. A group G is called polycyclic if it contains a sequence of subgroups
G � G0 > G1 > � � � > Gt � feg such that Gi�1 is normal in Gi and Gi=Gi�1 is cyclic
for i � 0; . . . ; tÿ 1. Clearly, every polycyclic group is solvable. The converse is
not true, in general. But every discrete solvable subgroup of GL�n;R� is polycyclic
(follows from [Ra, Proposition 3.8]). So our questions are sometimes stated as:
Is every properly discontinuous (resp. crystallographic) af¢ne group virtually
polycyclic?
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4. Flat A¤ne Manifolds

There is a geometric interest in properly discontinuous and in particular crystallo-
graphic af¢ne groups since they are the fundamental groups of manifolds with
certain geometric structures, namely complete £at af¢ne manifolds.

To understand what a £at af¢ne manifold is, recall the following de¢nition of a
C1-manifold. A C1-manifold M is a Hausdorff topological space and has an atlas
A of local coordinate systems j: U ! j�U� � Rn, where U is an open subset of
M and j is a homeomorphism of U onto an open subset j�U� of a real vector space
Rn. Any two local coordinate systems of this atlas are C1^compatible, i.e. if
j: U ! j�U� � Rn and c: V ! c�V � � Rm are in our atlas A, then the transition
map c � jÿ1: j�U \ V � ! c�U \ V � is a C1^map. The de¢nition of a £at af¢ne
manifold is exactly the same except that one requires that the atlas A be af¢ne, that
is that the transition maps are locally restrictions of af¢ne maps Rn ! Rm.

It thus makes sense to de¢ne an af¢ne line segment in a £at af¢ne manifoldM as an
injective map s: I !M from some open interval I � R toM which when composed
with any local coordinate system of the given af¢ne atlas A ofM gives a map from I
to some Rn which is locally the restriction of af¢ne maps. Note that an af¢ne line
segment is uniquely determined by its image up to an af¢ne reparametrisation, that
is if s: I !M and t: J !M are two line segments with s�I� � t�J� then there
is an af¢ne automorphism g 2 Aff�R� of R such that t � s � g. An af¢ne line in
M is an af¢ne line segment de¢ned on all of R. A £at af¢ne manifold M is called
complete if every af¢ne line segment in M is the restriction of an af¢ne line
in M.

IfM is a £at af¢ne manifold its universal covering manifold eM is easily seen to be a
£at af¢ne manifold in a natural way. And M is complete iff eM is complete. Now
every simply connected complete £at af¢ne manifold eM is isomorphic qua af¢ne
manifold to Rn, if dimM � n. It follows that the group of deck transformations
G � p1M is in a natural way a properly discontinuous subgroup of Aff�Rn�. The
action of G on Rn has the property that no element g 6� e has a ¢xed point. This
property is equivalent to G being torsion free. The reason is that every ¢nite group
of af¢ne transformations has a ¢xed point, for example the center of gravity of
an orbit. Conversely, if G is a properly discontinuous torsion free subgroup of
Aff�Rn� then GnRn is a complete £at af¢ne manifold M with p1M � G. We thus
have

QUESTION OFMILNOR, GEOMETRIC VERSION: Is the fundamental group of
every complete £at af¢ne manifold virtually solvable?

QUESTION OF AUSLANDER, GEOMETRIC VERSION: Is the fundamental
group of every compact complete £at af¢ne manifold virtually solvable?

Note that a compact £at af¢ne manifold need not be complete, in contrast to the
situation in Riemannian geometry. Compare also Section 10.5.
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Remark 4.1. The argument above shows that the geometric version of the
questions of Auslander and Milnor are precisely the special case of the correspond-
ing questions of Section 3 for the case that G is torsion free. It suf¢ces in fact
to answer the questions of Section 3 for torsion free G, for the following reason.
The general case is implied by the special case of ¢nitely generated G. This follows
for properly discontinuous G from the Tits alternative and crystallographic G
are ¢nitely generated anyway. Now apply Selberg's lemma, by which every ¢nitely
generated subgroup of GL�n;C� contains a torsion free subgroup of ¢nite index,
cf. [Ra, Theorem 6.11].

5. The Classical Case, Groups of A¤ne Isometries and Bieberbach's
Theorems

Let h ; i be a positive de¢nite bilinear form on the vector spaceV . Then on any af¢ne
space E with TE � V one can de¢ne a metric by d�x; y� � hyÿ x; yÿ xi1=2. Let
G � Isom�E� be the group of isometries of E. Then G is a subgroup of Aff�E�,
in fact it is the group of those af¢ne transformations of E whose linear part is
in the orthogonal group O of the quadratic form h ; i. We thus have an exact
sequence

1! TE! Isom�E� ! O! 1:

In this case a subgroup G of Isom�E� is properly discontinuous iff G is a discrete
subgroup of Isom�E�. The reason is that the whole group G � Isom�E� acts properly
on E. This means that for every compact subset K of E the set of returns
fg 2 G ; gK \ K 6� ;g is compact. To see this note that the group TE of translations
acts properly onE and hence the extension Isom�E� by the compact groupO does, as
is easy to see.

For the case of isometric af¢ne actions the two questions about the structure of
discrete and crystallographic subgroups G of G � Isom�E� have long been answered,
in response to Hilbert's 18th problem formulated by Hilbert at the International
Congress of Mathematicians in 1900. The crystallographic subgroups of G are
the groups which are associated with crystals occurring in nature, hence their name.

THEOREM 5.1 (Bieberbach). Every discrete subgroup G of G is virtually abelian.
Every crystallographic subgroup G of G is virtually a translation group.

So for a crystallographic subgroup G of G the subgroup D � G \ TE of trans-
lations is of ¢nite index in G and hence the image L�G� of G under the linear part
map L is ¢nite, since L�G� � G=D. Furthermore D is crystallographic, too, since
its ¢nite index overgroup G is. So D is a lattice in TE. Choosing a basis for D
we see that L�G� is represented by integral matrices with respect to this basis. These
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facts are the starting point for the classi¢cation of crystallographic groups, cf. [Wo,
BBNWZ].

Bieberbach's theorem as stated above gives an algebraic result. The papers of
Bieberbach [B 1, B 2, B 3, F] give in fact the following description of discrete
subgroups G of G which contains very precise geometric information about how
G acts on the af¢ne space.
THEOREM 5.2 (Bieberbach). If G is a discrete subgroup of G there is a G^invariant
af¢ne subspace F of E such that the restriction homomorphism r: G! GjF has ¢nite
kernel and a crystallographic subgroup of Isom�F� as image.

One gets an amazingly good intuition of the behaviour of G by looking at the very
special case of a screw motion inR3 of a cyclic group around a line F as axis. One can
use the geometric insight of the two Bieberbach theorems to develop an algorithm for
deciding the following question, see [Ab 1, Ab 2]. Given a ¢nite subset S of G. Let G
be the subgroup of G generated by S. When is G discrete?

Coming back to Aff�E�, one may ask if one cannot improve on Auslander's
question, namely that every crystallographic subgroup G of Aff�E� is virtually
abelian or virtually nilpotent. The answer is no, in general, if dimEX 3. For an
example, let e1; . . . ; en be the standard basis of Rn and let G be the subgroup of
Aff�Rn� generated by the nÿ 1 translations by e1; . . . ; enÿ1 and the map
x 7 ÿ!Ax� en, where A � B 0

0 1

� �
and B 2 GL�nÿ 1;Z�. Then G is a crystallographic

subgroup of Aff�Rn� and G is nilpotent iff B is unipotent.
There are generalizations of Bieberbach's theorem for subgroups of Aff�E�. A

very general and useful fact is the following

THEOREM 5.3. Let G be a Lie group and R a closed connected solvable normal
subgroup of G. Let p: G! G=R be the natural map. Let H be a closed subgroup
of G such that H0, the identity component of H is solvable. Let U � p�H� be the
closure of p�H�. Then the identity component U0 of U is solvable.

For a proof see [Ra, Theorem 8.24]. Bieberbach's Theorem 5.1 is an immediate
corollary. The following corollary is proved as in [Ra, Corollary 8.27]. It is
often useful as a reduction step when dealing with discrete groups. For a typical
application see the proof of Theorem 7.1. The reader should be warned that [Ra,
Corollary 8.25 and 8.28] are false. I thank D. Witte for pointing this out to me.

COROLLARY 5.4. Let G be a connected Lie group and R its radical. Let G be a
discrete subgroup of G and let p: G! G=R be the natural map. Suppose p�G� is
Zariski dense in G=R. Then p�G� is discrete.

For the case of Aff�E� there is an even closer generalization of Bieberbach's
theorem proved by Carrie© re and Dal'bo. Let G be a subgroup of Aff�Rn� and
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put Gnd � G \ Lÿ1�L�G�0�. Think of Gnd or rather L�G�nd � L�G� \ L�G�0 as the non
discrete part of L�G�.

THEOREM 5.5 ([CD]). If G is a discrete subgroup of Aff�Rn�, then Gnd is nilpotent
and ¢nitely generated. If G is crystallographic then Gnd is unipotent, i.e. L�Gnd� is
unipotent.

In Theorem 10.2 we come back to comparing Bieberbach's theory for Euclidean
crystallographic groups with the more general situation of af¢ne crystallographic
groups.

6. A Lemma, Dimension 2

Let us return to the full group Aff�E� of af¢ne transformations. Let G be a properly
discontinuous subgroup of Aff�E�. Passing to a subgroup of ¢nite index, we
may assume that G is torsion free and hence every element g 6� e of G has no ¢xed
point, see Remark 4.1. The following lemma is easy but basic.

LEMMA 6.1. If g 2 Aff�E� has no ¢xed point then 1 is an eigenvalue of L�g�.

We can give the following more precise description of g: After choosing a base
point in E and a basis e1; . . . ; en of TE suitably, an element g 2 Aff�E� with no
¢xed point can be written in the form

gx � Ax� t �6:2�
with

A � B 0
0 Jr

� �
; t � en; �6:3�

where B 2 GL�nÿ r;R� and Jr is an r� r Jordan matrix

Jr �

1 1 0 � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0
..
. . .

. . .
.

1
0 � � � � � � 0 1

0BBBBBB@

1CCCCCCA
with rX 1. So embedding Aff�E� intoGL�n� 1;R� as at the end of Section 2 we have
g � B 0

0 Jr�1

� �
. The contents of this re¢nement is that rX 1.

It is worth giving a proof. After choosing a base point for E, we can write g in the
form gx � Ax� t with A 2 GL�TE� and t 2 TE. Then g has a ¢xed point iff
Ax� t � x has a solution iff t 2 Im�Aÿ I�. Thus if g has no ¢xed point one arrives
at the form (6.3) using the following two facts. By choosing an appropriate base
point for E one can change t to an arbitrary element t0 � t mod Im�Aÿ I�. Thus
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if t 62 Im�Aÿ I� then 1 is an eigenvalue of A and one can take t as the last vector en of
a Jordan basis of the primary space corresponding to the eigenvalue 1.

As an application of the lemma we see

COROLLARY 6.4. G is virtually solvable if dimEW 2.
Proof. The case dimE � 1 is trivial since Aff�E� is solvable. For dimE � 2 we use

a few basic facts about algebraic groups. Wemay assume thatG is torsion free, so 1 is
an eigenvalue of L�g� for every g 2 G. The same then holds for the algebraic closureG
of L�G�, hence G is of codimension at least one inGL�2;R�. The only possibility for a
non^solvable algebraic subgroup ofGL�2;R� of dimension at most three is SL�2;R�,
which is impossible by the eigenvalue 1 criterion.

Using the more precise description of formula (6.3), one can classify the torsion
free elements of Aff�2�. One can go further and describe all the properly discontinu-
ous subgroups of Aff�2�, virtually, see [Ku]. Here is the result. Consider the following
three subgroups of Aff�R2�

H � et

1

� �
;

0
t

� �
; t 2 R

� �
;

T � 1
1

� �
;

s

t

� �
; s; t 2 R

� �
;

P � 1 s

1

� �
;

t

s

� �
; s; t 2 R

� �
:

H, T and P stand for `hyperbolic', `translation' and `parabolic', respectively.

PROPOSITION 6.5. Each of these three subgroups of Aff�R2� acts properly on R2,
hence every discrete subgroup of any one of them acts properly discontinuously
on R2. Conversely, every properly discontinuous subgroup G of Aff�R2� contains
a subgroup D of ¢nite index which is a discrete subgroup of H, T or P, after an
appropriate choice of a basepoint of E and a basis for TE.

Recall from Section 5 that an action of a locally compact topological groupG on a
locally compact topological space X is called proper if the set of returns
fg 2 G; gK \ K 6� ;g of G is (relatively) compact for every compact subset K of
X . If G 6� feg the three cases of Proposition 6.5 are disjoint with the following
exception: A cyclic group of translations is in T \ P in suitable coordinates.
Incidentally, the groups T and P are conjugate by the polynomial automorphism
f of R2 where f �x; y� � �x� �y2=2�; y�.

There are numerous consequences of this classi¢cation in dimension 2 and it is
interesting to ask if the corresponding statements are true in higher dimensions.
Let G be a properly discontinuous subgroup of Aff�E�. The corollaries are stated
for dimE � 2.
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COROLLARY 6.6 �dimE � 2�:G is virtually Abelian.

We had already seen that this is no longer true if dimEX 3, for an example see the
remark before 5.3.

COROLLARY 6.7 �dimE � 2�:G is virtually a discrete cocompact subgroup of a
connected Lie subgroup G of Aff�E� and G acts properly on E.

For virtually solvable properly discontinuous groups this is true for arbitrary
dimensions of E. But no uniqueness of G can be achieved, see [FG].

COROLLARY 6.8 �dimE � 2�: Suppose G is properly discontinuous. Then G is
crystallographic iff G is virtually isomorphic to Z2.

In higher dimensions, there is of course a purely group theoretical characterization
of the crystallographic groups among the properly discontinuous ones, as follows. A
properly discontinuous subgroup G of Aff�E� is crystallographic iff the virtual
cohomological dimension of G equals dimE. This criterion is essential for one of
the proofs of the Auslander conjecture in dimension 3, see the proof of
Theorem 7.1 below.

COROLLARY 6.9 �dimE � 2�: A subgroup G of Aff�E� is crystallographic iff it is
virtually a cocompact subgroup of a connected Lie group G � Aff�E� acting properly
and simply transitively on E. Actually, then G is an algebraic subgroup of Aff�E�.

In higher dimensions, the ¢rst statement is still true for virtually solvable
crystallographic subgroups G of Aff�E�, see [FG] and 10.2. The second statement
is not true in higher dimensions. And no uniqueness of G can be achieved.

COROLLARY 6.10 �dimE � 2�: If G is a torsion free properly discontinuous
subgroup ofAff�E� thenGnE is diffeomorphic to a cylinder S1 �R or a torus S1 � S1.

The second case occurs of course iff G is crystallographic. In dimension 3, every
crystallographic subgroup of Aff�E� contains a subgroup D of ¢nite index such that
DnE is a differentiable 2-torus bundle over the circle, see [FG].

7. The Auslander Conjecture in Dimension 3

We have all the ingredients to give a proof of at least the key case of the Auslander
conjecture in dimension 3.

THEOREM 7.1 ([FG]). Every crystallographic subgroup G of Aff�E� is virtually
solvable if dimE � 3.
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Proof of one case. Using the eigenvalue 1 criterion of Lemma 6.1 one sees that the
theorem is true unless the semisimple part of the algebraic hull of G is SL�2;R� � f1g
or SO�2; 1� in appropriate coordinates. In the ¢rst case, one can show that the image
of G cannot be Zariski dense in SL�2;R� � f1g if G is properly discontinuous. The
proof uses dynamical properties of such af¢ne maps and is thus similar in spirit
to the considerations of the next section.

Now let us only consider the second case. So supposeL�G� is contained and Zariski
dense in G � SO�2; 1�. Then L�G� is a discrete subgroup of G, by Corollary 5.4. We
claim that L: G! G is injective. If ker�LjG� 6� 0, then Y: � ker�LjG� is a lattice
in the group T of translations of E, since the representation of G, and hence of
L�G�, on T is irreducible and Y is an L�G�^module and a discrete subgroup of
T . But then Y must be of ¢nite index in G, since YnE! GnE is a covering
map of compact spaces ^ assuming G is torsion free. Hence, L�G� � G=Y is ¢nite,
contradicting that L�G� is Zariski dense in G. This shows that L: G! G is injective.
So G is isomorphic to the discrete subgroup L�G� of G. But every discrete subgroup
of G acts properly discontinuously on the symmetric space X of G. The complex
upper half plane is a model of X , so X is a two-dimensional contractible manifold.
It follows that L�G� has virtual cohomological dimension at most 2. On the other
hand, G acts crystallographically on E � R3, hence has virtual cohomological
dimension 3, a contradiction. Note that for this last step of the argument it is crucial
that G is crystallographic.

For a geometric proof using the dynamics of af¢ne maps, see [S 2]. The author
actually shows the result for semigroups.

7.2. In [FG] Fried and Goldman proceed to classify all the crystallographic
subgroups G of Aff�E� for dimE � 3. As an abstract group G is virtually isomorphic
to Z2 �j AZ where Z acts on Z2 by the powers of a matrix A 2 SL�2;Z� with positive
eigenvalues ([FG] end of Corollary 5.4). This group G sits naturally in the Lie group
G � R2 �j AR. Every such G can be embedded into Aff�R3� in such a way that
the resulting af¢ne action of G on R3 is proper and simply transitive. These
embeddings are not unique up to conjugation in Aff�R3�, in none of the different
cases distinguished. The cases are: If A is hyperbolic, i.e. trA > 2, then G is solvable
not nilpotent. If A is the identity then G is abelian. If A is neither, then G is
isomorphic to the three-dimensional Heisenberg group. One such embedding for
every case is given by sending ��u; u�; t� in Z2 �j AZ or R2 �j AR to

1 0
0 At

� �
;

t
u
u

0@ 1A:

The proof of the classi¢cation relies on Lie theory, see 10.2f.
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8. A Free Properly Discontinuous A¤ne Group in Dimension 3

In this section, I will describe an invariant for certain af¢ne transformations due
to Margulis. This invariant a may be called the signed displacement function or
the signed translation length. It is of crucial importance for the counterexample
to Milnor's question in dimension 3. Higher-dimensional analogues of this
invariant are similarly essential for the Auslander and Milnor questions in those
dimensions.

So suppose dimE � 3. We mentioned already, in the proof of Theorem 7.1, that a
properly discontinuous subgroup G of Aff�E� is virtually solvable unless L�G� is
virtually contained in SO�2; 1�.

8.1. So let g 2 Aff�R3�, A: � L�g� 2 SO�2; 1� and suppose trA > 3. Then A has three
real eigenvalues: 1, l > 1 and lÿ1 < 1. The action ofA onR3 is easy to understand.A
¢xes the line A��g�: � Eig�A; 1�, it acts by expansion by the factor l on
A��g�: � Eig�A; l� and by contraction by lÿ1 on Aÿ�g�: � Eig�A; lÿ1�.

The orbit under hAi of any point not in �A��g� [ Aÿ�g�� � A0�g� is contained in a
hyperbola contained in a plane parallel to A��g� � Aÿ�g�, see Figure 1. The element
A is therefore called hyperbolic.

8.2. It is equally easy to understand the action of an af¢ne transformation gwith L�g�
hyperbolic. There is a unique g-invariant af¢ne line in E, called the axis of g and
denoted C�g�. We have TC�g� � A0�g� and g induces a translation on C�g�, denoted
t�g�. We call t�g� the translational part of g. The de¢nite article is justi¢ed by

Figure 1.
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the fact that t�g� does not depend on the choice of a basepoint in E. Note that
t�g� 2 A0�g�. So for a point x � x0 � v� � vÿ 2 R3 with x0 2 C�g�, v� 2 A��g�, we
have

gnx � x0 � nt�g� � lnv� � lÿnvÿ:

g has a ¢xed point iff t�g� � 0. We thus assume t�g� 6� 0.
Let us see what happens to a rectangle R � fx0 � st�g� � tv�; s 2 �0; 1�,

t 2 �ÿe;�e�g in the plane D��g�: � C�g� � A��g� of length t�g� and small width 2e
with symmetry axis C�g�. After applying n times g we obtain the rectangle

gnR � fx0 � st�g� � tv�; s 2 �n; n� 1�; t 2 �ÿlne; lne�g
of the same length but exponentially growing width 2lne for n 2N, see Figure 2.

8.3. Let us now look at two af¢ne transformations. So suppose g1; g2 are in Aff�R3�
such that L�gi� 2 SOo�2; 1� are hyperbolic and t�gi� 6� 0 for i � 1; 2. Let us assume
furthermore that they are in general position. To be precise we shall need only that
A��g1� 6� A0�g2� � A��g2� and A��g2� 6� A0�g1� � A��g1�. Then D��g1� \D��g2� is
a line, say L. Let us see what happens to our rectangles R1 and R2 de¢ned as above:
gni Ri intersects L for n 2N large since TL 6 k A��gi�, and the intersection gni Ri \ L
is a line segment in L of the form fyi � tpi; t 2 �n; n� 1�g for some point yi 2 L
for large n, where pi 2 TL is the projection of t�gi� onto TL along A��gi�. We have

Figure 2.
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pi 6� 0 since 0 6� t�gi� 2 A0�gi�, hence t�gi� 62 A��gi�. So p1 and p2 are nonzero
multiples of each other. Let us consider the case that they are positive multiples
of each other, i.e. p2 � r � p1 with r > 0. If r > 0, then the orientations of L induced
by g1 and g2 are the same.

In this case, as in the picture below, see Figure 3, there are an in¢nite number of
pairs �n1; n2�, n1!�1, n2!�1, such that gn11 R1 \ gn22 R2 6� ;. But this cannot
happen if G is properly discontinuous, since it is easy to see that there are in¢nitely
many different elements among the gÿn11 gn22 .

Let us state the result. Two elements g1, g2 in Aff�R3� as above are said to form a
positive pair if p2 � r � p1 for r > 0.

LEMMA 8.4. A properly discontinuous subgroup G of Aff�R3� does not contain a
positive pair.

Maybe, if g1; g2 do not form a positive pair, then g1, gÿ12 do? To answer this
question and for other purposes it is good to associate an invariant to every single
hyperbolic element and to decide if two form a positive pair by comparing their
invariants.

To de¢ne such an invariant, we need to give A0�g� an orientation. Let B be the
quadratic form

Figure 3.
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B�x; y; z� � x2 � y2 ÿ z2

on R3 with coordinates �x; y; z� corresponding to the group SO�2; 1�. The set of
isotropic vectors f�x; y; x� ; B�x; y; z� � 0g is also called the light cone. The set of
non zero isotropic vectors has two connected components, one of which we call
the positive light cone N�, say those with z > 0. If L�g� is hyperbolic then every
eigenvector x� 2 A��g� and every eigenvector xÿ 2 Aÿ�g� is isotropic. Note further
that every eigenvector x0 2 A0�g� is orthogonal to both x� and xÿ with respect
to B and that B�x0; x0� > 0. Hence there is a unique eigenvector x0 2 A0�g� such that
B�x0; x0� � 1 and �xÿ; x�; x0� form a positively oriented basis of R3 whenever
xÿ 2 Aÿ�g� \ N� and x� 2 A��g� \ N�, see Figure 4.

The invariant is now de¢ned by

a�g� � B�x0�g�; t�g��: �8:5�
This de¢nition is due to Margulis [Ma 1, Ma 2, Ma 3]. We remarked above that
t�g� � 0 iff g has a ¢xed point. Thus a�g� 6� 0 if g has no ¢xed point. Furthermore,
if we have g�x0 � v� � x0 � L�g�v� t for some x0 2 R3, v 2 R3, then

a�g� � B�x0�g�; gxÿ x� �8:6�
for every x 2 E since gxÿ x � t�g�mod Im�L�g� ÿ I� and Im�L�g� ÿ I� � A��g��
Aÿ�g� is orthogonal to x0�g� with respect to B. Note that A��gÿ1� � A��g� and

Figure 4.
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A0�gÿ1� � A0�g�, hence x0�gÿ1� � ÿx0�g� and thus

a�gÿ1� � a�g�: �8:7�
If we have two elements g1, g2 as in Section 8.3 then it is easy to see that �xÿ�g1�,
x��g1�;w� and �xÿ�g2�, x��g2�;w� have opposite orientations for 0 6� w 2 TL. Thus
g1, g2 form a positive pair iff a�g1�a�g2� < 0. We thus have the following consequence
of Lemma 8.4. One has to mention that the case that g1, g2 are not in general position
is easy to handle by a similar argument using the intersection of C�g1� � A��g1� with
C�g2� � Aÿ�g2�.

COROLLARY 8.8. If G is a properly discontinuous subgroup of Aff�R3� then a�g� is
positive for every hyperbolic g 2 G or negative for every hyperbolic g 2 G.

Recently Goldman andMargulis [GM] conjectured that the converse of Corollary
8.8 holds, as follows.

CONJECTURE 8.9. SupposeG is a subgroup of Aff�R3� such that L�g� 2 SOo�2; 1� is
hyperbolic for every g 6� e in G and a�g� > 0 for every g 6� e. Then G is properly
discontinuous.

So far this conjecture is open. But the following weaker form was proved by
Margulis [Ma 1, Ma 2]. Let g1, g2 be two elements of Aff�R3� with L�gi� hyperbolic
in SOo�2; 1�, a�gi� > 0 and g1 and g2 in general position. Then the group generated
by g1 and g2 contains a subgroup G which is free, acts properly discontinuously
and for which L�G� is Zariski dense in SO�2; 1�. This proves the following
Theorem 8.10. The invariant a is used in the proof in two essential ways. First
of all it is proved that under the above hypotheses a�g1g2� equals a�g1� � a�g2� up
to a controllable error term. Then this estimate is used to prove the existence of
the subgroup G. Here one looks at a�gg�, g 2 G, for a suitably chosen element
g 2 SO�2; 1� j�R3.

THEOREM 8.10. There is a free properly discontinuous subgroup G of Aff�R3� with
L�G� Zariski dense in SO�2; 1�.

The invariant a has a number of further interesting features, as follows.

Remark 8.11. Let G be a subgroup of Aff�R3� such that L: G! SOo�2; 1� is
injective and L�g� is hyperbolic for every g 6� e. For a given point x 2 R3 the
map u: L�G� ! R3, u�L�g�� � gxÿ x de¢nes a cocycle whose cohomology class
�u� 2 H1�L�G�;R3� is independent of the choice of x. Mapping u to the invariant
a gives a map H1�L�G�;R3� ! R�G� from this cohomology group to real valued
functions on G. Drumm and Goldman recently observed [DrG 4] that this mapping
is injective, i.e. a is a complete invariant of the cohomology class given by the
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translational part if G is a free group. This follows from the fact that two transversal
hyperbolic elements h1; h2 of SO�2; 1�� j�R3 have a common ¢xed point if every
element of < h1; h2 > has a ¢xed point.

Remark 8.12. One can also interpret a as the derivative of the trace of g and also as
the derivative of the displacement length `�g�, that is the minimum distance that g
moves a point of the symmetric space of SOo�2; 1�. Using this and Teichmu« ller theory
Goldman and Margulis [GM] gave a new proof of the following theorem of Mess
[Me].

THEOREM 8.13. Let G be a properly discontinuous subgroup of Aff�R3� with
L�G� � SOo�2; 1�. Then L�G� is not cocompact in SOo�2; 1�.

8.14. F. Labourie recently extended this result as follows. Let gq be the irreducible
representation of SL�2;R� in SL�q;R�. Let G be a properly discontinuous subgroup
of Aff�Rq�. Then L�G� is not of the form lq�D� where D is a discrete cocompact
subgroup of SL�2;R�.

Remark 8.15. Drumm, Goldman and recently V. Charette have been pursuing a
program of detailed study of the geometry of the manifolds GnR3, where G is a free
properly discontinuous subgroup of SO�2; 1� j�R3, see [Dr 1, Dr 2, DrG 1, DrG 2,
DrG 3, CG, CDGM].

9. Higher Dimensions

The Auslander conjecture has recently been proved for dimEW 6, announced in
[AMS 2]. The proof involves a discussion of several cases and the details still have
to be published. In this section we discuss the case of SO�n� 1; n� which is a
key case for dimension 5 with n � 2, and is for dimension 7, i.e. n � 3, a major
unsolved case.

9.1. Much of the discussion in this section is a generalization of Section 8. A
difference occurs in formula 9.3, namely that a�gÿ1� � �a�g� where the sign depends
on the parity of n. This has decisive consequences for our question.

Suppose g 2 Aff�R2n�1� and L�g� 2 SOo�n� 1; n�. Consider the decomposition of
R2n�1 into the direct sum of the subspaces

R2n�1 � Aÿ�g� � A0�g� � A��g�
where Aÿ�g�, A0�g�, A��g� are determined by the condition that they are the maximal
L�g�^invariant subspaces such that the eigenvalues of L�g�jAÿ�g� (resp. L�g� j A0�g�,
resp. L�g� j A��g�) are of modulus < 1 (resp.� 1, resp. > 1). An element g is called
pseudohyperbolic if dimA0�g� � 1 and the eigenvalue of L�g� j A0�g� is �1. Let O
be the set of pseudohyperbolic elements of SOo�n� 1; n� j�R2n�1.
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For every g 2 O there is exactly one invariant af¢ne line C�g�, called the axis of g,
and C�g� is parallel to A0�g�. The restriction of g to C�g� is a translation by a vector
t�g� 2 A0�g�, called the translational part of g. The af¢ne transformation g 2 O
has a ¢xed point iff t�g� � 0. Let O0 � fg 2 O j t�g� 6� 0g. The dynamical properties
of g 2 O0 are completely analogous to those discussed in Subsection 8.2.

9.2. We proceed to de¢ne the invariant a for g 2 O0. To do this we have to introduce
an orientation on A0�g�. Let B be the quadratic form on R2n�1 given by

B�x1; . . . ; x2n�1� � x21 � � � � � x2n�1 ÿ x2n�2 ÿ � � � ÿ x22n�1:

Let C be the set of all maximal isotropic subspaces of R2n�1 with respect to B. The
projection

q: R2n�1 ! Rn; q�x1; . . . ; x2n�1� � �xn�2; . . . ; x2n�1�

induces an isomorphism q: V ! Rn for every V 2 C. Thus if we give Rn an
orientation, this endows every V 2 C with an orientation. Similarly, for V 2 C
the B-orthogonal subspace

V?: � fw 2 R2n�1;B�v;w� � 0 for every w 2 Vg

is mapped isomorphically onto Rn�1 by the projection

p: R2n�1 ! Rn�1; p�x1; . . . ; x2n�1� � �x1; . . . ; xn�1�:

Thus giving Rn�1 an orientation we can endow every V?, V 2 C, with an
orientation. The point is that we then can give every line Rw � V?, Rw 6� V ,
an orientation, depending on V , namely we de¢ne w to be positively oriented with
respect to V , and write w >V 0, if for every positively oriented basis �v1; . . . ; vn�
of V the basis �v1; . . . ; vn;w� of V? is positively oriented.

9.3. We of course want to apply this for af¢ne transformations. So let g 2 O. The
subspaces A��g� are maximal isotropic and the eigenspace A0�g� is contained in
V? for V � A��g�. We have B�x0; x0� > 0 for every x0�g� 6� 0 in A0�g�. Hence, there
is a unique eigenvector x0�g� 2 A0�g� such that B�x0�g�; x0�g�� � 1 and x0�g� is positive
with respect to A��g�. We now de¢ne the invariant

a�g�: � B�x0�g�; t�g��: �9:4�

We have

a�g� � B�x0�g�; g xÿ x� �9:5�

for every x 2 R2n�1 since �gxÿ x� ÿ t�g� 2 Im�L�g� ÿ I� � A��g� � Aÿ�g� � x0�g�?.
This de¢nition coincides with the previous one for R3 by the following observation
applied for V1 � Aÿ�g�, V2 � A��g�.
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OBSERVATION 9.6. If V1, V2 2 C with V1 \ V2 � f0g then the sum orientation of
V1 � V?2 � R2n�1 is independent of the pair V1, V2.

The sum orientation of the sum V �W of two oriented vector spaces V ,W in this
order is of course the orientation given by any basis of the form �v1; . . . ; vm,
w1; . . . ;wn� where �v1; . . . ; vm� is a positively oriented basis of V and �w1; . . .wn�
is a positively oriented basis of W .

All of this is completely analogous to what was said in Section 8. A new phenom-
enon occurs if we compute a�gÿ1�:

a�gÿ1� � �ÿ1�n�1a�g�; �9:7�
since A��g� � A��gÿ1�, A0�g� � A0�gÿ1�, t�gÿ1� � ÿt�g� and x0�gÿ1� � �ÿ1�n x0�g�, as
follows from the Observation 9.6 for Vi � A��g�.

PROPOSITION 9.8. Suppose g1, g2 2 O0 and the intersection of any two of the four
vector spaces A��gi�, i � 1; 2, is zero. If �ÿ1�n�1a�g1�a�g2� < 0 then the group G
generated by g1 and g2 is not properly discontinuous.

The proof is the same as for Lemma 8.4. The condition that g1, g2 form a positive
pair translates into the condition in Proposition 9.8, using Observation 9.6.

A proof generalizing that of Theorem 8.10 yields

THEOREM 9.9. There is a free properly discontinuous subgroupG ofAff�R2n�1�with
L�G� Zariski dense in SO�n� 1; n� if n is odd.

For n even the situation is completely different:

THEOREM 9.10. There is no properly discontinuous subgroup G of Aff�R2n�1� with
L�G� Zariski dense in SO�n� 1; n� if n is even.

Once we found two elements g1, g2 in O0 ful¢lling the hypothesis about the spaces
A��gi�, either g1, g2 or g1, gÿ12 ful¢ll the hypothesis of Proposition 9.8, as follows
from (9.7), since n is even. One step in the proof is to ¢nd one pseudohyperbolic
element. Note that to be pseudohyperbolic is not an algebraic condition, e.g.
A 2 SOo�2; 1� is hyperbolic iff trA > 3. Nevertheless one ¢nds a pseudohyperbolic
element, in fact many, in every Zariski dense subsemigroup of SO0�n� 1; n�.
The relevant notion is that of proximal elements [GoM, AMS 1]. This notion is
due to Furstenberg and was used in his work on boundaries. Proximal elements
were also used in Tits' proof of the Tits alternative [Ti], cf. Theorem 3.4.

Theorem 9.9 tells us that there is a properly discontinuous subgroup G of Aff�R7�
with L�G� contained and Zariski dense in SO0�4; 3�. An open problem is if there is
crystallographic Gwith these properties. Auslander's conjecture claims there is none.
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The following results should also be mentioned in this context.

THEOREM9.11 ([AMS 2]). LetG be a properly discontinuous subgroup ofAff�Rp�q�
such that L�G� is contained in SO�p; q�, jpÿ qj 6� 1. Then L�G� is not Zariski dense in
SO�p; q�.

THEOREM 9.12. Every crystallographic subgroup G of Aff�Rn�2� with L�G�
contained in O�n; 2� is virtually solvable.

The complete list of Zariski closures of L�G�'s for properly discontinuous
subgroups G of Aff�Rn� is known for nW 7.

10. Further Results

The Auslander conjecture has been proved for some further special cases. One of the
most general results obtained so far is the following theorem.

THEOREM 10.1 ([S 1, To]).LetG be a crystallographic subgroup ofAff�E�. Suppose
L�G� is contained in a real algebraic group all of whose simple quotient groups have
real rank at most one. Then G is virtually solvable.

Because of questions regarding priority let me mention that the two papers [S 1]
and [To] were published with a big time difference (1995 and 1990, resp.) but were
both submitted in 1989.

For further results under assumptions about L�G� see [KW, K]. The reader should
be warned that he/she has to replace the de¢nitions given in [K] by correct ones.

The paper [GrM] contains a classi¢cation of those crystallographic groups G for
which L�G� is contained in O�nÿ 1; 1�, up to commensurability.

Bieberbach proved that every Euclidean crystallographic group is a ¢nite
extension of its translation group, see Theorem 5.1, second part. In the following
theorem which holds for an arbitrary af¢ne crystallographic group, supposing it
is virtually solvable, the group of all translations is replaced by a group H which
acts simply transitively and by af¢ne transformations on af¢ne space. Recall that
an action of a group H on a set X is called simply transitive if the map
H ! X , h 7 ÿ! hx, is a bijection for one ^ equivalently for every ^ x in X .

THEOREM 10.2 ([FG]). For every virtually solvable crystallographic subgroup G of
Aff�E� there is a closed connected solvable Lie subgroup H of Aff�E� with the
following properties:

(a) H acts simply transitively on E.
(b) D: � G \H is of ¢nite index in G and cocompact in H.
(c) D and H have the same algebraic hull.
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Fried and Goldman actually have a similar theorem for properly discontinuous
virtually solvable subgroups of Aff�E�. Note that H is not unique, in general.
Theorem 10.2 is an essential tool in the classi¢cation results in [FG] and [GrM].
These authors ¢rst classify the possible groups H and then the possible groups
G or D. In view of Theorem 10.2 the following problem gains additional relevance:
Determine all the connected Lie groupsH which have a simply transitive continuous
action by af¢ne transformations on some af¢ne space E. ThenH ! E, h 7 ÿ! hx, is a
diffeomorphism for every x 2 E. And it was known for a long time that H must be
solvable [Au 2, Mi]. But only much later examples of nilpotent simply connected
Lie groups were exhibited which do not have a simply transitive action by af¢ne
transformations on some af¢ne space [Be]. As a consequence Benoist gives an
example of a ¢nitely generated torsion free nilpotent group which is not an af¢ne
crystallographic group.

Here are geometric versions of these results, ¢rst of Bieberbach's and then of Fried
and Goldman's.

COROLLARY 10.3. Every compact £at Riemannian manifold has a ¢nite cover by a
£at torus. Every complete £at Riemannian manifold is ¢nitely covered by a £at
Riemannian vector bundle over a torus.

COROLLARY 10.4. Every compact complete £at af¢ne manifold with virtually
solvable fundamental group is ¢nitely covered by a solvmanifold.

A solvmanifold (nilmanifold ) is a manifold of the formG=GwhereG is a connected
solvable (nilpotent) Lie group and G is a cocompact discrete subgroup ofG. Benoist's
example shows that there are compact nilmanifolds which do not have a complete
£at af¢ne structure.

10.5. The following result is interesting to note: Every virtually solvable af¢ne
crystallographic subgroup of Aff�E� virtually preserves the Euclidean volume of
E [GH]. This supports the Markus conjecture which claims that a compact af¢ne
manifold is complete iff it has a parallel volume.

10.6 Bieberbach also showed that in each dimension there are only ¢nitely many
isomorphism types of Euclidean crystallographic groups and that isomorphic
Euclidean crystallographic groups are conjugate in the af¢ne group. None of these
results is true for af¢ne crystallographic groups: There are in¢nitely many
isomorphism types of af¢ne crystallographic groups in dimension three already,
as follows from the examples in 7.2. Also already in dimension three isomorphic
af¢ne crystallographic groups may not be conjugate, they may fall into an
uncountable number of different conjugacy classes in the af¢ne group, see
[FG].
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Other features of Bieberbach's theory also break down: Given H and D as in
Theorem 10.2, there may be groups G which lie in in¢nitely many conjugacy classes
in Aff�E� and the indices jG: Dj may be unbounded. An example in dimension 6
is given in the paper [GrS]. In this paper the authors make a detailed study of
the structure of virtually solvable af¢ne crystallographic groups. An essential tool
is a re¢ned version of Theorem 10.2.

Also a simply transitive af¢ne group H may contain in¢nitely many pairwise
abstractly noncommensurable Zariski dense cocompact discrete subgroups D,
see [GrM]. Here two groups A and B are called abstractly commensurable if A con-
tains a subgroup of ¢nite index which is isomorphic to a subgroup of ¢nite index
in B.

10.7. POLYNOMIAL AUTOMORPHISMS

Instead of looking at the group Aff�E� of af¢ne automorphisms of af¢ne space one
can consider the group P�V � of all polynomial automorphisms f of the real vector
space V . So with respect to some basis of V the components of f as well as its inverse
are given by polynomial functions in the coordinates. Thus Aff�E� consists of those
polynomial automorphisms all of whose component functions have total degree 1.
Now that it is known that not every polycyclic group is an af¢ne crystallographic
group, one can ask the question if every virtually polycyclic group G has a
homomorphism into P�V � such that the corresponding action of G on V is properly
discontinuous and GnV is compact. The answer is yes, even with polynomial
diffeomorphisms of bounded degree [DI]. The authors also asked the following more
general version of Auslander's question: Suppose G is a subgroup of P�V � such that
the corresponding action of G on V is properly discontinuously and the orbit space
GnV is compact. Is then G virtually polycyclic?
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