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Abstract. Given a graph and a representation of its fundamental group, there is a naturally
associated twisted adjacency operator. The main result of this article is the fact that these
operators behave in a controlled way under graph covering maps. When such an operator can
be used to enumerate objects, or compute a partition function, this has concrete implications
on the corresponding enumeration problem, or statistical mechanics model. For example,
we show that if Γ̃ is a finite connected covering graph of a graph Γ endowed with edge-
weights x = {xe}e, then the spanning tree partition function of Γ divides the one of Γ̃ in the
ring Z[x]. Several other consequences are obtained, some known, others new.

1. Introduction

The aim of this article is to present a result of algebraic graph theory, probably known
to the experts, in a fairly self-contained and elementary manner. This brings into what we
believe to be the correct framework several well-known results in combinatorics, statistical
mechanics, and L-function theory, but also provides new ones. In order to preserve its non-
technical nature, we focus in the present article on relatively direct consequences, leaving the
more elaborate implications to subsequent papers [9, 10].

We now explain our main result in an informal way, referring to Section 2 for precise defini-
tions and background, to Theorem 3.6 for the complete formal statement, and to Section 3.2
for its proof. Given a locally finite weighted graph Γ and a representation ρ of its fundamen-
tal group, one can define a twisted adjacency operator AρΓ. Consider a covering map Γ̃ → Γ
of finite degree between two connected locally finite graphs. Via this map, the fundamen-
tal group π1(Γ̃) embeds into π1(Γ). As a consequence, any representation ρ of π1(Γ̃) defines
an induced representation ρ# of π1(Γ). Our main result is the fact that the operator Aρ

Γ̃
is

conjugate to Aρ
#

Γ .
Let us mention that the existence of an isomorphism between the relevant vector spaces can

be understood as a chain-complex version of the so-called Eckmann-Shapiro lemma, originally
stated in group cohomology (see Remark 3.7). The interesting part of Theorem 3.6, which
we have not been able to find in the literature, is the fact that the explicited isomorphism
conjugates the aptly defined twisted adjacency operators.

As an immediate consequence of this result, we see that the decomposition of ρ# into
irreducible representations leads to a direct sum decomposition of Aρ

#

Γ , and therefore of Aρ
Γ̃
.

For example, if ρ is taken to be the trivial representation, we readily obtain the fact that AΓ

is a direct summand of A
Γ̃
, see Corollary 3.8. (Here, the absence of superscript means that

these operators are not twisted, or twisted by the trivial representation.) Furthermore, if
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the covering is normal, then A
Γ̃
factors as a direct sum of the operators AρΓ twisted by the

irreducible representations of the Galois group of the covering, see Corollary 3.9.

Whenever AρΓ can be used to enumerate combinatorial objects in Γ, or in an associated
graph G, these statements have very concrete combinatorial implications. More generally, if
these operators can be used to compute some partition functions of the weighted graph (Γ, x),
or of an associated weighted graph (G, x), these results have often non-trivial consequences on
the corresponding models. Several of these implications are well-known, but others are new.
We now state some of them, referring to Section 4 for details.

There is an obvious place to start, namely the matrix-tree theorem: the Laplacian ∆G allows
to enumerate spanning trees (STs) and rooted spanning forests (RSFs) in G. More generally,
if G = (V,E) is endowed with edge-weights x = {xe}e∈E, then it allows to compute the corre-
sponding partition functions ZST (G, x) and ZRSF (G, x), which can be thought of as elements of
the polynomial ring Z[x] = Z[{xe}e∈E]. Applying Corollary 3.8 to the Laplacian AΓ = ∆G, we
obtain the following result: if G̃ is a finite covering graph of a finite connected graph G endowed
with edge-weights x, and if x̃ denotes these weights lifted to the edges of G̃, then ZST (G, x)

divides ZST (G̃, x̃) and ZRSF (G, x) divides ZRSF (G̃, x̃) in the ring Z[x]. As an immediate conse-
quence, the number of spanning trees in G divides the number of spanning trees in G̃ (a fact
first proved by Berman [4] using a different method), and similarly for rooted spanning forests
(to the best of our knowledge, a new result).

Another interesting class of operators is given by the weighted skew-adjacency matrices
defined by Kasteleyn [20, 21] in his study of the dimer model on surface graphs. For this
model, Corollary 3.8 can only be applied to cyclic coverings, yielding a known result [15, 25].
Applying Corollary 3.9 to the case of a graph embedded in the torus yields an immediate proof
of the classical fact that the dimer characteristic polynomial behaves multiplicatively under
so-called enlargement of the fundamental domain [24, Theorem 3.3]. However, applying our
results to the study of the dimer model on graphs embedded in the Klein bottle leads to new
powerful results, that are harnessed in the parallel article [9].

Let us finally mention that our main result can be interpreted as the fact that the oper-
ators AρΓ satisfy the so-called Artin formalism, a set of axioms originating from the study
of L-series of Galois field extensions [2, 3]. As a consequence, we obtain several results on the
associated L-series L(Γ, x, ρ) = det(I−AρΓ)−1, providing a wide generalization of the results of
Stark and Terras [33, 34], see Section 3.3.

We conclude this introduction with one final remark. There are two ways to consider
graphs: either as combinatorial objects, or as topological ones (namely 1-dimensional CW-
complexes). Hence, there are two corresponding ways to define and study the associated
fundamental groups and covering maps. In our pursuit of simplicity, we have chosen the
combinatorial one. As a result, we provide the reader with a brief and dry but self-contained
treatment of the required parts of algebraic topology translated from the topological to the
combinatorial category, see Sections 2.1–2.3.

This paper is organised as follows. Section 2 deals with the necessary background material
and claims no originality: we start from scratch with graphs, their fundamental groups and
covering maps, before moving on to connections on graphs, and basics of representation theory
of groups. Section 3 contains the definition of the twisted operators, our main result with its
proof and corollaries, together with the analogy with algebraic number theory via the Artin
formalism. Finally, Section 4 deals with the aforementioned combinatorial applications.
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2. Background on graphs and representations

In this section, we first recall the combinatorial definitions of the fundamental group of a
graph and of graph coverings, adapting the standard references [32] and [14] to our purposes,
see also [26]. We then proceed with connections on graph vector bundles following [22], and
linear representations of groups following [31].

2.1. Graphs and their fundamental groups. This first paragraph deals with the elemen-
tary concepts of graph and directed graph. Since there is no universal agreement on the
relevant terminology and notation, we record here these formal definitions following [32].

Definition 2.1. A directed graph (or digraph) Γ consists of a set V of vertices, a set D of
(directed) edges, together with maps s, t : D → V assigning to each edge e ∈ D its source
vertex s(e) ∈ V and its target vertex t(e) ∈ V.

A graph Γ consists of sets V,D and maps s, t : D→ V as above, together with an involution
of D assigning to each edge e ∈ D its inverse e ∈ D such that e 6= e and s(e) = t(e). We
let E = D/(e ∼ e) denote the set of unoriented edges, and write e ∈ E for the unoriented edge
corresponding to e, e ∈ D.

A (directed) graph is locally finite if for all v ∈ V, the sets Dv = {e ∈ D | s(e) = v}
and Dv = {e ∈ D | t(e) = v} are finite. It is called finite if both sets V and D are finite.

Note that these graphs are not simple in general: we allow multiple edges and loops. Note
also that in this formalism, graphs are special types of directed graphs. Moreover, given a
directed graph Γ, one can build an associated graph (still denoted by Γ) by formally adding
an inverse e to each edge e ∈ D.

Let us fix a directed graph Γ. A path of length n ≥ 1 is a sequence γ = (e1, e2, . . . , en)
of edges such that t(ei) = s(ei+1) for all i ∈ {1, . . . , n − 1}. We shall write s(γ) = s(e1)
and t(γ) = t(en) for the source and target of γ, respectively. A path of length 0, or constant
path γ, is given by a vertex, which is both the source and target of γ. A loop (based at v) is
a path γ with s(γ) = t(γ) = v.

The directed graph Γ is said to be connected if for any v, w ∈ V, there is a path γ with s(γ) =
v and t(γ) = w.

2.2. The fundamental group of a graph. Let us now assume that Γ is a graph, and fix a
vertex v ∈ V.

Note that the set of loops based at v is a monoid with respect to the concatenation of
paths, with neutral element 1 given by the constant path based at v. Let us call two loops
based at v (or more generally, two paths with same source and same target) homotopic if
one can be obtained from the other by removing or adding loops of the form (e, e) along the
path. Then, the set of homotopy classes of loops based at v forms a group, with the inverse
of γ = (e1, . . . , en) given by γ = (en, . . . , e1).

Definition 2.2. This group is the fundamental group of the graph Γ based at v, and is denoted
by π1(Γ, v).
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If Γ is connected, then the isomorphism class of π1(Γ, v) is easily seen not to depend on the
base vertex v.

By a slight abuse of terminology, we define the fundamental group of a directed graph Γ as
the fundamental group of the associated graph obtained by adding an inverse to each edge
of Γ.

We will make use of the alternative definition of the fundamental group, based on a spanning
tree. Recall that a circuit (of length n ≥ 1) is a loop γ = (e1, . . . , en) such that ei+1 6= ei
for i ∈ {1, . . . , n − 1}, e1 6= en, and such that the vertices t(e1), . . . , t(en) are all distinct. A
spanning tree of Γ is a connected non-empty subgraph T ⊂ Γ without circuit, such that the
vertices of T coincide with the vertices of Γ. Note that the number of vertices and edges in a
finite tree satisfy |V(T )| − |E(T )| = 1.

The fundamental group of the graph Γ based at T , denoted by π1(Γ, T ), is defined as the
quotient of the free group over D by the relations e = e−1 for all edges of Γ, and e = 1 for
all edges of T . If Γ is connected, then it admits a spanning tree, and the groups π1(Γ, v)
and π1(Γ, T ) are easily seen to be isomorphic for all v ∈ V and all spanning trees T of Γ. As
a consequence, if Γ is connected and finite, its fundamental group is free of rank |E| − |V|+ 1.

2.3. Covering graphs. A morphism of digraphs p from Γ̃ = (Ṽ, D̃, s̃, t̃) to Γ = (V,D, s, t)

consists of two maps p0 : Ṽ → V and p1 : D̃ → D such that s ◦ p1 = p0 ◦ s̃ and t ◦ p1 =

p0 ◦ t̃. A morphism of graphs p : Γ̃ → Γ is a morphism of digraphs which also satisfies the
equality p1(e) = p1(e) for all e ∈ D̃.

As one easily checks, a morphism of graphs p : Γ̃→ Γ induces in the obvious way a homo-
morphism of groups p∗ : π1(Γ̃, v)→ π1(Γ, p(v)) .

Definition 2.3. A covering map is a morphism of directed graphs p : Γ̃ → Γ with p0 : Ṽ → V

surjective, such that for all ṽ ∈ Ṽ, the restriction of p1 defines bijections D̃ṽ → Dp(ṽ) and D̃ṽ →
Dp(ṽ). In that case, Γ̃ is called a covering digraph of Γ.

If Γ is a connected digraph, then the fibers p−1
0 (v) and p−1

1 (e) have the same cardinality for
all v ∈ V and e ∈ D. This is called the degree of the covering. From now on, we will drop the
subscripts in p0 and p1 and denote both maps by p.

Note that any morphism of digraphs p : Γ̃→ Γ extends to a unique morphism between the
associated graphs (obtained by adding an inverse to each edge). Moreover, if the morphism
of digraphs is a covering map, then so is the associated morphism of graphs. In such a case,
the graph Γ̃ is called a covering graph of Γ.

The easy proof of the following lemma is left to the reader.

Lemma 2.4. If p : Γ̃→ Γ is a covering map, then:

(i) the homomorphism p∗ : π1(Γ̃, v)→ π1(Γ, p(v)) is injective;
(ii) for any v ∈ V, the following subsets of Ṽ coincide:

{t(ẽ) ∈ Ṽ | ẽ ∈ D̃ṽ with ṽ ∈ p−1(v)} = {w̃ ∈ Ṽ | there exists e ∈ Dv with t(e) = p(w̃)} .

The following path lifting property is a direct consequence of the definitions, but nevertheless
a fundamental feature of a covering map p : Γ̃→ Γ. Given any path γ in Γ with s(γ) = v0 and
any ṽ0 ∈ p−1(v0), there is a unique path γ̃ in Γ̃ with p(γ̃) = γ and s(γ̃) = ṽ0. Furthermore,
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the formula [γ] · ṽ0 = t(γ̃) defines an action of π1(Γ, v0) on p−1(v0). If Γ̃ is connected, then this
action is easily seen to be transitive, with isotropy group of ṽ0 equal to p∗(π1(Γ̃, ṽ0)). As a
consequence, the degree of the covering coincides with the index of p∗(π1(Γ̃, ṽ0)) in π1(Γ, v0).

Let us finally recall that a covering map p : Γ̃ → Γ is said to be normal (or regular)
if p∗(π1(Γ̃, v)) is a normal subgroup of π1(Γ, p(v)). In such a case, we denote the quotient
group by G(Γ̃/Γ). This is nothing but the group of covering transformations of this covering
map, usually referred to as the Galois group.

2.4. Connections on graphs. Following [22, Section 3.1], let us fix a vector bundle on a
graph Γ, i.e. a vector space W and the choice of a vector space Wv isomorphic to W for
each v ∈ V. Such a vector bundle can be identified with WΓ :=

⊕
v∈VWv 'WV.

Definition 2.5. A connection on a vector bundle WΓ is the choice Φ = (ϕe)e∈D of an isomor-
phism ϕe : Wt(e) →Ws(e) for each e ∈ D, such that ϕe = ϕ−1

e for all e ∈ D.
Two connections Φ = (ϕe)e∈D and Φ′ = (ϕ′e)e∈D are said to be gauge-equivalent if there is

a family of automorphisms {ψv : Wv →Wv}v∈V such that ψs(e) ◦ ϕe = ϕ′e ◦ ψt(e) for all e ∈ D.

Let us fix a base vertex v0 ∈ V and a connection Φ on a vector bundle WΓ. Any
loop γ = (e1, . . . , en) based at v0 gives an automorphism ϕe1 ◦ · · · ◦ ϕen of Wv0 =: W called
the monodromy of γ. This construction defines a homomorphism

ρΦ : π1(Γ, v0) −→ GL(W ) ,

i.e. a representation of the fundamental group of Γ in W .
Any representation ρ : π1(Γ, v0)→ GL(W ) is of the form ρΦ for some connection Φ: indeed,

one can fix a spanning tree T ⊂ Γ (recall that π1(Γ, v0) ' π1(Γ, T )), set ϕe = idW for each edge
of T and ϕe = ρe for each of the remaining edges of Γ. Furthermore, given two connections Φ
and Φ′ on WΓ, one easily checks that ρΦ and ρΦ′ are conjugate representations if and only
if Φ and Φ′ are gauge-equivalent connections.

In other words, the GL(W )-character variety of π1(Γ, v0), i.e. the set of conjugation classes
of homomorphisms π1(Γ, v0) → GL(W ), is given by the set of connections on WΓ up to
gauge-equivalence.

Remark 2.6. The definition of a connection as isomorphisms ϕe : Ws(e) → Wt(e) seems more
natural, but leads to antihomomorphisms of π1(Γ, v0). On the other hand, our convention
yields homomorphisms, and is coherent with the definition of a local coefficient system for
twisted homology, see e.g. [36, p. 255].

2.5. Linear representations of groups. We now recall the necessary notation and ter-
minology of linear representations of groups, following [31]. Throughout this subsection, G
denotes a group.

Let us first recall that the degree of a representation ρ : G→ GL(W ), denoted by deg(ρ), is
defined as the dimension of W , which we always assume to be finite. The only representation
of degree 0 is written ρ = 0, while the degree 1 representation sending all elements of G
to 1 ∈ C∗ = GL(C) is denoted by ρ = 1.

Let us now fix two linear representations ρ : G→ GL(W ) and ρ′ : G→ GL(W ′). The direct
sum of ρ and ρ′ is the representation ρ⊕ ρ′ : G→ GL(W ⊕W ′) given by (ρ⊕ ρ′)g = ρg ⊕ ρg′ .
A representation of G is said to be irreducible if it is not the direct sum of two representations
that are both not 0.
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Now, fix a subgroup H < G of finite index, and a representation ρ : H → GL(W ). There
is a representation ρ# : G → GL(Z) which is uniquely determined up to isomorphism by the
following two properties. Let R ⊂ G denote a set of representatives of G/H, i.e. each g ∈ G
can be written uniquely as g = rh ∈ G with r ∈ R and h ∈ H.

(i) We have Z =
⊕

r∈R ρ
#
r (W ).

(ii) For any g ∈ G and w ∈ W , we have ρ#
g (ρ#

r (w)) = ρ#
r′ (ρh(w)) where gr = r′h ∈ G

with r′ ∈ R and h ∈ H.
This representation ρ# : G→ GL(Z) is said to be induced by ρ : H → GL(W ).

3. Twisted operators on graph coverings

This section contains the proof of our main result, Theorem 3.6, which relates twisted
adjacency operators on directed graphs connected by a covering map. We start in Section 3.1
by defining the relevant twisted operators, while Section 3.2 deals with Theorem 3.6, its proof,
and a couple of corollaries. Finally, Section 3.3 shows how this result can be interpreted as
a combinatorial version of the Artin formalism for these operators, yielding consequences on
associated L-series.

3.1. Twisted weighted adjacency operators. Fix a locally finite directed graph Γ =
(V,D, s, t). Let us assume that it is endowed with edge-weights, i.e. a collection x = {xe}e∈D
of complex numbers attached to the edges. The associated weighted adjacency operator AΓ

acts on CV via

(AΓf)(v) =
∑
e∈Dv

xe f(t(e)) for all f ∈WV and v ∈ V .

Adapting [22, Section 3.2] to our purposes, this operator can be twisted by a represen-
tation ρ : π1(Γ, v0) → GL(W ) in the following way. Fix a vector bundle WΓ ' WV and a
connection Φ = (ϕe)e∈D representing ρ.

Definition 3.1. The associated twisted weighted adjacency operator AρΓ is the operator on WV

given by
(AρΓf)(v) =

∑
e∈Dv

xe ϕe(f(t(e))) for all f ∈WV and v ∈ V .

Several remarks are in order.

Remark 3.2. (i) By Section 2.4, conjugate representations are given by gauge equivalent
connections. Furthermore, the corresponding twisted operators are conjugated by an au-
tomorphism of WV. Therefore, the conjugacy class of AρΓ only depends on the conjugacy
class of ρ.

(ii) If a representation ρ is given by the direct sum of ρ1 and ρ2, then the operator AρΓ is
conjugate to Aρ1Γ ⊕ Aρ2Γ .

(iii) The operator A1
Γ is nothing but the untwisted operator AΓ.

Obviously, the untwisted operator AΓ is uniquely associated to a directed graph Γ, so our
setting may seem quite restrictive. Nevertheless, there are many natural assignments G 7→ Γ
mapping a directed graph G to another directed graph Γ so that AΓ provides a new operator
on G. Moreover, if there is a natural homomorphism α : π1(Γ) → π1(G), then a ρ-twisted
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version of this new operator can be understood as Aα◦ρΓ . Finally, if the assignment G 7→ Γ
preserves covering maps, then our results apply to these new twisted operators as well.

We now give three explicit examples of such natural maps G 7→ Γ, claiming no exhaustivity.
It is easy indeed to find additional interesting ones, e.g. the Fisher correspondance used in
the study of the Ising model [12].

Example 3.3. Let G = (V(G),E(G)) be a graph endowed with symmetric edge-weights, i.e.
labels x = (xe)e∈E(G) associated to its unoriented edges. Consider the associated graph Γ =
(V,E) defined by V = V(G) and E = E(G)∪V(G), with source, target, and involution maps of Γ
given by extending the ones of G via v = v and s(v) = t(v) = v for all v ∈ V. (Concretely, the
graph Γ is obtained from G by adding a loop at each vertex.) Also, extend the edge-weights
on G to symmetric edge-weights on Γ via xv = −

∑
e∈D(G)v

xe. Then, the corresponding
weighted adjacency operator AΓ is (the opposite of) the Laplacian ∆G on G. It can be used
to count spanning trees of G – this is the celebrated matrix-tree theorem – but also rooted
spanning forests, see Section 4.1.

Note that there is a natural homomorphism α : π1(Γ, v0)→ π1(G, v0) mapping all the newly
introduced loops to the neutral element. Given any representation ρ of π1(G, v0), the associated
twisted operator Aα◦ρΓ is the vector bundle Laplacian ∆ρ

G of [22]. When the representation ρ
takes values in C∗ or SL2(C), then ∆ρ

G can be used to study cycle-rooted spanning forests [13,
22], while representations of higher degree yield more involved combinatorial objects [19].

Example 3.4. Let Γ be a graph endowed with symmetric edge-weights x = (xe)e∈E. Fix an
orientation of the edges of Γ and consider the same graph Γ endowed with the anti-symmetric
edge-weights x = {xe}e∈D given by xe = xe if the orientation of e ∈ D agrees with the fixed
orientation, and xe = −xe else. Then, the operator AΓ is a weighted skew-adjacency operator
that has been used by Kasteleyn [20, 21] and many others in the study of the 2-dimensional
dimer and Ising models, see Section 4.2. Such operators twisted by SL2(C)-representations
are also considered by Kenyon in his study of the double-dimer model [23].

Example 3.5. Let us start with a graph G = (V(G),D(G), sG, tG, i) endowed with symmetric
edge-weights x = {xe}e, and consider the associated directed line graph Γ = (V,D, s, t) defined
by

V = D(G), D = {(e, e′) ∈ V × V | tG(e) = sG(e′) but e′ 6= e}, s(e, e′) = e, t(e, e′) = e′,

and endowed with the edge-weights x = {xe,e′}(e,e′)∈D defined by xe,e′ = xe. Then, the op-
erator I−AΓ is considered by Stark and Terras [33, 34] in their study of prime cycles (see
Section 3.3), while a similar operator is defined by Kac and Ward [17] in their exploration
of the planar Ising model (see Section 4.2). Note also that there is a natural homomomor-
phism α : π1(Γ, e0) → π1(G, s(e0)), so any representation ρ : π1(G, v0) → GL(W ) defines a
twisted operator I−Aρ◦αΓ .

3.2. The main result. We are finally ready to state and prove our main theorem.
Let Γ = (V,D, s, t) be a locally finite connected directed graph with weights x = (xe)e∈D,

and let p : Γ̃ → Γ be a covering map of finite degree d, with Γ̃ = (Ṽ, D̃, s, t) connected. The
weights x on Γ lift to weights x̃ on Γ̃ via x̃ẽ := xp(ẽ) for all ẽ ∈ D̃, so Γ̃ is a weighted directed
graph, which is locally finite.

Fix base vertices v0 ∈ V and ṽ0 ∈ p−1(v0), and recall from Lemma 2.4 that p induces
an injection p∗ : π1(Γ̃, ṽ0) → π1(Γ, v0) between the fundamental groups of the associated
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graphs, so π1(Γ̃, ṽ0) can be considered as a subgroup of π1(Γ, v0) of index d. Therefore,
as explained in Section 2.5, any representation ρ : π1(Γ̃, ṽ0) → GL(W ) induces a representa-
tion ρ# : π1(Γ, v0)→ GL(Z).

Theorem 3.6. For any covering map of connected directed graphs p : Γ̃→ Γ as above and any
representation ρ : π1(Γ̃, ṽ0) → GL(W ), there is an isomorphism ψ : W Ṽ → ZV such that ψ ◦
Aρ

Γ̃
= Aρ

#

Γ ◦ ψ.

Remark 3.7. The existence of an isomorphism W Ṽ ' ZV is a chain-complex version of the
Eckmann-Shapiro Lemma, traditionally stated in the context of group (co)homology (see
e.g. [6, p. 73]). Moreover, the tensor-product definition of the induced representation (see [31,
Chapter 7]) makes the existence of this isomorphism a routine check. The interesting part
of Theorem 3.6 is the explicit form of this isomorphism in this setting, which turns out to
conjugate the relevant twisted adjacency operators.

Before giving the proof of Theorem 3.6, we present a couple of consequences.

Corollary 3.8. If Γ̃ is a connected covering digraph of Γ of finite degree, then A
Γ̃
is conjugate

to AΓ ⊕ Aρ
′

Γ for some representation ρ′ of π1(Γ, v0).

Proof. Applying Theorem 3.6 to the trivial representation ρ = 1 of π1(Γ̃, ṽ0) =: H, we get
that Aρ

Γ̃
= A

Γ̃
is conjugate to Aρ

#

Γ , with ρ# the induced representation of π1(Γ, v0) =: G.
By definition, this representation is nothing but the action of G on the vector space Z with
basis G/H, an action given by left multiplication of G on G/H. Since G acts by permutation
on the set G/H, which is finite, the subspace of Z generated by the sum of these basis elements
is fixed by this action. Therefore, the induced representation splits as ρ# = 1 ⊕ ρ′ for some
representation ρ′ of π1(Γ, v0). The statement now follows from the second and third points of
Remark 3.2. �

Corollary 3.9. If Γ̃→ Γ is a normal covering map of finite degree with Γ̃ connected, then A
Γ̃

is conjugate to ⊕
ρ irred.

(
Aρ◦pr

Γ

)⊕ deg(ρ)
,

where the direct sum is over all irreducible representations of G(Γ̃/Γ), and pr stands for the
canonical projection of π1(Γ, v0) onto π1(Γ, v0)/p∗(π1(Γ̃, ṽ0)) = G(Γ̃/Γ).

Proof. Applying Theorem 3.6 to the trivial representation ρ = 1 of π1(Γ̃, ṽ0), we see that the
induced representation can be written as ρ# = ρreg◦pr, with pr as above and ρreg the so-called
regular representation of G(Γ̃/Γ). Since this group is finite, this representation splits as

ρreg =
⊕
ρ irred.

ρ⊕ deg(ρ) ,

the sum being over all irreducible representations of G(Γ̃/Γ) (see [31, Section 2.4]). The
statement now follows from the second point of Remark 3.2. �

Proof of Theorem 3.6. Let p : Γ̃→ Γ be a covering map of degree d sending the base vertex ṽ0

of Γ̃ to the base vertex v0 of Γ, with Γ = (V,D, s, t) a locally finite and connected directed
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graph endowed with edge-weights x = (xe)e∈D, and Γ̃ = (Ṽ, D̃, s, t) a (locally finite) connected
directed graph endowed with the lifted edge-weights x̃ = (x̃ẽ)ẽ∈D̃ defined by x̃ẽ = xp(ẽ). As
always, we use the same notation Γ̃,Γ for the directed graphs and for the associated graphs.

Let ρ : π1(Γ̃, ṽ0) → GL(W ) be a representation, and let ρ# : π1(Γ, v0) → GL(Z) be the
induced representation. The aim is to find connections Φ̃ onW Ṽ and Φ on ZV such that ρΦ̃ = ρ

and ρΦ = ρ#, together with a natural isomorphism ψ : W Ṽ → ZV such that the following
diagram commutes:

W Ṽ ZV

W Ṽ ZV.

//
ψ

��
AΦ̃

Γ̃ ��
AΦ

Γ

//
ψ

Note that here, we use the more precise notation AΦ
Γ (instead of Aρ

#

Γ ) for the operator AΓ

twisted by the connection Φ, and similarly for AΦ̃
Γ̃
instead of Aρ

Γ̃
.

Since Γ is connected, it contains a spanning tree T . Note that for any v ∈ V, there is a
path γv in T from v0 to v which is unique up to homotopy. Set Φ = (ϕe)e∈D with ϕe = ρ#

[e] ∈
GL(Z) and [e] ∈ π1(Γ, v0) defined by

[e] = [γs(e) e γt(e)] ,

where γ denotes the inverse of the path γ. This is illustrated in Figure 1. The lift p−1(T )

of T is a subgraph of Γ̃ which does not contain any circuit and spans all vertices of Γ̃, i.e. it is
a spanning forest. Since Γ̃ is connected, this spanning forest can be completed to a spanning
tree T̃ of Γ̃. Here again, for any ṽ ∈ Ṽ, there is a path γṽ in T̃ from ṽ0 to ṽ which is unique
up to homotopy. Set ϕ̃ẽ = ρ[ẽ] ∈ GL(W ) with [ẽ] = [γs(ẽ) ẽ γt(ẽ)] ∈ π1(Γ̃, ṽ0). By construction,
the connections Φ and Φ̃ represent ρ# and ρ, respectively.

We now come to the definition of the map ψ : W Ṽ → ZV. For f ∈W Ṽ and v ∈ V, set

ψ(f)(v) =
∑

ṽ∈p−1(v)

ρ#
gṽ

(f(ṽ)) ∈ Z,

where for any ṽ ∈ p−1(v), the element gṽ ∈ π1(Γ, v0) is defined by

gṽ = [γv p(γṽ)] .

To show that ψ is an isomorphism, first note that it splits as the direct sum ψ =
⊕

v∈V ψv,
with ψv the restriction of ψ to W p−1(v). Therefore, we only need to check that for all v ∈ V,
the map

ψv :
⊕

ṽ∈p−1(v)

W −→ Z, (f(ṽ))ṽ 7−→
∑

ṽ∈p−1(v)

ρ#
gṽ

(f(ṽ))

is an isomorphism. By definition of the induced representation, we have Z =
⊕

r∈R ρ
#
r (W ),

where R ⊂ π1(Γ, v0) is a set of representatives of the cosets π1(Γ, v0)/p∗(π1(Γ̃, ṽ0)). Therefore,
we are left with the proof that for all v ∈ V, the set {gṽ | ṽ ∈ p−1(v)} is a set of representatives
of these cosets. In other words, we need to show that for any g ∈ π1(Γ, v0), there is a
unique ṽ ∈ p−1(v) such that g = gṽ h with h ∈ p∗(π1(Γ̃, ṽ0)).
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v0

s(e)

t(e)

e

γs(e)

γt(e)

Figure 1. The composition of the three paths γs(e), e and γt(e) forms a loop
based at v0 whose homotopy class [γs(e) e γt(e)] ∈ π1(Γ, v0) corresponds to [e] ∈
π1(Γ, T ).

To check this claim, note that the path γṽ can be written as γṽ = α γ̃v, with α a path in T̃
from ṽ0 to t(α) = [p(α)] · ṽ0 ∈ p−1(v0) (recall the transitive action of π1(Γ, v0) on p−1(v0)
from Section 2.3), and γ̃v the unique lift of γv with s(γ̃v) = t(α). As a consequence, we
have gṽ = [γv p(γṽ)] = [γv γv p(α)] = [p(α)]−1. Hence, given any g ∈ π1(Γ, v0), let ṽ be the
unique element in p−1(v) such that the corresponding path γṽ = α γ̃v satisfies [p(α)]−1 · ṽ0 =
g · ṽ0. By construction, we now have g−1gṽ belonging to the isotropy subgroup of ṽ0, i.e.
to p∗(π1(Γ̃, ṽ0)). This completes the proof that ψ is an isomorphism.

Let us now check that the diagram commutes, i.e. that the equality

(ψ ◦ AΦ̃
Γ̃

)(f)(v) = (AΦ
Γ ◦ ψ)(f)(v)

holds for all f ∈ W Ṽ and all v ∈ V. Expanding the left-hand side using the definition of ψ,
of AΦ̃

Γ̃
and of Φ̃, the linearity of ρ#

g , the equality ρ[ẽ] = ρ#
p∗([ẽ])

together with the fact that ρ#

is a group homomorphism, we get

(ψ ◦ AΦ̃
Γ̃

)(f)(v) =
∑

ṽ∈p−1(v)

∑
ẽ∈D̃ṽ

x̃ẽ ρ
#
gṽ p∗([ẽ])

(f(t(ẽ))) .

Expanding the right-hand side in a similar way, we get

(AΦ
Γ ◦ ψ)(f)(v) =

∑
e∈Dv

∑
w̃∈p−1(t(e))

xe ρ
#
[e] gw̃

(f(w̃)) .

Since p : Γ̃ → Γ is a covering map, we can apply the second point of Lemma 2.4, which
states that the two families of evaluations of f displayed above are over the same subset
of Ṽ. Furthermore, the equality x̃ẽ = xe holds by definition. Therefore, we are left with
the proof that for any ẽ ∈ D̃ with source vertex ṽ, target vertex w̃ and image p(ẽ) = e, the
equality [e] gw̃ = gṽ p∗([ẽ]) holds in π1(Γ, v0). Writing p(ṽ) = v and p(w̃) = w, we have

[e] gw̃ = [γv e γw] [γw p(γw̃)] = [γv e p(γw̃)] = [γv p(γṽ)] [p(γṽ) e p(γw̃)] = gṽ p∗([ẽ]) .

This concludes the proof. �

3.3. The Artin formalism for graphs. In his foundational work in algebraic number the-
ory [2, 3], Artin associates an L-series to any Galois field extension endowed with a represen-
tation of its Galois group. He shows that these L-series satisfy 4 axioms, the so-called Artin
formalism (see [28, Chapter XII.2] for a modern account). Since then, analogous axioms



GRAPH COVERINGS AND TWISTED OPERATORS 11

have been shown to hold for L-series in topology [27], in analysis [16], and for some L-series
associated to finite graphs [34].

The aim of this subsection is to explain how Theorem 3.6 can be interpreted as (the non-
trivial part) of an Artin formalism for graphs. We also show that our approach allows for wide
generalisations of the results of Stark and Terras [33, 34].

Recall from Section 3.1 that to any weighted locally finite directed graph Γ = (V,D, s, t) en-
dowed with a representation ρ : π1(Γ, v0) =: π1(Γ)→ GL(W ), we associate a twisted weighted
adjacency operator AρΓ in End(WV), well-defined up to conjugation. Hence, given a normal
covering p : Γ̃ → Γ and a representation ρ : G → GL(W ) of its Galois group G := G(Γ̃/Γ) =

π1(Γ)/π1(Γ̃), one can consider the representation ρ◦pr of π1(Γ), where pr: π1(Γ)→ G denotes
the canonical projection.

Let O(Γ̃/Γ, ρ) be the associated conjugacy class
[
Aρ◦pr

Γ

]
∈ End(WV)/∼.

Proposition 3.10. This association satisfies the following 4 axioms.
1. O(Γ̃/Γ, 1) = [AΓ], the untwisted adjacency operator on Γ.
2. Given any two representations ρ1 and ρ2 of G, we have

O(Γ̃/Γ, ρ1 ⊕ ρ2) = O(Γ̃/Γ, ρ1)⊕O(Γ̃/Γ, ρ2) .

3. If H is a normal subgroup of G and Γ = H\Γ̃ denotes the corresponding covering of Γ,
then for any representation ρ of G/H, we have

O(Γ/Γ, ρ) = O(Γ̃/Γ, ρ ◦ π) ,

where π : G→ G/H denotes the canonical projection.
4. If H is a subgroup of G and Γ = H\Γ̃, then for any representation ρ of H, we have

O(Γ̃/Γ, ρ) = O(Γ̃/Γ, ρ#) ,

where ρ# is the representation of G induced by ρ.

Proof. The first and second points are reformulations of the trivial Remarks 3.2 (ii) and (iii),
while the third point follows from the fact that the composition π◦pr: π1(Γ)→ G/H coincides
with the canonical projection of π1(Γ) onto π1(Γ)/π1(Γ). As for the last point, let p : Γ → Γ

denote the relevant covering map, and pr the canonical projection of π1(Γ) onto π1(Γ)/π1(Γ̃) =
H. By naturality, the composition of pr with the inclusion of H in G coincides with pr ◦ p∗.
Therefore, the representation induced by ρ ◦ pr coincides with ρ# ◦ pr. The fourth point is
now a formal consequence of Theorem 3.6:

O(Γ̃/Γ, ρ) = [Aρ◦pr

Γ
] = [A

(ρ◦pr)#

Γ ] = [Aρ
#◦pr

Γ ] = O(Γ̃/Γ, ρ#) . �

With the L-series of [34] in mind, it is natural to consider det(I−Aρ◦pr
Γ )−1 as the object of

study. The fact that these L-series satisfy the Artin formalism follows from the proposition
above.

Actually, our method easily yields results on more general L-series, as follows. Let us fix
a map associating to a weighted graph (G, x) a weighted directed graph (Γ, x), as in Exam-
ples 3.3–3.5. Formally, we want this assignment to preserve the ingredients of Theorem 3.6: a
covering map G̃→ G of locally finite connected graphs is sent to a covering map Γ̃→ Γ of lo-
cally finite connected digraphs, and there is a natural group homomorphism α : π1(Γ)→ π1(G).
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Given any representation ρ of π1(G), we can now consider the L-series

L(G, x, ρ) = det(I−Aρ◦αΓ )−1 ∈ C[[x]] .

By the Amitsur formula (see [1, 30]), it can be written as

L(G, x, ρ) =
∏
[γ]

det(1− x(γ)ργ)−1 ,

where the product is over all loops γ in Γ that cannot be expressed as δ` for some path δ and
integer ` > 1, loops considered up to change of base vertex. Also, x(γ) denotes the product of
the weights of the edges of γ, while ργ is the monodromy of the loop γ. (Note that changing
the base point yields a conjugate monodromy, so det(1− x(γ)ργ) is well defined.) Of course,
these loops in Γ correspond to some class of loops in G, a class which depends on the way Γ is
obtained from G. But for any such assignment, the results of Section 3.2 have straightforward
implications on the corresponding L-series, and on the corresponding class of loops in G.

For concreteness, let us focus on the directed line graph assignment G 7→ Γ described in Ex-
ample 3.5. The corresponding twisted weighted operator I−Aρ◦αΓ coincides with the operator
considered in [34, Theorem 7], where the authors restrict themselves to representations of a
finite quotient of π1(G), i.e. representations of the Galois group of a finite cover of G. In the
expression displayed above, the product is over so-called prime cycles in G, i.e. equivalence
classes of cyclic loops in G that do not contain a subpath of the form (e, e) and that cannot
be expressed as the power of a shorter loop. In the special case when ρ factorises through a
finite quotient of π1(G), this is what Stark and Terras define as the multiedge Artin L-function
of G, an object extending several other functions introduced in [33, 34].

The theory of Section 3 applied to Aρ◦αΓ now allow us to easily extend their results to
this more general L-function. For example, our Corollary 3.8 shows that if G̃ is a finite
connected covering graph of a connected graph G, then L(G, x, 1)−1 divides L(G̃, x̃, 1)−1, ex-
tending Corollary 1 of [33, Theorem 3]. Also, our Corollary 3.9 recovers the corollary of [34,
Proposition 3], while our Theorem 3.6 extends Theorem 8 of [34]. Finally, expanding the
equality logL(G̃, x̃, ρ) = logL(G, x, ρ#) yields an extension of the technical Lemma 7 of [34]
to more general covers and representations.

We conclude this section by recalling that our approach immediately yields similar results
for any assignment G 7→ Γ preserving covering maps.

4. Combinatorial applications

Each time the determinant of an operator counts combinatorial objects, Theorem 3.6 and
Corollaries 3.8 and 3.9 have combinatorial implications. This is the case of the operators given
in Examples 3.3 and 3.4, whose determinants count spanning trees and perfect matchings,
respectively. We explain these applications in Sections 4.1 and 4.2. We also briefly enumerate
additional applications in Section 4.3.

4.1. Spanning trees and rooted spanning forests. Our first combinatorial application
relies on a slightly generalised version of the matrix-tree theorem, that we now recall.



GRAPH COVERINGS AND TWISTED OPERATORS 13

Let G = (V,E) be a finite graph endowed with symmetric weights x = {xe}e∈E, that we
consider as formal variables. Let ∆G be the associated Laplacian, acting on CV via

∆Gf(v) =
∑
e∈Dv

xe(f(v)− f(t(e)))

for f ∈ CV and v ∈ V. Set n := |V|, and consider the characteristic polynomial in |E| + 1
variables

PG(λ) := det(λ I−∆G) =

n∑
i=0

ci λ
i ∈ Z[x, λ] .

Then, the coefficient ci ∈ Z[x] admits the combinatorial interpretation

(−1)n−i ci =
∑

F⊂G, |π0(F )|=i

φ(F )
∏

e∈E(F )

xe ,

where the sum is over all spanning forests F in G with i connected components (or equivalently,
with n − i edges), and φ(F ) ∈ Z+ denotes the number of possible roots of F : if F =

⊔
j Tj

denotes the decomposition of F into connected components, then φ(F ) =
∏
j |V(Tj)|.

For example, there is a unique spanning forest F in G with n connected components (given
by the vertices of G), it admits a unique root, leading to the expected value cn = 1. As
additional reality checks, we have the values −cn−1 = 2

∑
e∈E xe and c0 = det(∆G) = 0.

Finally, since connected spanning forests coincide with spanning trees, and all spanning trees
admit exactly n roots, we have

(−1)n−1 c1 = n
∑
T⊂G

∏
e∈E(T )

xe ,

the sum being over all spanning trees of G. This latter result is nothing but Kirchoff’s matrix-
tree theorem.

Remark 4.1. This result can be derived from the (usual version of the) matrix-tree theorem
applied to the graph obtained from G by adding one vertex connected to each vertex of G by
an edge of weight −λ.

Let us also mention that this result was obtained by Chung and Langlands in the context
of graphs endowed with vertex-weights rather than edge-weights [7]. Theorem 3.6 trivially
extends to graphs endowed with vertex-weights (in addition to edge-weights), and it is a
routine task to adapt the results of the present subsection to this more general case.

Definition 4.2. The spanning tree partition function of a weighted graph (G, x) is

ZST (G, x) :=
∑
T⊂G

∏
e∈E(T )

xe ,

the sum being over all spanning trees in G. Similarly, the rooted spanning forest partition
function of (G, x) is

ZRSF (G, x) :=
∑
F⊂G

φ(F )
∏

e∈E(F )

xe ,

the sum being over all spanning forests in Γ.

Note that if one sets all the weights to 1, then ZST (G, 1) is the number of spanning trees
in G, while ZRSF (G, 1) counts the number of rooted spanning forests in G.
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Theorem 4.3. Let G̃ be a finite covering graph of a finite connected graph G endowed with
edge-weights x = {xe}e∈E, and let x̃ denote these weights lifted to the edges of G̃. Then ZST (G, x)

divides ZST (G̃, x̃) and ZRSF (G, x) divides ZRSF (G̃, x̃) in the ring Z[x].

This immediately leads to the following corollary. The first point is known since the work
of Berman (see [4, Theorem 5.7]), while the second one appears to be new.

Corollary 4.4. Let G̃ be a finite covering graph of a finite connected graph G.

(i) The number of spanning trees in G divides the number of spanning trees in G̃.
(ii) The number of rooted spanning forests in G divides the number of rooted spanning forests

in G̃. �

Proof of Theorem 4.3. First note that ZRSF (G̃, x̃) is multiplicative with respect to connected
sum while ZST (G̃, x̃) vanishes for G̃ not connected. Therefore, it can be assumed that G̃ is
connected. Let G̃ → G be a covering map between two finite connected graphs, with edge-
weights x on G inducing lifted edge-weights x̃ on G̃. Let Γ̃ (resp. Γ) be the graph associated
with G̃ (resp. G) as in Example 3.3. Note that the graphs Γ̃ and Γ remain finite and connected,
and the covering map G̃ → G trivially extends to a covering map Γ̃ → Γ. By Example 3.3
and Corollary 3.8, we know that ∆

G̃
= A

Γ̃
is conjugate to AΓ ⊕ AρΓ = ∆G ⊕ ∆ρ

G for some
representation ρ of π1(Γ, v0). Therefore, setting P ρG(λ) := det(λ I−∆ρ

G) ∈ C[x, λ], we have the
equality

P
G̃

(λ) = PG(λ) · P ρG(λ) ∈ C[x, λ] .

Observe that P
G̃

(λ) and PG(λ) belong to Z[x, λ], so P ρG(λ) belongs to the intersection of C[x, λ]
with the field of fractions Q(Z[x, λ]) = Q(x, λ), i.e. it belongs to the ring Q[x, λ]. Since the
leading λ-coefficient of PG(λ) is equal to 1, the greatest common divisor of its coefficients is 1.
An application of Gauss’s lemma (see e.g. [29, Corollary 2.2]) now implies that P ρG(λ) belongs
to Z[x, λ]. In conclusion, we have that PG(λ) divides P

G̃
(λ) in Z[x, λ].

By the extended matrix-tree theorem stated above, we have that PG(−1) = ±ZRSF (G, x)

divides P
G̃

(−1) = ±ZRSF (G̃, x̃) in Z[x], proving the second claim.
To show the first one, consider again the equation P

G̃
(λ) = PG(λ) · P ρG(λ) in Z[x, λ], and

observe that P
G̃

(λ) and PG(λ) are both multiples of λ. Dividing both sides by λ and setting λ =
0, the matrix-tree theorem (in the form stated above) implies

|V(G̃)| · ZST (G̃, x̃) = ±|V(G)| · ZST (G, x) · P ρG(0) ,

i.e. ZST (G̃, x̃) = ZST (G, x) · g(x), with g(x) = ±1

deg(G̃/G)
P ρG(0) ∈ Q[x]. Since both ZST (G̃, x̃)

and ZST (G, x) belong to Z[x] and the greatest common divisor of the coefficients of ZST (G, x)
is 1, one more application of Gauss’s lemma yields that g(x) lies in Z[x], and concludes the
proof. �

4.2. Perfect matchings. In this subsection, we review some applications of Theorem 3.6 to
perfect matchings, and more generally to the dimer model.

Recall that a perfect matching (or dimer configuration) in a graph Γ is a family of edgesM ⊂
E such that each vertex of Γ is adjacent to a unique element of M . If Γ is finite and endowed
with symmetric edge-weights x = {xe}e∈E, then one defines the dimer partition function of Γ
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as
Zdimer(Γ, x) =

∑
M

∏
e∈M

xe ,

the sum being over all perfect matchings in Γ. Note that if all the weights are equal to 1,
then Zdimer(Γ, 1) simply counts the number of perfect matchings in Γ.

Now, assume that Γ is embedded in the plane, and endowed with an orientation of its
edges so that around each face of Γ ⊂ R2, there is an odd number of edges oriented clockwise.
Let x = {xe}e∈D be the anti-symmetric edge-weights obtained as in Example 3.4, and let AΓ be
the associated weighted skew-adjacency operator. By Kasteleyn’s celebrated theorem [20, 21],
the Pfaffian of AΓ is equal to ±Zdimer(Γ, x).

With this powerful method in hand, we can try to use Theorem 3.6 in studying the dimer
model on symmetric graphs. Quite unsurprisingly, the straightforward applications of our
theory are not new. Indeed, the only divisibility statement that we obtain via Corollary 3.8
is the following known result (see Theorem 3 of [15] for the bipartite case, and Section IV.C
of [25] for a general discussion).

Proposition 4.5. Fix a planar, finite, connected weighted graph (Γ̃, x̃) invariant under rota-
tion around a point in the complement of Γ̃, of angle 2π

d for some odd integer d. Let (Γ, x) be the
resulting quotient weighted graph. Then, the partition function Zdimer(Γ, x) divides Zdimer(Γ̃, x̃)
in the ring Z[x].

Proof. Let us fix an orientation of the edges of Γ satisfying the clockwise-odd condition.
It lifts to an orientation of Γ̃ which trivially satisfies the same condition around all faces
except possibly the face containing the center of rotation; for this later face, it does satisfy
the condition since d is odd. Hence, we have a d-fold cyclic covering of connected weighted
graphs (Γ̃, x̃)→ (Γ, x), and Corollary 3.8 can be applied. Together with Kasteleyn’s theorem,
it yields the following equality in C[x]:

Zdimer(Γ̃, x̃)
2 = det(A

Γ̃
) = det(AΓ) det(AρΓ) = Zdimer(Γ, x)

2 · det(AρΓ) .

This ring being factorial, it follows that Zdimer(Γ̃, x̃) = Zdimer(Γ, x) · g for some g ∈ C[x]. The
fact that g belongs to Z[x] follows from Gauss’s lemma as in the proof of Theorem 4.3. �

Our approach is limited by the fact that we consider graph coverings Γ̃→ Γ which, in the
case of normal coverings, correspond to free actions of G(Γ̃/Γ) on Γ̃. For this specific question
of enumerating dimers on symmetric planar graphs, the discussion of Section IV of [25] is more
complete, as non-free actions are also considered.

However, our approach is quite powerful when applied to non-planar graphs. Indeed, recall
that Kasteleyn’s theorem can be extended to weighted graphs embedded in a closed (possibly
non-orientable) surface Σ, but the computation of the dimer partition function requires the
Pfaffians of 22−χ(Σ) different (possibly complex-valued) skew-adjacency matrices [35, 11, 8].
In particular, the partition function of any graph embedded in the torus T2 is given by 4
Pfaffians. For the Klein bottle K, we also need 4 Pfaffians, which turn out to be two pairs of
conjugate complex numbers, so 2 well-chosen Pfaffians are sufficient. We now illustrate the
use of Theorem 3.6 in these two cases.

Let us first consider a toric graph Γ ⊂ T2, and let Γ̃ = Γmn denote the lift of Γ by the natu-
ral m×n covering of the torus by itself. This covering is normal with Galois group G(Γ̃/Γ) '
Z/mZ ⊕ Z/nZ. This group being abelian, all the irreducible representations are of degree 1;
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Figure 2. A graph Γ embedded in the Klein bottle K (pictured as a square
with opposite sides identified according to the arrows), and the lift Γmn ⊂ K,
here with m = 2 and n = 3.

more precisely, they are given by {ρ(z, w)}wm=1, zn=1, where ρ(z, w) maps a fixed genera-
tor of Z/mZ (resp. Z/nZ) to w ∈ C∗ (resp. z ∈ C∗). Writing Pmn(z, w) = det(A

ρ(z,w)
Γmn

)
and P1,1 = P , Corollary 3.9 immediately yields the equality

Pmn(1, 1) =
∏
zn=1

∏
wm=1

P (z, w) .

This is the well-known Theorem 3.3 of [24], a result of fundamental importance in the study
of the dimer model on biperiodic graphs.

Let us now consider a weighted graph Γ embedded in the Klein bottle K, and let Γ̃ = Γmn
denote the lift of Γ by the natural m × n cover Kmn → K of the Klein bottle by itself
(with n odd), as illustrated in Figure 2. Now, we can interpret the two skew-adjacency
matrices of Γ̃ = Γmn used in the computation of the corresponding dimer partition function
as weighted adjacency operators twisted by 1-dimensional representations ρ, ρ′ of π1(Kmn) <
π1(K). Using Theorem 3.6, we see that these matrices are conjugate to the skew-adjacency
operators on Γ ⊂ K twisted by the corresponding induced representations ρ#, (ρ′)# of π1(K).
Unlike that of the torus, the fundamental group of the Klein bottle is not abelian, so the
representations ρ#, (ρ′)# need not split as products of 1-dimensional representations. It turns
out that they split as products of representations of degree 1 and 2, yielding a closed formula
for Zdimer(Γmn, x) in terms of determinants of AτΓ, with τ of degree 1 and 2. This result is at
the core of the study of the dimer model on Klein bottles of the first-named author [9].

As a final remark, let us note that all the considerations of this subsection can be applied
equally well to the Ising model, either via the use of Kac-Ward matrices [17], or via skew-
adjacency matrices on the associated Fisher graph [12].

4.3. Further combinatorial applications. We conclude this article with a very brief and
informal description of additional applications of our results.

As discovered by Forman [13], the determinant of ∆ρ
G with deg(ρ) = 1 can be expressed

as a sum over cycle-rooted spanning forests (CRSFs) in G, each forest being counted with a
complex weight depending on ρ. If there is a finite connected covering G̃→ G and a degree 1

representation of π1(G̃, ṽ0) such that the induced representation of π1(G, v0) admits a degree 1
subrepresentation ρ′, then the CRSF partition function on G twisted by ρ′ divides the partition
function on G̃ twisted by ρ, in the ring C[x]. Furthermore, in the case of a normal abelian
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covering of degree d, Corollary 3.9 gives a factorisation of the CRSF partition function of G̃
in terms of d CRSF partition functions of G.

Finally, let X be a finite CW-complex of dimension r with weights x = (xe)e associated to
the cells of top dimension. Let G be the weighted graph with vertex set given by the (r − 1)-
dimensional cells of X, two such vertices being connected by an unoriented edge of G each time
they are in the boundary of an r-dimensional cell. (Note that if r = 1, then the 1-dimensional
cell complex X is nothing but the geometric realisation of the graph G.) Finally, let Γ denote
the weighted graph obtained from G as in Example 3.3. Then, the resulting operator AΓ is
the Laplacian ∆X acting on r-cells of X. This operator can be used to count so-called higher
dimensional rooted forests in X, see [18, 5] and references therein. Using Corollary 3.8, it is
now straightforward to prove that, given any finite cover X̃ → X, the corresponding rooted
forest partition function of X divides the rooted forest partition function of X̃, extending
Theorem 4.3 to higher dimensional objects.
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