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Abstract. The splitting number of a link is the minimal number of crossing changes be-
tween different components required to convert it into a split link. We obtain a lower bound
on the splitting number in terms of the (multivariable) signature and nullity. Although very
elementary and easy to compute, this bound turns out to be suprisingly efficient. In partic-
ular, it makes it a routine check to recover the splitting number of 129 out of the 130 prime
links with at most 9 crossings. Also, we easily determine 16 of the 17 splitting numbers that
were studied by Batson and Seed using Khovanov homology, and later computed by Cha,
Friedl and Powell using a variety of techniques. Finally, we determine the splitting number
of a large class of 2-bridge links which includes examples recently computed by Borodzik and
Gorsky using a Heegaard Floer theoretical criterion.

1. Introduction

Any link L = L1 ∪ · · · ∪ Lµ in S3 can be turned into the split union of its components by
a sequence of crossing changes between different components. Following Batson and Seed [2]
and Cha, Friedl and Powell [7], we call splitting number of L the minimal number of crossing
changes in such a sequence, and denote it by sp(L). (Note that the same terminology is
used in [1, 19, 23] for another invariant.) Obviously, upper bounds on sp(L) can be found by
inspection of diagrams, so the difficulty in computing it is to find lower bounds.

As observed in [2] (see also [7, Lemma 2.1]), the linking numbers provide an elementary such
bound. First note that sp(L) has the same parity as the total linking number

∑
i<j ℓk(Li, Lj).

Furthermore, given a two component link Li ∪ Lj , let bℓk(Li, Lj) be equal to 0 if Li ∪ Lj is
split, to 2 if it is non-split but ℓk(Li, Lj) vanishes, and to |ℓk(Li, Lj)| otherwise. Then, one
easily shows that ∑

i<j

bℓk(Li, Lj) ≤ sp(L) .

We shall call this bound the linking number bound .

In the same article, Batson and Seed defined a spectral sequence from the Khovanov ho-
mology of a link converging to the Khovanov homology of the corresponding split link, and
used it to obtain a new lower bound on sp(L). Testing it on links up to 12 crossings, they
found 17 examples where this Batson-Seed bound is strictly stronger than the linking number
bound. This enabled them to compute the splitting number of 7 of these links, while the
remaining ones were left undetermined.

In [7], Cha, Friedl and Powell introduced two new techniques for computing splitting num-
bers. The first one, based on covering link calculus, relies on the following observation. If a
link L has an unknotted component Li and can be split by α+ β crossing changes, α involv-
ing Li and β not involving Li, then the preimage of L \ Li in the 2-fold cover of L branched
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over Li bounds a smooth surface in the 4-ball whose Euler characteristic can be computed
from α, β, and the slice genus of the components of L. (See [7, Theorem 3.2] for the precise
statement.) This technique turns out to be very efficient. However, it can only be used on
a case by case basis, as different links often require specific arguments (see in particular [7,
Section 5.3]). Furthermore, proving that a link does not bound a given surface in the 4-ball
(or more generally, in a rational homology 4-ball in case Li is knotted) is by no means a
trivial task. Therefore the authors often need very powerful tools and heavy computations to
conclude, such as results of Casson-Gordon [5, 6], the Rasmussen s-invariant [22], or twisted
Alexander polynomials [15].

Their second result, originally stated as [7, Theorem 4.2], was then strengthened by
Borodzik, Friedl and Powell in [3, Corollary 4.3] (see also [16, Theorem 1.1]). It can be stated
as follows. If the multivariable Alexander polynomial ∆L does not vanish, then sp(L) ≥ µ−1
and if sp(L) = µ− 1, then

∆L(t1, . . . , tµ) = ±

µ∏

i=1

∆Li
(ti) · p(t1, . . . , tµ) · p(t

−1
1 , . . . , t−1

µ ) ·

µ∏

i=1

trii ·

µ∏

i=1

(1− ti)
si

for some p ∈ Z[t±1
1 , . . . , t±1

µ ] and ri, si ∈ Z. This Alexander polynomial obstruction is powerful
in showing that the splitting number of a µ-component link is strictly greater than µ− 1, but
it obviously cannot be used in other cases.

These two techniques (together with the linking number bound) allowed these authors
to determine the splitting numbers of the 130 prime links with up to 9 crossings. To be
more precise, for 7 of these links, Cha, Friedl and Powell relied on results of Kohn [17] on
the unlinking number to exclude the value sp(L) = 1; nevertheless, these values can be
recovered using the Alexander polynomial obstruction of [3]. Furthermore, these techniques
were harnessed to compute the splitting numbers of all of the 17 links in the Batson-Seed list.

Finally, in the very recent preprint [4], Borodzik and Gorsky found a Heegaard Floer
theoretical criterion for bounding the splitting number. As an application, they showed that
for any positive a, the 2-bridge link with Conway normal form C(2a, 1, 2a) has splitting
number 2a, even though the linking number of the two components vanishes.

In the present paper, we give a new lower bound on the splitting number of a link in terms
of its multivariable signature and nullity, see Theorem 3.1 below. As a special case, we obtain
a bound in terms of the (one-variable) Levine-Tristram signature and nullity (Corollary 3.4).
Although very elementary and extremely easy to compute (see e.g. [10]), these bounds turn
out to be remarkably powerful. Indeed, our bound is sharp for 127 out of the 130 prime links
with up to 9 crossings, and two of the remaining splitting numbers can be determined with the
linking number bound. Also, our method easily gives the splitting number of all but one of the
17 links in the Batson-Seed list. Finally, our bound easily implies the following generalization
of [4, Theorem 7.12]: for any n ≥ 1 and positive a1, . . . , an, b1, . . . , bn−1, the splitting number
of the 2-bridge link with Conway normal form C(2a1, b1, 2a2, b2, . . . , 2an−1, bn−1, 2an) is equal
to a1 + · · ·+ an (Theorem 4.7).

Let us finally mention that our results hold for the computation of the splitting number of
a colored link . In other words, our bound holds if L = L1 ∪ · · · ∪ Lµ denotes a partition of L
into sublinks, and sp(L) is the minimal number of crossing changes between components of
different sublinks to obtain the split union of these links.
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Figure 1. A clasp intersection crossed by a 1-cycle x.

This paper is organized as follows. In Section 2, we recall the definitions of the multivariable
signature and nullity, together with a list of their properties. Section 3 contains our main
result, its proof, as well as corollaries and remarks. Finally, Section 4 gathers several examples
and applications.

Acknowledgments. The authors wish to thank Maciej Borodzik, Jae Choon Cha, Matthias
Nagel, Sebastien Ott and Mark Powell for useful discussions. The first-named author was sup-
ported by the Swiss National Science Foundation. The second-named author was supported
by the NCCR SwissMAP, funded by the Swiss National Science Foundation.

2. Multivariable signatures

Recall that the Levine-Tristram signature [20, 21, 24] of an oriented link L is the map

σL : S
1 \ {1} → Z ,

where σL(ω) is the signature of the Hermitian matrix H(ω) = (1 − ω)A + (1 − ω)AT and A

is any Seifert matrix for the oriented link L. The nullity of L is the map ηL : S
1 \ {1} → N

obtained by considering the nullity of H(ω). These invariants were extended to colored links
using C-complexes in [11] (see references therein for previous versions of these extensions).
We now briefly recall this construction.

A µ-colored link is an oriented link L in S3 whose components are partitioned into µ

sublinks L1 ∪ · · · ∪Lµ. Thus, a 1-colored link is simply an oriented link, while a µ-component
µ-colored link is nothing but an ordered link. A C-complex [12] for a µ-colored link L =
L1 ∪ · · · ∪Lµ is a union S = S1 ∪ · · · ∪Sµ of surfaces in S3 which is connected, and such that:

(i) for all i, Si is a Seifert surface for the sublink Li;
(ii) for all i 6= j, Si ∩ Sj is either empty or a union of clasps (see Figure 1);
(iii) for all i, j, k pairwise distinct, Si ∩ Sj ∩ Sk is empty.

The existence of a C-complex for an arbitrary colored link is fairly easy to establish, see [9,
Lemma 1]. Note that in the case µ = 1, a C-complex for the 1-colored link L is nothing
but a connected Seifert surface for the oriented link L. Let us now define the corresponding
generalization of the Seifert form.

Given a sequence ε = (ε1, . . . , εµ) of signs ±1, let iε : H1(S) → H1(S
3 \ S) be defined

as follows. Any homology class in H1(S) can be represented by an oriented cycle x which
behaves as illustrated in Figure 1 whenever crossing a clasp. Then, define iε([x]) as the class
of the 1-cycle obtained by pushing x in the εi-normal direction off Si for i = 1, . . . , µ, and
consider the bilinear form

αε : H1(S)×H1(S) → Z, (x, y) 7→ ℓk(iε(x), y) ,
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α β

Figure 2. The link C(4, 3, 2), and a natural C-complex for it.

where ℓk denotes the linking number. Fix a basis of H1(S) and denote by Aε the matrix
of αε. Note that for all ε, A−ε is equal to (Aε)T . Using this fact, one easily checks that for
any ω = (ω1, . . . , ωµ) in the µ-dimensional torus Tµ, the matrix

H(ω) =
∑

ε

µ∏

i=1

(1− ωεi
i )A

ε

is Hermitian. Since this matrix vanishes when one of the coordinates of ω is equal to 1, we
restrict ourselves to the subset Tµ

∗ = (S1 \ {1})µ of Tµ.

Definition. The multivariable signature and nullity of the µ-colored link L are the functions

σL, ηL : T
µ
∗ → Z ,

where σL(ω) is the signature of the Hermitian matrix H(ω) and ηL(ω) its nullity.

Note that in the case µ = 1, one clearly recovers the Levine-Tristram signature and nullity.
This multivariable generalization not only turns out to be well-defined (i.e. independent of
the choice of the C-complex), but it also satisfies all the properties of the Levine-Tristram
invariants, generalized from oriented links to colored links (see [11] and Proposition 2.2 below).
Let us first illustrate this definition with an example.

Example 2.1. Figure 2 shows the 2-bridge link L with Conway normal form C(4, 3, 2),
together with a natural C-complex S for it. A natural basis for H1(S) is given by the
cycles α, β, which are also depicted on this figure. With respect to this basis, one gets A++ =[
0 0
0 −2

]
and A+− =

[
−1 1
0 −1

]
, leading in particular to H(−1,−1) = 4

[
−2 1
1 −6

]
. Therefore, we

have σL(−1,−1) = −2.

Let us now collect some of the basic properties of these invariants, referring to Proposi-
tions 2.5, 2.8 and 2.13 of [11] for the easy proofs.

Proposition 2.2.

(i) Consider the (µ+µ′)-colored link L⊔L′ given by the split union of the µ and µ′-colored

links L and L′. Then, for all ω ∈ T
µ
∗ and ω′ ∈ T

µ′

∗ ,

σL⊔L′(ω, ω′) = σL(ω) + σL′(ω′) and ηL⊔L′(ω, ω′) = ηL(ω) + ηL′(ω′) + 1 .

(ii) Given any colored link L = L1 ∪ · · · ∪ Lµ, the Levine-Tristram signature and nullity
of the underlying oriented link can be recovered from their multivariable analogue as
follows: for all ω ∈ S1 \ {1},

σL(ω) = σL(ω, . . . , ω)−
∑

i<j

ℓk(Li, Lj) and ηL(ω) = ηL(ω, . . . , ω) .
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(iii) Let L = L1 ∪ · · · ∪ Lµ be a colored link, and let L′ be the colored link obtained
from L by reversing the orientation of every component of the sublink L1. Then,
for all (ω1, . . . , ωµ) ∈ T

µ
∗ ,

σL′(ω1, . . . , ωµ) = σL(ω
−1
1 , ω2, . . . , ωµ) and ηL′(ω1, . . . , ωµ) = ηL(ω

−1
1 , ω2, . . . , ωµ) . �

We now recall a deeper result, that requires some terminology. Let L = L1 ∪ · · · ∪ Lµ be
a colored link and let XL denote its exterior. The epimorphism π1(XL) → Z

µ given by γ 7→

(ℓk(γ, L1), . . . , ℓk(γ, Lµ)) induces a regular Z
µ-covering X̃L → XL. The homology of X̃L is

naturally a module over Λ = Z[t±1
1 , . . . , t±1

µ ], where ti denotes the covering transformation

corresponding to an oriented meridian of Li. The Λ-module H1(X̃L) is called the Alexander
module of the colored link L. We shall denote its rank by β(L).

For r ≥ 0, let ∆
(r)
L ∈ Λ denote the greatest common divisor of all (m − r) × (m − r)

minors of an m×n presentation matrix of H1(X̃L). This polynomial, well-defined up to units

of Λ, is called the rth-Alexander polynomial of L. Finally, ∆
(0)
L is simply called the Alexander

polynomial of L, and denoted by ∆L. Note that the first non-vanishing Alexander polynomial

is ∆
(β(L))
L , that we shall denote by ∆tor

L for obvious reasons.

Proposition 2.3.

(i) The rank of the Alexander module of a colored link is the minimal value of its nul-
lity: β(L) = min{ηL(ω) | ω ∈ T

µ
∗}.

(ii) The signature is constant on the connected components of the complement in T
µ
∗ of

the zeroes of the Alexander polynomial.

Proof. To show the first point, let Er(L) denote the ideal of Λ generated by the (m−r)×(m−r)

minors of an m × n presentation matrix of H1(X̃L). Also, let Σr denote the set consisting
of all ω ∈ T

µ
∗ such that p(ω) = 0 for each p ∈ Er−1(L). Observe that the sets Σr form a

decreasing sequence. By [11, Theorem 4.1], Σr \ Σr+1 consists of all ω such that ηL(ω) = r.
Therefore, if β denotes the minimal value of ηL, we have Σr = T

µ
∗ for all r ≤ β and Σβ+1 6= T

µ
∗ .

Hence, β is equal to the maximal r such that Er−1(L) = 0, which is nothing but the rank of
the Alexander module. The second point is precisely [11, Corollary 4.2]. �

3. Main results

The splitting number sp(L) of a colored link L = L1 ∪ · · · ∪ Lµ is the minimal number of
crossing changes between sublinks of different colors required to turn L into the corresponding
split colored link L1 ⊔ · · · ⊔ Lµ. If µ is equal to the number of components, which is the case
to keep in mind, one recovers the splitting number discussed in the introduction. Our main
result is the following inequality.

Theorem 3.1. If L = L1 ∪ · · · ∪ Lµ is a colored link, then

∣∣∣σL(ω1, . . . , ωµ)−

µ∑

i=1

σLi
(ωi)

∣∣∣+
∣∣∣µ− 1− ηL(ω1, . . . , ωµ) +

µ∑

i=1

ηLi
(ωi)

∣∣∣ ≤ sp(L)

for all (ω1, . . . , ωµ) ∈ T
µ
∗ .
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Li Lj L′

i
L′

j

Si Sj S′

i
S′

j

Figure 3. A crossing change resulting in the addition of a clasp intersection.

Proof. Let L′ be a colored link obtained from L by a single crossing change involving sublinks
of different colors. Then, a C-complex S′ for L′ can be obtained from a C-complex S for L

by adding a clasp intersection, as illustrated in Figure 3. Since S is connected, it follows
that H1(S

′) = H1(S) ⊕ Z[γ] for some loop γ passing through the additional clasp. With
respect to this choice of bases, the resulting Hermitian matrices can be written as

H ′(ω) =

[
H(ω) z

zT λ

]

for some vector z and real number λ. It easily follows that

|σL(ω)− σL′(ω)|+ |ηL(ω)− ηL′(ω)| = 1

for all ω ∈ T
µ
∗ . Consequently if L = L(0), L(1), . . . , L(s) = L1 ⊔ · · · ⊔Lµ is a splitting sequence

which realizes the splitting number, then

sp(L) =
s∑

i=1

(|σL(i−1)(ω)− σL(i)(ω)|+ |ηL(i−1)(ω)− ηL(i)(ω)|)

≥ |σL(ω)− σL(s)(ω)|+ |ηL(ω)− ηL(s)(ω)| .

Since L(s) is the split union of its components, the first point of Proposition 2.2 gives

σL(s)(ω) =

µ∑

i=1

σLi
(ωi) and ηL(s)(ω) =

µ∑

i=1

ηLi
(ωi) + µ− 1 ,

which completes the proof. �

Remark 3.2. The proof of Theorem 3.1 has an interesting consequence. Namely, assume
that L = L(0), L(1), . . . , L(s) = L1⊔· · ·⊔Lµ is a splitting sequence for which there exists ω ∈ T

µ
∗

and ε = ±1 such that the following holds: for each i, either σL(i+1)(ω) = σL(i)(ω) + ε,
or ηL(i+1)(ω) = ηL(i)(ω) + 1. Then, this splitting sequence is minimal. This proof also shows
that our bound has the same parity as the splitting number.
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Remark 3.3. In the case of an ordered link L and for generic ω, Theorem 3.1 can also
be proved by using 4-dimensional considerations. Indeed, a splitting sequence of length s

provides an immersed concordance in S3 × [0, 1] between L and the corresponding split link,
with s transverse double points. Removing B3 × [0, 1], where B3 is a 3-ball in S3 that meets
each component of L in a small unknotted arc untouched by the crossing changes, we obtain a
collection of discs in B4 with s double points, bounding the link L#L1# . . .#Lµ. The result
then follows from Theorem 7.2, Proposition 2.10 and Proposition 2.12 of [11].

As an immediately corollary of Theorem 3.1 and the second point of Proposition 2.2, we
obtain the following lower bound for sp(L) in terms of the Levine-Tristram signature and
nullity of L.

Corollary 3.4. If L = L1 ∪ · · · ∪ Lµ is a µ-component oriented link, then

∣∣∣σL(ω) +
∑

i<j

ℓk(Li, Lj)−

µ∑

i=1

σLi
(ω)

∣∣∣+
∣∣∣µ− 1− ηL(ω) +

µ∑

i=1

ηLi
(ω)

∣∣∣ ≤ sp(L)

for all ω ∈ S1 \ {1}. �

Note that there are 2µ choices of orientations for the components of L, which give 2µ−1

lower bounds on sp(L). By the third point of Proposition 2.2, these correspond to the value
of the multivariable invariants on the 2µ−1 diagonals of Tµ

∗ ≃ (0, 2π)µ.

Our next corollary should be compared to [3, Corollary 4.3]. The first inequality is identical;
in view of Proposition 2.3 (ii), the case β(L) = 0 of the second statement can be understood
as the signature analogue of the Alexander polynomial obstruction.

Corollary 3.5. Let L = L1 ∪ · · · ∪ Lµ be a µ-colored link, β(L) the rank of its Alexander
module, and ∆tor

L its first non-vanishing Alexander polynomial. Then, one has

µ− 1− β(L) ≤ sp(L) .

Furthermore, if µ− 1− β(L) = sp(L), then

σL(ω1, . . . , ωµ) =

µ∑

i=1

σLi
(ωi) and ηL1(ω1) = · · · = ηLµ

(ωµ) = 0

for all ω = (ω1, . . . , ωµ) ∈ T
µ such that ∆tor

L (ω) 6= 0.

Proof. By Theorem 3.1 and the first point of Proposition 2.3, we have the inequalities

sp(L) ≥
∣∣∣σL(ω)−

µ∑

i=1

σLi
(ωi)

∣∣∣+
∣∣∣µ− 1− ηL(ω) +

µ∑

i=1

ηLi
(ωi)

∣∣∣

≥ µ− 1− ηL(ω) +

µ∑

i=1

ηLi
(ωi)

≥ µ− 1− ηL(ω)

≥ µ− 1− β(L) .

Let us now assume that ∆tor
L (ω) 6= 0. Using the notations of the proof of Proposition 2.3, this

implies that ω belongs to Σβ(L)\Σβ(L)+1. By [11, Theorem 4.1], this means that ηL(ω) = β(L).
The second statement now follows by setting equalities for each of the inequalities displayed
above. �
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Remark 3.6. In the 2-component and β(L) = 0 case, one can also show Corollary 3.5 using
other considerations. Indeed, it is known that if a 2-component link has splitting number
one, then it consists of a band clasping of two knots (see the proof of Theorem 1 in [18]). A
careful analysis of the situation using C-complexes then yields the result. As the Alexander
polynomial may be computed via C-complexes [9], this alternative method also enables one
to recover the Alexander obstruction in the 2-component case (and in particular [7, Theorem
4.2]).

Remark 3.7. As shown by Degtyarev, Florens and Lecuona [14], the multivariable signature
behaves in a controlled way via the operation known as splicing , which generalizes the satellite,
infection, and cabling operations. Therefore, Theorem 3.1 together with [14, Theorem 2.2]
immediately yields a lower bound for the splitting number of the splice of two links in terms of
the signature of its splice components. In particular, this gives a lower bound for the splitting
number of the cabling of a link L (along one or several of its components) in terms of the
signature of L and of the corresponding torus links. However, we have not been able to find
compelling applications of this result, and therefore do not discuss it in more detail.

Finally note that all the techniques developed in this paragraph can also be used to obtain
lower bounds on the unlinking number u(L) of a link L. For instance, if L = L1 ∪ · · · ∪ Lµ is
a µ-component link, then one obtains

|σL(ω1, . . . , ωµ)|+ |µ− 1− ηL(ω1, . . . , ωµ)|+
∑

i<j

|ℓk(Li, Lj)| ≤ 2u(L)

for all (ω1, . . . , ωµ) ∈ T
µ
∗ . Unfortunately, this bound is not very powerful so we shall not

discuss it any further.

4. Examples and applications

In this section, we use our bound on three families of examples: the links with at most nine
crossings, the links of the Batson-Seed list, and 2-bridge links. All the diagrams are taken
from SnapPy [13].

As stated above, we first tested Theorem 3.1 on all 130 prime links with fewer than ten
crossings, using the notations and data from LinkInfo [8]. In 125 cases, the Levine-Tristram
bound of Corollary 3.4 is enough to recover the splitting number, while Corollary 3.5 recovers
two additional cases. The three remaining links are L9a47 and L9n27 (for which the linking
number bound is sharp) and L8a9 (whose splitting number can be recovered by the Alexander
polynomial obstruction). Let us illustrate this with a couple of examples.

Figure 4. The link L9a29.
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Example 4.1. The splitting number of the link L = L9a29 depicted in Figure 4 was shown
to be 3 in [7, Section 4.2] by using the Alexander polynomial obstruction. Orienting L so that
it consists of a right-handed trefoil L1 and a trivial knot L2 with linking number ℓk(L1, L2) =
−1, we have

σL(−1) = 5, ηL(−1) = 0, σL1(−1) = 2, ηL1(−1) = 0, σL2(−1) = 0, ηL2(−1) = 0 .

It follows that the bound

|σL(−1) + ℓk(L1, L2)− σL1(−1)− σL2(−1)|+ |2− 1− ηL(−1) + ηL1(−1) + ηL2(−1)| = 3

of Corollary 3.4 is sharp.

Example 4.2. The splitting number of the link L = L9a24 depicted on the left hand side of
Figure 5 was shown to be 3 in [7, Section 6] by using the Alexander polynomial obstruction.
The lower bound of Corollary 3.4 gives 1, so it is not sufficient to conclude. However, Corollary
3.5 shows that the splitting number must be greater than one, and therefore equal to three
due to the parity of the linking number. Indeed, one does not always have σL(ω1, ω2) =
σL1(ω1) + σL2(ω2), as shown by the zero locus of ∆L illustrated on the right hand side of
Figure 5. (Recall Proposition 2.3 (ii).)

The exact same analysis shows that the splitting number of L9n17 is three.

Figure 5. The link L9a24 and the intersection of the zero locus of its Alexan-
der polynomial with T

2
∗.

Next, we tested our bound on the 17 links of the Batson-Seed list, using Seifert ma-
trix data kindly provided by J.C. Cha. Among these, there are seven 12-crossing links
(namely, L12n1342, L12n1350, L12n1357, L12n1363, L12n1367, L12n1274 and L12n1404) for
which both components are trefoils, and whose splitting number was shown to be equal to 3
by Batson and Seed. Cha, Friedl and Powell recovered these results via the Alexander ob-
struction. Applying Corollary 3.5 as in Example 4.2 immediately gives the same conclusion.
Moreover, the splitting number of L12n1342, L12n1350, L12n1367 and L12n1274 can be re-
covered by using the Levine-Tristram signature and Corollary 3.4 alone. Let us illustrate this
with one example.

Example 4.3. Orient the link L = L12n1367 (depicted in Figure 6) so that ℓk(L1, L2) = 1

and set ω = e
iπ
3 . Using

σL(ω) = 0, σL1(ω) = 1, σL2(ω) = −1, ηL(ω) = ηL1(ω) = ηL2(ω) = 1 ,
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it follows that the bound

|σL(ω) + ℓk(L1, L2)− σL1(ω)− σL2(ω)|+ |2− 1− ηL(ω) + ηL1(ω) + ηL2(ω)| = 3

of Corollary 3.4 is sharp.

Figure 6. The link L12n1367.

For the remaining 10 links in this list, Batson and Seed could not determine whether the
splitting number is 3 or 5. These links having two or three components, the Alexander polyno-
mial obstruction cannot be applied. However, Cha, Friedl and Powell used various arguments
based on covering link techniques to determine these values. As it turns out, our bound allows
to easily determine these splitting number for all but one of them, namely L12n1321. Here
are several of these examples.

Example 4.4. Consider the link L = L11a372 depicted in Figure 7, whose splitting num-
ber was shown to be 5 in [7, Section 5.2]. Orient L so that its trivial components L1, L2

satisfy ℓk(L1, L2) = −1. Since σL(−1) = 5 and ηL(−1) = 0, the bound

|σL(−1) + ℓk(L1, L2)|+ |2− 1− ηL(−1)| = 5

given by the classical signature is enough to conclude.

Figure 7. The link L11a372.

Example 4.5. It took the whole Section 5.3 of [7] to show that the splitting number of the
3-component link L = L12a1622 depicted in Figure 8 is equal to 5. Orienting L so that its
trivial components L1, L2, L3 satisfy ℓk(L1, L2) = 0, ℓk(L1, L3) = 0, ℓk(L2, L3) = 1, and

picking ω = e
3πi
4 , we have σL(ω) = −4 and ηL(ω) = 0. Hence, the bound

|σL(ω) + ℓk(L2, L3)|+ |3− 1− ηL(ω)| = 5

of Corollary 3.4 immediately provides the desired splitting number.



SPLITTING NUMBERS AND SIGNATURES 11

Figure 8. The link L12a1622.

Example 4.6. Consider the link L = L12n1326 depicted in Figure 9. Cha-Friedl-Powell [7,
Section 5.2] used the twisted Alexander polynomial to compute the slice genus of a cover-
ing link, and concluded that sp(L) = 3. Orienting L so that its trivial components L1, L2

satisfy ℓk(L1, L2) = 1, and picking ω = e
πi
5 so that σL(ω) = 1 and ηL(ω) = 0, the bound

|σL(ω) + ℓk(L1, L2)|+ |2− 1− ηL(ω)| = 3

of Corollary 3.4 immediately provides the desired splitting number.

Figure 9. The link L12n1326.

In the very recent preprint [4], Borodzik and Gorsky used Heegaard Floer techniques to
compute the splitting number of the 2-bridge link with Conway normal form C(2a, 1, 2a)
(recall Figure 2 for an explanation of this notation). We conclude this article by showing how
easily we can compute the splitting number of a much wider class of 2-bridge links.

Theorem 4.7. For any n ≥ 1 and any positive integers a1, . . . , an, b1, . . . , bn−1, the splitting
number of the 2-bridge link C(2a1, b1, 2a2, b2, . . . , 2an−1, bn−1, 2an) is equal to a1 + · · ·+ an.

Proof. Let us denote this link by L. Inspecting the standard diagram given by Conway’s
normal form, it is clear that sp(L) ≤ a1 + · · · + an =: s. Furthermore, as exemplified in
Figure 2, L admits a natural C-complex S made of two discs intersecting in s clasps, yielding
a natural basis for H1(S) of cardinality s − 1. Computing the associated generalized Seifert
matrices leads to

H(−1,−1) = 4




−2d1 1
1 −2d2 1

1
. . .

. . .
. . . 1

1 −2ds−1



,
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where the diagonal elements are positive integers whose precise value depends on the inte-
gers ai and bi, but will play no role here. Indeed, all the eigenvalues of a matrix of the
form above are negative, so σL(−1,−1) = 1 − s and ηL(−1,−1) = 0. Since L has µ = 2
components, both unknotted, the result now follows from Theorem 3.1. �

Note that this last result was obtained using the ordinary signature alone. Using the full
power of Theorem 3.1, it is possible to determine the splitting number of many other 2-bridge
links, such as all C(a1, . . . , an) with n ≤ 3. The first example of a 2-bridge link whose splitting
number is unknown to us is L = C(4, 3, 1, 3): the linking number vanishes and our bound
reads sp(L) ≥ 2, while the “obvious” splitting sequence has length 4.
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