Users’ Guide for the code RADARS

Nicola Guglielmi *

Dip. di Matematica Pura e Applicata, Universita dell’Aquila,
via Vetoio (Coppito), I-67010 L’Aquila, Italy,
e-mail: guglielm@Qunivagq.it
and
Ernst Hairer
Section de Mathématiques, Université de Genéve,
CH-1211 Genéve 24, Switzerland,
e-mail: Ernst. Hairer@math.unige.ch

October 2000
(©2000 N. Guglielmi, E. Hairer

Technical Report

1 The problem

We consider initial value problems for delay differential equations

My() = f(6y(0) v ty®),....y(am(ty(®)), O
y(to) = o, y(t) = g(t) for t< to,

where M is a constant d x d matrix and o;(t,y(t)) <t for all ¢ > ¢y and for all . The value g(to)
may be different from vy, allowing for a discontinuity at %g.

The presence of the matrix M in the problem formulation has several reasons. If a partial delay
differential equation is discretized in space by finite elements, we obtain an equation of the form (1)
where M is the mass matrix. A multiplication of the equation by M ~! would destroy the sparsity
pattern of the problem and is not recommended.

Since we allow the matrix M to be singular, the above formulation includes all kinds of
differential-algebraic delay equations. For M = diag(Il,el) with a very small ¢ > 0, we get sin-
gularly perturbed problems, which form an important class of stiff problems. Moreover, neutral
problems

(1) = £ (t.u(0),u(altu(0), ' (1), (alt.u(0))

can be written in the form (1), if we introduce a new variable z(t) = y/(t) for the derivative. In
fact, this problem becomes equivalent to

1 0\ /d@)) _ 2(t)
(0 0) (z’(t)> B (—Z(t) +f(t,y(t),y(a(t,y(t)))7Z(t)yz(a(tyy(t))))) '

*Partially supported by the Italian M.U.R.S.T. (project: “Numerical methods for evolutionary problems”) and
IN.D.A.M.-G.N.LLM. (project: “Numerical methods for ordinary differential equations and applications”.

In this implementation, the special structure of the right-hand side is exploited on the linear algebra
level during the solution of arising nonlinear systems.

We assume throughout that a solution exists on the considered interval of integration (possibly
with discontinuities).

The aim of next section is to show how implicit Runge-Kutta methods, in particular collocation
methods based on Radau nodes, can be applied to solve problems of type (1). Many aspects of
the implementation are a straightforward extension of ideas implemented in the code RADAUS5 for
ordinary differential equations, and described in Hairer & Wanner [9, Sect. IV.8].

Here we restrict our discussion to new difficulties that are due to the presence of small delays,
and to large elements in the derivative of f with repect to the retarded arguments. Some example
problems with their drivers for RADARS5 are provided at the end of the report.

2 Numerical Method

Our main interest is the numerical solution of stiff delay differential equations. Since collocation
methods based on Radau nodes have been successfully applied to stiff ordinary differential equations
(see the code RADAUS of [9]), and since these methods have excellent stability properties also for
delay equations (see for example Zennaro [14] and Guglielmi & Hairer [6]), it is quite natural to
take them as a basis for a code solving stiff problems of the type (1).

For ease of presentation, we assume that only one lag term is present (m = 1) and that the
problem is autonomous:

My'(t) = f(y(t),y(aty(®)), (2)

where a(t,y(t)) < t, y(to) = yo, and y(t) = g(t) for ¢t < tp. Needless to say that the presented code
is written for the general situation.

Radau ITA methods are implicit Runge-Kutta methods, whose coefficient matrix A = (a;;) is
invertible, and whose weights satisfy b; = as; (“stiff accuracy”). We denote ¢; = 3, a;; (see [9] for
more information on these methods). For an implementation we consider a grid top < t; < t2 < ...,
and we denote the stepsize by h, = t,+1 — tys.

An application of the Radau ITA methods to the problem (2) yields approximations vy, ~ y(tn)
by solving the nonlinear system

M(Y;(n) - yn) = hn i az]f(yj](n), Z](n)>, Ynt1 = Y's(n)’ (3)
j=1

where Zi(n) is a suitable approximation to y(agn)) with

az(-") = a(ty + cihn, Yi(n))

We put
£ {g(a@) if af" <t

um (™) if &™) € [tm, tms1),

where u, (t) is a polynomial approximation of the solution y(t) on the interval [ty,, tm+1]. A natural
choice for u,, is the collocation polynomial, which is of degree s and passes through the values y,,,

and Y;(m) for : =1,...,s. Using the Lagrange interpolation formula it is seen to be of the form
(b + Thin) = Lo(T)ym + D (Y™, (5)
i=1

where ¢;(7) is the polynomial of degree s satisfying 4;(c;) = 1 and ¢;(c;) = 0 for j # ¢ (here we add
co = 0 to the nodes ci,...,cs of the method).

Order of Convergence. If the matrix M is invertible, and if the delay is larger than the step
size (i.e., t — a(t,y(t)) > h), it follows from the standard theory for ordinary differential equations
that the local error at grid points is O(h%%), and that the internal stages Y;(n) approximate the
local solution at t,, + c¢;h, with an error of size O(hs“). In the case of a state-dependent delay this
gives an additional O(h**?) contribution to the local error (due to the multiplication by A, in (3)).
Therefore, on bounded intervals, the global error is of size O(h**!). For stiff problems, a further
order reduction to O(h®) is possible, which is in complete analogy to stiff ordinary differential
equations (see e.g., [9, Chap. VI)]).

If the delay is smaller than the step size, the theory for ordinary differential equations can no
longer be applied, and a more involved analysis is necessary. Such a study is beyond the scope of
this report. However, we want to emphasize that a general purpose code for stiff delay equations
should be able to allow for step sizes larger than the delay, because it is known that stiff solvers
are efficient only if ‘large’ step sizes can be used. Difficulties in an implementation that arise due
to the presence of large step sizes, are discussed in [7].

2.1 Solving the Nonlinear Equations

An efficient solution of the nonlinear equations (3) is the most demanding part of an implementation
of implicit Runge-Kutta methods. For stiff problems (or when M is singular), this system cannot be
solved by fixed point iteration, and one is obliged to use some kind of simplified Newton iterations.

As common in the implementation of implicit Runge-Kutta methods, we pre-multiply the system
(3) by A~! = (w;;) and so obtain the nonlinear system F(Y) = 0, where Y = (Y3,...,Y;)T and the
ith component of F(Y') is

F(Y) = Y wM(Y; - 1) - hf(Yi,))

(here, we suppress the subscript n when it does not give rise to confusion). In view of an application
of simplified Newton iterations we compute (denoting as d;; the Kronecker symbol

OF;

av, = wi; M — hé;; (fy(Yz', Zi) + £:(Yi, Zi)u, (06) oy (tn + cih, Yz’)), (7)

where we have to add the term

—hf (Vi Z)li(05) if 07 = (altn + cih, V) — ta)/h > 0. (8)

For an efficient implementation, we replace the exact Jacobian of the nonlinear system with an
approximation which, written in tensor notation, is given by

A @M —hI® (fy+ faul(@)oy) — hL @ f. (9)

The arguments of fy, f., a, and oy are choson independent of . The s x s matrix L has elements
given by

L. = Ej(ai) if a(tn + cih, Yz) >ty

“ 0 else.

For an implementation we distinguish the two situations:

Step size is smaller than the delay or, more precisely, if 0; <0 fors=1,...,s. For a constant
delay (i.e., a(t,y) = t—7), this happens if and only if h < 7 (because ¢; < ¢; = 1). In this situation,
the matrix L vanishes identically, and the matrix (9) has exactly the same structure as for ordinary
differential equations My’ = f(y). Transforming the matrix A~! to diagonal form, the linear
system with matrix (9) can be solved efficiently as described in [9, Sect.IV.8]. The user of our code
can either provide a subroutine with the analytic expression of fy(y,z) + f:(y, 2)y (a(t,y))ay(t,y)
(where z =~ y(a(t,y(t)))), or he can choose the option of computing it internally by numerical
differentiation. Observe that the nasty second term of this matrix is only present for state-dependent
delays.

Step size is larger than the delay. In this case, the matrix L in (9) is non-zero. Since, in general,
the matrices A~! and L are not simultaneously diagonalizable, the tensor product structure cannot
easily be exploited for an efficient solution of the linear systems with matrix (9). However, when
the delay is very small compared to the step size (i.e., a(tn + ¢ih,Y:) = t, + ¢;h), we get 0; = c;,
and the matrix L becomes close to the identity. Consequently, the second and third terms in (9)
can be considered together, and the idea of diagonalizing the matrix A~! can again be applied.

In conclusion, we adopt the following strategy for approximating the Jacobian of the nonlinear
Runge-Kutta equations: if a(t, + ¢;h,Y;) < t, for at least one ¢, we let L = 0, otherwise we put
L = I (identity) in the Jacobian approximation of (9). In both cases standard techniques for stiff
ordinary differential equations can be applied, and the tensor product structure of the linear system
can be exploited. In case of difficulties in the convergence of the simplified Newton iterations we
use the correct L. This, however, requires the LR decomposition of the full matrix (9), which is
about 5 times as expensive for the 3-stage method (s = 3).

3 The code

The code RADARS is written in ANSI Fortran-90 and is made of the following routines, which
constitute the kernel of the program.

3.1 The main routine RADARS5

The typical CALL to the main subroutine is as follows.

CALL RADAR5(N,FCN,PHI,ARGLAG,X,Y,XEND,H,
RTOL,ATOL,ITOL,
JAC,IJAC,MLJAC,MUJAC,
JACLAG,NLAGS,NJACL,
IMAS,SOLOUT, IOUT,

WORK, IWORK ,RPAR, IPAR, IDID,
GRID,IPAST,MAS,MLMAS,MUMAS)

R

List of arguments

N Denotes the dimension of the system.

FCN Name (external) of the subroutine computing the right hand-side of the system of delay dif-
ferential equations. This has to be provided by the user. For a description see Sect. 5.1 and
for examples see Sect. 8.

PHI Name (external) of the function providing the initial functions for the dependent variables
of the system of delay differential equations. This has to be provided by the user. For a
description see Sect. 5.2 and for examples see Sect. 8.

ARGLAG Name (external) of the function providing the deviating arguments. This has to be provided
by the user. For a description see Sect. 5.3 and for examples see Sect. 8.

X At the input denotes the initial value of the independent variable. At the output denotes the
last value for which the solution has been computed.

Y At the input denotes the initial values for the vector of dependent variables (it may be different
from the value of PHI at X; in this case it is highly recommended to set IWORK(13) and
GRID(1) (see below). At the output denotes the numerical solution at X.

XEND Final value of X (XEND-X has to be positive).

H Initial guess for the stepsize; for stiff equations with initial transient, H=1.D0/(norm of F’);
usually 1.D-3 or 1.D-5 is good. If H=0, the code puts H=1.D — 6. At output denotes the
predicted stepsize of the last accepted step.

RTOL Relative tolerance; can be both a scalar or a vector.
ATOL Absolute tolerance; can be both a scalar or a vector.

ITOL Switch for RTOL and ATOL. If ITOL=0 both RTOL and ATOL are scalars. The code keeps
(roughly) the local error as
Y(D)
RTOL x ABS(Y(I)) + ATOL"

If ITOL=1 both RTOL and ATOL are vectors. The code keeps (roughly) the local error as

Y (I)
RTOL(I) «x ABS(Y(I)) + ATOL(I)’

JAC Name (external) of the subroutine which computes the partial derivatives of F(X,Y,Z) (where
Z denotes the retarded variables) with respect to Y. This routine is only called if IJAC=1;
otherwise (if [JAC=0) a numerical approximation is provided by the code. In the case [JAC=0
the user has to supply a dummy subroutine For a description see Sect. 5.4 and for examples
see Sect. 8.

IJAC Switch for the computation of the Jacobian. If IJAC=0 the Jacobian is computed internally
by finite differences; the subroutine JAC is not necessary. If IJAC=1 the Jacobian is supplied
by the subroutine JAC.

MLJAC Switch for the banded structure of the Jacobian: If MLJAC = N the Jacobian is a full
matrix. If 0 <= MLJAC < N MLJAC is the lower bandwith of the Jacobian matrix.

MUJAC The upper bandwith of the Jacobian matrix. Does not need to be set if MLJAC = N.

JACLAG Name (external) of the subroutine which computes the partial derivatives of F(X,Y,Z) with
respect to Z (where Z denote the delayed variables). This has to be provided by the user
only if he sets NLAGS > 0 (in such case the user has to provide the derivative entries with
respect to the NLAGS deviating arguments). In the case NLAGS = 0 the user has to supply
a dummy subroutine. For a description see Sect. 5.5 and for examples see Sect. 8.

NLAGS Denotes the number of delay arguments which the user wants to take into account when
computing the partial derivatives of F(X,Y,Z) with respect to Z (see (8)). It is of interest
for the computation of the Jacobian of the nonlinear Runge-Kutta iteration. If it is set to
0 no derivatives with respect to delayed variables are considered; if set to P (> 0), NJACL
derivative entries with respect to P delayed variables are computed. For a detailed explanation
see Sect. 5.5 and for examples see Sect. 8.

NJACL Total number of derivative entries with respect to delayed variables which are intended to
be computed by the routine JACLAG.

IMAS Gives information on the mass matrix. If IMAS=0 then M is taken as the identity matrix.
If IMAS=1 the mass matrix is supplied by the user through the subroutime MAS.

SOLOUT Name (external) of the subroutine providing the numerical solutions during the integration.
If IOUT=1 it is called after every succesful step; if IOUT=0 it is never called; in such a case
the user should provide a dummy routine. It has also access to the continuous output of the
approximate solutions. For a description see Sect. 5.6 and for examples see Sect. 8.

I0UT Flag for calling the subroutine SOLOUT. If IOUT=1 it is called after every accepted step. If
IOUT=0 it is never called. This option is recommended when doing tests on performances.

WORK Array of state parameters of real kind for controlling and tuning the execution. WORK(1),
WORK(2),.., WORK(20) serve as parameters for the code; for a standard use of the code
(default values) they can be set to 0 by the user before calling RADARS5. For a description
see Sect. 3.2.2 and for examples see Sect. 8.

IWORK Array of state parameters of integer kind for controlling and tuning the execution. IWORK(1),
IWORK(2),.., IWORK(20) serve as parameters for the code; for a standard use of the code

(default values) they can be set to 0 by the user before calling RADARS5. For a description
see Sect. 3.2.1 and for examples see Sect. 8.

RPAR Array of real parameters which can be used for communication between your calling program
and the routines/functions FCN, JAC, MAS, SOLOUT, ARGLAG, PHI, JACLAG. It is
useful to pass the variables which parametrize the differential system. For further details see
the examples in Sect. 8.

IPAR Array of integer parameters which can be used for communication between your calling
program and the routines/functions FCN, JAC, MAS, SOLOUT, ARGLAG, PHI, JACLAG.

IDID Reports on succesfullness of the integration upon return:

IDID= 1: Succesful computation;,

IDID= 2: Succesful computation interrupted by routine SOLOUT;
IDID=-1: Non-consistent input values;

IDID=-2: Too many stepsizes required (> NMAX)

IDID=-3: Stepssize becomes too small;

IDID=-4: Jacobian matrix repeteadly singular;

IDID=-5: Computation interrupted by routine YLAGRS5;

IDID=-6: The equation makes use of advanced arguments.

GRID Array of length LGRID (which must be at least IWORK(13)+1). Contains prescribed mesh
points, which the integration method has to take as grid points. For a correct use it is
necessary that X < GRID(1) < GRID(2) < ... < GRID(NGRID) <= XEND.

IPAST Integer array of dimension IWORK(15) (number of components for which dense output is
required). For 0 < IWORK(15) < N the components for which dense output is required have
to be specified in IPAST(1),...,IPAST(IWORK(15)) (for NRDENS=N this is done automat-
ically).

MAS Name (external) of the subroutine computing the mass matrix M. If IMAS=0 the subroutine
is not needed and the mass matrix is assumed to be the identity; in such a case a dummy
routine has to be provided by the user. If IMAS=1 the matrix has to be provided. For a
description see Sect. 5.7 and for examples see Sect. 8.

MLMAS Switch for the banded structure of the mass matrix. If MLMAS=N, M is a full matrix; if
0 <= MLMAS < N, MLMAS is the lower bandwidth of the matrix M.

Constraint: MLMAS <= MLJAC.

MUMAS Upper bandwith of the mass matrix. Does not need to be set if MLMAS = N.
Constraint: MUMAS <= MUJAC.

3.2 Input work parameters to be specified by the user

Several parameters of the code are tuned to make it work well. They may be defined by setting
WORK(1),..., WORK(10) as well as IWORK(1),...,IWORK(15) different from zero. For zero input
the code automatically choses default values.

3.2.1 The IWORK array (integer parameters)

IWORK(1) If IWORK(1) # 0, the code transfoms the Jacobian matrix to Hessenberg form. This is
particularly advantageous for large systems with full Jacobian.

It does not work for banded Jacobian and for implicit systems (IMAS=1).
IWORK(2) This is the maximal number of allowed steps. The default value is 100000.

IWORK(3) This is the maximum number of Newton iterations for the solution of the algebraic
system of equations in each step. The default value is 7.

IWORK (4) If IWORK(4) = 0 the extrapolated collocation polynomial is taken to provide starting
values for Newton itaration. If IWORK(4) # 0 no extrapolation is done but the initial
solution value is used. The latter is recommended if Newton’s method has difficulties with
convergence. The default value is 0.

IWORK(5), IWORK(6), IWORK(7) Are relevant to delay differential algebraic systems of index > 1
(see explanations inside the code).

IWORK(8) Switch for stepsize strategy If IWORK(8) = 1 the modified predictive control (developed
by Gustaffson) is used. If IWORK(8) = 2 the classical stepsize control is used (for a detailed
description see [9]) The first choice often produce safer results while the second is generally
faster. The default value is 1.

IWORK(9), IWORK(10) Parameters relevant to systems with special structure; see the explanation
inside the code.

IWORK(11) Step size selection strategies for stiff ordinary differential equations are usually based
on error estimations at grid points. For delay equations, where the accuracy of the dense
output strongly influences the performance, such an approach often is not sufficient (see [7]).
For this reason the code also controls the error in the dense output.

IWORK(11) switches to different types of error controls.
-1: pure control of the dense output (makes use of a quadratic and a linear polynomials
interpolating the stage values);
0: mixed control of dense output and discrete output;
1: simpler mixed control;

2: pure control of the discrete output (is provided by the routine ESTRAD).
Default value is 0. When the solution is definitely smooth 2 is recommended.

IWORK(12) Maximum number of steps stored in the dense output array (PAST). It has to be
declared in the calling driver program. Has to be sufficiently large if the delays can be large
so that many back steps has to be stored.

IWORK(13) Number of prescribed grid points in the integration mesh. In the integration, typically,
at these points the solution or one of its derivative may have a discontinuity. These points
have to be set by the user as GRID(1),...,GRID(NGRID). Default value is 0.

IWORK(14) An efficient solution of the nonlinear equations (3) is the most demanding part of an
implementation of implicit Runge-Kutta methods. We consider two possible iterations (see
[7] for a detailed explanation).

IWORK(14) is the selector for the iteration. If is set to 1 it forces the code to a simplified
iteration (always preserving the block tensor structure of the Jacobian). If set to 2 it possi-
bly executes a full iteration (when the selected stepsize is larger than some delays and the
simplified iteration does not converge). Default value is 1.

IWORK(15) Number of solution components for which the dense output is required in the compu-
tation of the right-hand side (often denoted as NRDENS).

3.2.2 The WORK array (real parameters)
WORK (1) The rounding unit. Default value is 10716,

WORK(2) The safety factor in stepsize prediction. Default value is 0.9.

WORK(3) Determines whether the Jacobian should be recomputed. If negative forces the code to
compute the Jacobian after every accepted step. Suggested values: 0.1 if Jacobian evaluations
are expensive, 0.001 if Jacobian evaluations are not expensive. Default value is 0.001.

WORK (4) Stopping criterion for Newton iteration (usually chosen < 1). Smaller values make the
code solower but safer. Default value: min (0.03, /RTOL(1)).

WORK(5), WORK(6) If WORK(5) < HNEW/HOLD < WORK(6), then the stepsize is not changed.
This saves LU-decompositions and computing time for large systems. Suugested values:
WORK(5)=1.0, WORK(6)=1.2 for small systems, WORK(5)=0.99, WORK(6)=2.0 for large
full systems. Default values: WORK(5)=1.0, WORK(6)=1.2.

WORK(7) Maximal allowed stepsize. Default value: XEND-X.

WORK(8), WORK(9) Parameters controlling the stepsize selection. The new stepsize is chosen sub-
ject to the restriction:

WORK(8) < HNEW/HOLD < WORK (9)
Default values: WORK(8)=0.2, WORK(9)=8.0.

WORK (10) Parameter for tuning the error control of dense output (it is active if IWORK(11) = 0).
Range of admissible values 0 < WORK(10) < 1. For smaller values the control is stronger.
Suggested values: 0.0 for problems with almost discontinuous solutions (like shocks), 1.0 for
problems with fairly smooth solutions, intermediate values for intermediate problems. Default
value: 0.DO.

3.3 Output parameters for statistics

IWORK(13) Number of full Newton iterations.

IWORK (14) Number of function evaluations (those for numerical evaluation ot the Jacobian are not
taken into account).

IWORK (15) Number of Jacobian evaluations (either analytically or numerically).
IWORK(16) Total number of computed steps.
IWORK(17) Total number of accepted steps.

IWORK (18) Total number of rejected steps due to error test (step rejections in the first step are not
taken into account).

IWORK(19) Number of LU-decompositions.

IWORK(20) Number of forward-backward substitutions of both systems; the NSTEP forward back-
ward substitutions needed for stepsize selection are not taken into account.

3.4 The routine LAGRS5

It provides the position in the dense output array (PAST) for every delayed component which is
present in the problem.
The typical call is as follows.

CALL LAGR5(IL,X,Y,ARGLAG,PAST,THETA,IPOS,RPAR,IPAR)

List of arguments

IL The index addressing the required delayed argument.

X,Y The argument for the delay term ajr.

ARGLAG The name of the function computing the deviating arguments.
PAST The array storing the dense output.

IPOS Captures the position (in the dense output array) of the interval where the deviating argu-
ments falls.

THETA Relative position (its value is between 0 and 1) of the deviating argument within the interval
addressed by TPOS.

RPAR,IPAR User-defined arrays containing optional parameters for the delay equation.

3.5 The routine YLAGR5

It provides an approximation to the IC-th component of the solution at any abscissa of the integra-
tion interval. Such an approximation is determined by means of the computed piecewise polynomial
continuous extension of the discrete numerical solution. Its call has to be preceeded by a call of

LAGRS.
The typical call is as follows.

CALL YLAGR5(IC,THETA,IP0S,PHI,RPAR,IPAR,PAST,IPAST,NRDS)

10

List of arguments

IC The index addressing the required component.

THETA,IPOS Asin LAGR5. The required component (addressed by IC) has to be approximated at
the abscissa addressed by means of IPOS and THETA.

PHI The initial function.
PAST The array storing the dense output.

IPAST Integer array specifying the indexes of the components whose continuous approximation are
stored into PAST during integration.

NRDS Total number of components for which dense output is required.

RPAR,IPAR As in RADARS5.

4 Modules common to all the routines

The module IP_ARRAY at the beginning of the main file radar5.f makes common (to all routines
which declare it) the vector IPOSV which is a useful multiple pointer to the dense output for
different delays. Its dimension is set to 10. If the equation to be solved makes use of more than 10
delays, the user has to modify the dimension of the vector IPOSV and set it to the desired value
and finally has to recompile (or to remake if using the make command).

4.1 Workspace
The module has to be as follows:

MODULE IP_ARRAY
INTEGER, dimension(#NL) :: IPOSV
END MODULE IP_ARRAY

where #NL is larger than the number of considered (different) delays.

5 Routines to be provided by the user

Each user-defined subroutine is described in this section. The argument lists of each subroutine
contain arguments in one of three classifications:

Input The argument is read, but not written to.
Modified The argument is both read and written.

Output The argument is only written.

11

5.1 Subroutine FCN

The FCN subroutine computes the right hand side of the considered system. It has to be declared
external in the calling program and its name may be chosen by the user.

5.1.1 Argument list
SUBROUTINE FCN(N,X,Y,F,ARGLAG,PHI,RPAR,IPAR,PAST,IPAST,NRDS)
IMPLICIT REAL*8 (A-H,K,0-Z)
INTEGER, PARAMETER :: DP=kind(1DO)
REAL (kind=DP), dimension(N) :: Y
REAL (kind=DP), dimension(N) :: F
REAL (kind=DP), dimension(1) :: PAST
INTEGER, dimension(1) :: IPAST
REAL (kind=DP), dimension(1) :: RPAR
EXTERNAL PHI

5.1.2 Input

N, ARGLAG,PHI,RPAR,IPAR,IPAST As in the main routine RADARS
X,Y Values of the independent and dependent variables at which the function has to be evaluated.
PAST Array containing the required dense output.

NRDS Number of components for which dense output is required.

5.1.3 Output

F Vector of values assumed by the right hand side.

5.2 Function PHI

The PHI function provides initial functions for the components which appear in the system with
delays. It has to be declared external in the calling program and its name may be chosen by the
user.

5.2.1 Argument list

FUNCTION PHI(I,X,RPAR,IPAR)
IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)
REAL (kind=DP), dimension(1) :: RPAR

12

5.2.2 Input
I Index of the component.
X Value of the independent variable at which the function has to be evaluated.

RPAR, IPAR As in the main routine RADARS

5.2.3 Output

PHI Required value of the initial function.

5.3 Subroutine ARGLAG

The ARGLAG function provides the deviating arguments «;(t,y(t)),s = 1,2,..., in the system. It
has to be declared external in the calling program and its name may be chosen by the user.

5.3.1 Argument list

FUNCTION ARGLAG(IL,X,Y,RPAR,IPAR)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)

REAL (kind=DP), dimension(1) :: Y

INTEGER, dimension(1) :: IPAR

REAL (kind=DP), dimension(1) :: RPAR
5.3.2 Input

IL Index of the deviating argument.
X,Y Values of the independent and dependent variables at which the function has to be evaluated.

RPAR, IPAR As in the main routine RADARS

5.3.3 Output

ARGLAG Required value of the deviating argument.

5.4 Subroutine JAC

The JAC subroutine provides the Jacobian of the function f (t, y(t), y(a1(t, y(t))),- .-, ylam(t, y(t))))

(FCN) with respect to y(t) (Y variables). It is optional (it is activated if IJAC=1). If used, it has
to be declared external in the calling program and its name may be chosen by the user. If not
provided set IJAC=0 and put a dummy name in the call statement to the main routine RADARS.

13

5.4.1 Argument list

SUBROUTINE JAC(N,X,Y,DFY,LDFY,ARGLAG,PHI,RPAR,IPAR,PAST,IPAST,NRDS)
IMPLICIT REAL*8 (A-H,K,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)

REAL (kind=DP), dimension(N) :: Y

REAL (kind=DP), dimension(LDFY,N) :: DFY

REAL (kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

REAL (kind=DP), dimension(1) :: RPAR

EXTERNAL PHI

5.4.2 Input
N,ARGLAG,PHI,RPAR,IPAR,IPAST As in the main routine RADARS

X,Y Values of the dependent and independent variable at which the function has to be evaluated.
RPAR, IPAR As in the main routine RADARS
PAST, NRDS As in the routine FCN

LDFY Leading dimension of the Jacobian.

5.4.3 Output

DFY Matrix containing the standard Jacobian evaluated at X,Y.

5.5 Subroutine JACLAG

The JACLAG subroutine provides the derivatives of f (t, y(t), y(a1(t, y(t))),--.,ylam(t, y(t)))) (FCN)
with respect to y(au (¢, y(t))), - .., y(am(t,y(t))) (delayed variables). It may be very important when
the code uses stepsizes larger than delays and aims to perform ezact Newton iterations. It is sug-
gested but optional (if the user does not want to use this option he has to set IWORK(14)=1 and
NLAGS=0). If used, it has to be declared external in the calling program and its name may be

chosen by the user. If not provided set NLAGS=0 and put a dummy name in the call statement
to RADARS.

5.5.1 Argument list

SUBROUTINE JACLAG(N,X,Y,DFYL,ARGLAG,PHI,IVE,IVC,IVL,
& RPAR, IPAR,PAST, IPAST,NRDS)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)
REAL (kind=DP), dimension(N) :: Y
REAL (kind=DP), dimension(1) :: DFYL
REAL (kind=DP), dimension(1) :: PAST

14

INTEGER, dimension(1) :: IPAST
REAL (kind=DP), dimension(1) :: RPAR
INTEGER, dimension(1) :: IVE,IVC,IVL
EXTERNAL PHI

5.5.2 Input

N,ARGLAG,PHI,RPAR,IPAR,IPAST As in the main routine RADARS
X,Y Values of the dependent and independent variable at which the function has to be evaluated.
RPAR, IPAR As in the main routine RADARS

PAST, NRDS As in the routine FCN

5.5.3 Output

IVE,IVC,IVL Vector of indeces which address the derivative entries with respect to delayed terms
in the right hand side.

For the K-th entry,

IVE(K) has to indicate the number of the relevant equation;
IVC(K) has to indicate the number of the relevant component;
IVL(K) has to indicate the number of the relevant delay.

DFYL Array containing the values of the derivative entries with respect to delayed components. For
the K-th entry,

DFYL(K) has to store the value of the derivative.

This array will be used by the code — when required — to construct the full Jacobian matrix.

5.6 Subroutine SOLOUT

The SOLOUT subroutine provides the numerical approximation of the solution during the integration.

5.6.1 Argument list
SUBROUTINE SOLOUT (NR,XOLD,X,HSOL,Y,CONT,LRC,N,RPAR,IPAR,IRTRN)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)

REAL (kind=DP), PARAMETER :: XSTEP=0.01DO
REAL (kind=DP), dimension(N) :: Y

REAL (kind=DP), dimension(LRC) :: CONT
REAL (kind=DP), dimension(1) :: RPAR
EXTERNAL PHI

15

5.6.2 Input

X,Y Values of the dependent and independent variable at which the function has to be evaluated.
N,RPAR,IPAR As in the main routine RADARS

LRC Dimension of the array CONT.

5.6.3 Modified

CONT Vector of dense output for the current stepsize and for all components (used for output aims).

5.6.4 Output

NR Number of the mesh point at which the solution is furnished.
XO0LD The preceeding mesh point.
HSOL The value of the stepsize for the current step.

IRTRN If set < 0, serves to interrupt the integration.

5.7 Subroutine MAS

The MAS subroutine computes the mass matrix M of the implicit system. It has to be declared
external in the calling program and its name may be chosen by the user. If is not provided the
system is considered explicit, that is M is taken as the identity matrix.

5.7.1 Argument list

SUBROUTINE MAS(N,Q,LQ,RPAR,IPAR)
INTEGER, PARAMETER :: DP=kind(1DO)
REAL (kind=DP), dimension(1) :: RPAR
REAL (kind=DP), dimension(LQ,N) :: Q

5.7.2 Input
N,RPAR,IPAR As in the main routine RADARS

LQ Leading dimension of the mass matrix.

5.7.3 Output

Q@ The N x N mass matrix of the system.

6 How to install RADARS5

This section describes how to obtain and install RADARS.

16

Table 1: Source files in the RADARS package

files description

radarb.f main routines implementing the integration scheme
dc_decdel.f | routines involving error estimation

decsol.f rotines providing the necessary linear algebra
contr5.f routine providing continuous output

6.1 Getting the files and installing the code

The code, together with seven driver programs, is available at the address
‘http://www.unige.ch/math/folks/hairer’ under item ‘software’ and is mirrored at the ad-
dress
‘http://www.mathsunl.univ.trieste.it/math/’> .

The user can download the tar-file archive and generate the directory of the program and the
directories including the examples in its own computer by making use of the Unix command
tar -xvf radar5.f

People who do not use UNIX operative systems may contact directly the authors and will be
provided of the package in the desired format.

RADARSD5 Versions 1.0 consists of 4 ANSI Fortran-90 files plus one documentation/installation
postscript file. Also included in the distribution are seven drivers for the test programs. Makefiles
for automatic compilation are also provided.

7 Examples provided

RADARS5 comes with seven examples:
a) ENZYME, kinetics with an inhibitor molecule, dimension 4, one constant delay;

b) HAYASHI, an almost singular state dependent neutral problem, dimension 2 as differential-
algebraic problem, one vanishing delay;

c) HEPATITIS, acute hepatitis B virus infection, dimension 10, 5 constant delays;
d) OREGONATOR, chemical kinetics, dimension 2, one constant delay;

e) ROBERTSON, chemical reaction with steady state solution, dimension 3, one constant delay,
very large time interval (step sizes larger than the delay);

f) SDISC, non smooth artificial problem, dimension 1, 1 constant delay;

g) WALTMAN, threshold model for antibody production, dimension 6, 2 state-dependent delays
tending to zero, discontinuities in the right-hand side of the equations.

17

8 Example of use

8.1 The Oregonator model.

This problem, taken from [5], consists of two equations and one constant delay. They are given by

() = EM1Ays(t) — kM2yi(t) yo(t — 7) + kM3 By (t) — 2kM4 1y (t)?
yp(t) = —kM1Ays(t) — kM2y1(t) y2(t — 7) + fr kM3 Byi(t)

with
EM1 =134
EM2=16-10°
kM3 =8.0-10°
EM4 =4.0-107
EM5 = 1.0
fr=1.0
A=6.0-102
B=6.0-102
7=0.15

Initial values and functions are y;(t) = 1071° and y(t) = 1072 for t < 0. We consider the
integration interval [0, 100.5] and Atol = 10~9 - Rtol.

The driver program

C
IMPLICIT REAL*8 (A-H,0-Z)
REAL*4 TARRAY(2)
INTEGER, PARAMETER :: DP=kind(1DO)
INTEGER, PARAMETER :: ND=2
INTEGER, PARAMETER :: NRDENS=1
INTEGER, PARAMETER :: NGRID=11
INTEGER, PARAMETER :: NLAGS=1
INTEGER, PARAMETER :: NJACL=2
INTEGER, PARAMETER :: MXST=4000
INTEGER, PARAMETER :: LWORK=30
INTEGER, PARAMETER :: LIWORK=30
REAL(kind=DP), dimension(ND) :: Y
REAL(kind=DP), dimension(NGRID+1) :: GRID
REAL (kind=DP), dimension(LWORK) :: WORK
INTEGER, dimension(LIWORK) :: IWORK
INTEGER, dimension(NRDENS+1) :: IPAST
REAL (kind=DP), dimension(10) :: RPAR
INTEGER, dimension(22) :: ISTAT
EXTERNAL FCN,PHI,ARGLAG,JFCN,JACLAG,SOLOUT
C ——- FILE TO OPEN ————
OPEN(9,FILE=’sol.out’)
OPEN(10,FILE=’cont.out’)

C PARAMETERS IN THE DIFFERENTIAL EQUATION

18

kM1
RPAR(1)=1.34
kM2
RPAR(2)=1.6D9
kM3
RPAR(3)=8.0D3
kM4
RPAR(4)=4.0D7
kM5
RPAR(5)=1.D0
fr
RPAR(6)=1.D0
A
RPAR(7)=6.D-2
B
RPAR(8)=6.D-2
Tau
RPAR(9)=15.D-2

DIMENSION OF THE SYSTEM
N=ND

COMPUTE THE JACOBIAN ANALYTICALLY
IJAC=1

JACOBIAN IS A FULL MATRIX
MLJAC=N

DIFFERENTIAL EQUATION IS IN EXPLICIT FORM
IMAS=0

OUTPUT ROUTINE IS USED DURING INTEGRATION
I0UT=1

INITIAL VALUES (CONSISTENT WITH INITIAL FUNCTIONS)
X=0.0DO

Y(1)= 1.D-10

Y(2)= 1.D-5
DELAY

TAU=RPAR(9)

ENDPOINT OF INTEGRATION
XEND=100.5D0

REQUIRED (RELATIVE AND ABSOLUTE) TOLERANCE
ITOL=0
RTOL=1.D-9
ATOL=RTOL*1.D-9

INITIAL STEP SIZE
H=1.0D-6

DEFAULT VALUES FOR PARAMETERS
IWORK(1:20)=0
WORK (1:20)=0.0D0

PARAMETERS FOR ERROR ESTIMATION
WORK(10)=1.0
IWORK(11)=2

MAX NUMBER OF STEPS ALLOWED
IWORK (2)=100000

19

C ——— WORKSPACE FOR THE ARRAY PAST
IWORK (12)=MXST

C NUMBER OF DELAYED COMPONENTS
IWORK (15)=NRDENS

C ——— THE SECOND COMPONENT USES RETARDED ARGUMENT
IPAST(1)=2

C --- WORKSPACE FOR GRID
IWORK (13)=NGRID

C --- PRESCRIBED GRID-POINTS

DO I=1,NGRID
GRID(I)=I*TAU

END DO

C ——— CONTROL PARAMETER FOR SIMPLIFIED ITERATION
IWORK(14)=1

C -—— CALL OF THE SUBROUTINE RADARb5

CALL DTIME(TARRAY)

CALL RADAR5(N,FCN,PHI,ARGLAG,X,Y,XEND,H,
RTOL,ATOL,ITOL,
JFCN,IJAC,MLJAC,MUJAC,
JACLAG,NLAGS,NJACL,
IMAS,SOLOUT, I0UT,

WORK , IWORK,RPAR, IPAR,IDID,
GRID,IPAST,DUMMY,MLMAS,MUMAS)
CALL DTIME(TARRAY)
C -—— PRINT FINAL SOLUTION SOLUTION
WRITE (6,90) X,Y(1),Y(2)
C —-- PRINT STATISTICS
DO J=14,20
ISTAT(J)=IWORK(J)
END DO
WRITE(6,%*)’ s*%x*x TOL=’,RTOL,’ ELAPSED TIME=’,TARRAY(1),’ k%%’
WRITE (6,91) (ISTAT(J),J=14,20)
WRITE (6,92) ISTAT(23)
90 FORMAT(1X,’X =’,F8.2,° Y =’,2E18.10)
91 FORMAT(’ fcn=’,I7,’ jac=’,16,’ step=’,I6,
> accpt=’,I6,’ rejct=’,I6,’ dec=’,I6,
& > so0l=?,I7)

92 FORMAT(’> full Newt. its =?,I7)

WRITE(6,*) ’SOLUTION IS TABULATED IN FILES: sol.out & cont.out’
STOP
END

X

&

The subroutine SOLOUT

Determines the updating of the files sol.out and cont.out where the solution is stored. The
format of such files has to be chosen according to the graphics packages one intends to use for
drawing the solution. The file sol.out contains the values of the approximate solution components
at the (adaptively) computed mesh-points. The file cont.out contains the values of the approximate
solution components at points prescribed by the user (in the present case a uniform grid has been
chosen for the output representation).

20

SUBROUTINE SOLOUT (NR,XOLD,X,HSOL,Y,CONT,LRC,N,

& RPAR, IPAR, IRTRN)
C ——- PRINTS THE DISCRETE OUTPUT AND THE CONTINUOUS OUTPUT
C AT EQUIDISTANT OUTPUT-POINTS

IMPLICIT REAL#*8 (A-H,0-Z)
INTEGER, PARAMETER :: DP=kind(1DO)
REAL (kind=DP), PARAMETER :: XSTEP=0.01DO
REAL (kind=DP), dimension(N) :: Y
REAL (kind=DP), dimension(LRC) :: CONT
REAL (kind=DP), dimension(1) :: RPAR
EXTERNAL PHI

C X0UT IS USED FOR THE DENSE QUTPUT
COMMON /INTERN/XOUT

WRITE (9,99) X,Y(1),Y(2)
IF (NR.EQ.1) THEN
WRITE (10,99) X,Y(1),Y(2)
X0UT=XSTEP
ELSE
10 CONTINUE
IF (X.GE.XOUT) THEN
WRITE (10,99) XOUT,CONTR5(1,N,X0UT,CONT,X,HSOL),

& CONTR5(2,N,X0UT,CONT, X ,HSOL)
X0UT=XO0UT+XSTEP
GOTO 10
END IF
END IF
99 FORMAT(1X,°X =’,F12.8,° Y =’,2E18.10)
RETURN
END

The function ARGLAG

Provides the deviating argument «;.

FUNCTION ARGLAG(IL,X,Y,RPAR,IPAR)
IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)
REAL(kind=DP), dimension(1) :: Y
INTEGER, dimension(1) :: IPAR
REAL(kind=DP), dimension(1) :: RPAR

ARGLAG=X-RPAR(9)
RETURN
END

The subroutine FCN

Provides the right hand side of the differential system, that is
fi = EM1Ays—kM2y, 20+ kM3 By, — 2kM4y?
fo = —kEM1Ay,—kM2y; 20+ frkM3 By

21

where 22 := ya(a1(t)) and a1 (t) denotes the deviating argument (o (t) = ¢ — 7 in the present case).

SUBROUTINE FCN(N,X,Y,F,ARGLAG,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)
IMPLICIT REAL*8 (A-H,K,0-Z)
INTEGER, PARAMETER :: DP=kind(1DO)
REAL(kind=DP), dimension(N) :: Y
REAL(kind=DP), dimension(N) :: F
REAL(kind=DP), dimension(1) :: PAST
INTEGER, dimension(1) :: IPAST
REAL (kind=DP), dimension(1) :: RPAR
EXTERNAL PHI

C Parameters in the differential equation

kM1=RPAR (1)
kM2=RPAR (2)
kM3=RPAR(3)
kM4=RPAR (4)
kM5=RPAR (5)
fr =RPAR(6)
A =RPAR(7)
B =RPAR(8)

C Evaluates the unique deviating arguments (IL=1) and sets
its value into THETA1 and the position of the relative interval
C into IPOS1

CALL LAGR5(1,X,Y,ARGLAG,PAST,THETA1,IP0S1,RPAR,IPAR)

Q

C Evaluates the (only) component requiring dense output (which is Y(2))

C and puts the result into Z2
Z2=YLAGR5(2,THETA1,IP0S1,PHI,RPAR,IPAR,PAST,IPAST,NRDS)

C Computes F

F(1)= kM1*A*xY(2) - kM2+Y(1)*Z2 + kM3*B*Y(1)-2.DO*kM4Ax*Y (1) **2
F(2)= -kM1*A*Y(2) - kM2*Y(1)*Z2 + fr*kM3*B*xY(1)

RETURN

END

The subroutine JFCN

Provides the Jacobian (with respect to the variables y1 and y2) of the right hand side analytically.
We remark that this function could be provided numerically. In this case we have

ﬂ_ —kM22z + kM3B —4kM4y; kM1A
oy —kM2z + frkM3B —kM1A

where a;(t) =t — 7 and 22 = y2(a1(t)). Hence the routine is written as follows.

SUBROUTINE JFCN(N,X,Y,DFY,LDFY,ARGLAG,PHI,RPAR,IPAR,
& PAST,IPAST,NRDS)
C —-—- STANDARD JACOBIAN OF THE EQUATION
IMPLICIT REAL*8 (A-H,K,0-Z)
INTEGER, PARAMETER :: DP=kind (1DO)
REAL(kind=DP), dimension(N) :: Y

22

REAL(kind=DP), dimension(LDFY,N) :: DFY
REAL(kind=DP), dimension(1) :: PAST
INTEGER, dimension(1) :: IPAST

REAL (kind=DP), dimension(1) :: RPAR
EXTERNAL PHI

kM1=RPAR (1)

kM2=RPAR(2)

kM3=RPAR(3)

kM4=RPAR (4)

kM5=RPAR(5)

fr =RPAR(6)

A =RPAR(T7)

B =RPAR(8)

C Determination of the deviating argument
CALL LAGR5(1,X,Y,ARGLAG,PAST,THETA1,IP0S1,RPAR,IPAR)
Z2=YLAGR5(2,THETA1,IP0S1,PHI,RPAR,IPAR,PAST,IPAST,NRDS)
C Jacobian matrix (2x2) with respect to Y(1) and Y(2)
DFY(1,1)= -kM2*Z2 + kM3*B - 4.DO*kM4x*Y(1)
DFY(1,2)= kMixA
DFY(2,1)= -kM2*Z2 + fr*kM3*B
DFY(2,2)= -kM1xA
RETURN
END

The subroutine JACLAG

Provides the Jacobian (with respect to the retarded variablexs 22(t) = y2(a1(t))) of the right hand
side analytically. This is stored in a one dimensional array as described in Sect. 5.5. We remark
that this function could not be provided numerically (at present time). In this case we have

Qf__ <0 '—kﬂl2y1>
8z \O —kM2y;

where a;(t) =t — 7 and z;(t) = yi(@i1(t)),7 = 1,2. Since we store such matrix in a vector (because
we assume it is sparse), the routine is written as follows.

SUBROUTINE JACLAG(N,X,Y,DFYL,ARGLAG,PHI,IVE,IVC,IVL,
& RPAR, IPAR,PAST, IPAST,NRDS)

C ——- JACOBIAN OF DELAY TERMS IN THE EQUATION

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)

REAL (kind=DP), dimension(N) :: Y

REAL (kind=DP), dimension(1) :: DFYL

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

REAL(kind=DP), dimension(1) :: kM1,kM2

REAL(kind=DP), dimension(1) :: RPAR

INTEGER, dimension(1) :: IVE,IVC,IVL

EXTERNAL PHI

kM1=RPAR (1)

23

kM2=RPAR (2)
A =RPAR(7)
B =RPAR(8)
C — The Jacobian has two entries;
¢ the first entry ((1)) is relevant to
¢ - the first (and only) delay, whose index is hence equal to 1 (IVL(1)=1)
¢ - the first equation (IVE(1)=1)
C - the second component of the solution (IVC(1)=2)

IVL(1)=1
IVE(1)=1
Ive(1)=2
C The value of the derivative with respect to the delayed second
C component in the first equation is finally given by
DFYL (1) =-kM2*Y (1)
¢ the second entry ((2)) is relevant to
¢ - the first (and only) delay, whose index is hence equal to 1 (IVL(2)=1)
¢ - the second equation (IVE(2)=2)
C - the second component of the solution (IVC(2)=2)
IVL(2)=1
IVE(2)=2
IVC(2)=2
C The value of the derivative with respect to the delayed second
C component in the second equation is finally given by
DFYL(2)=-kM2*Y (1)
RETURN
END

The initial function PHI
Provides the initial functions.

FUNCTION PHI(I,X,RPAR,IPAR)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER, PARAMETER :: DP=kind(1DO)
REAL (kind=DP), dimension(1) :: RPAR
SELECT CASE (I)
CASE (2)

PHI= 1.D-5
END SELECT
RETURN
END

Compilation

We create a file, called “dr-oregon.f”, including all previous routines, and put it in a subdirectory
(called OREGON) of the main directory RADARDS, where the source and the object files of the
main routines of the code are installed. The following makefile is also created in the directory
OREGON,

FC = £90
FCFLAGS = -c

24

DEBUGFLAGS = -g
LIB = /lib /usr/1ib

.f.o:

$(FC) $(FCFLAGS) $(DEBUGFLAGS) $*.f
0BJ2 = ../radar5.0 ../dc_decdel.o ../decsol.o
0BJ1 = dr-oregon.o

prog : $(0BJ1)
$(FC) $(DEBUGFLAGS) -o driver $(0BJ1) $(0BJ2)

The simple use of the Unix command make generates the compilation and the linking phase for
the program. The executable file is called “driver”. In case of troubles check whether the fortran
libraries are stored in the directories /1ib and /usr/1lib.

Execution

Executing the program driver generates the following output.

STARTING INTEGRATION...
NUMBER OF PRESCRIBED GRID POINTS: 11
NUMBER OF DELAYED COMPONENTS: 1
X = 100.50 Y = 0.2749861866E-09 0.3559046555E-06
xx%% TOL=1.0000000000000013E-9 ELAPSED TIME=2.11727977 ***x*
fcn= 70386 jac= 5071 step= 9283 accpt= 9074 rejct= 183 dec= 7608
sol= 20435

full Newt. its = 0
SOLUTION IS TABULATED IN FILES: sol.out & cont.out
STOP

The program also generates two output files, sol.out and cont.out, which contain - respectively
- the discrete computed solution and an approximation of the solution on a uniform mesh with
density chosen by the user.

8.2 Artificial neutral problem.

Our second example, which is a modification by Enright & Hayashi [4] of a problem considered
originally by Castleton & Grimm [3], is

v(t) = cos(t)(1+v(tv?(®)) + co(®) v (v (1)) (10)
+ (1 —¢) sint cos (t sint) — sin (¢ + ¢ sin®t)

with initial value v(0) = 0. For every choice of the parameter c, it has v(t) = sint as exact solution.
It has a vanishing delay at ¢t = 0,7/2,37/2,..., and for ¢ = 1 it has a singularity at t = 7/2 (i.e.,
y'(m/2) is not well defined by the equation (10). For this problem, the numerical solution of the
nonlinear Runge-Kutta equations causes some difficulties.

We have rewritten the neutral equation (10) in the form (1) by setting yi(t) = v(t) and
introducing the new variable ya(t) = v'(t) and 21(t) = wyi(ai(t,y)), 22(t) = y2(ai(t,y)), with

25

Table 2: Statistics for the problem (10) with Rtol = Atol =108

Cc

H nr. of steps ‘ nr. of full Jac ‘ erroratt=m

-1.0
-0.7
-0.3
0.3
0.7
1.0

127
111

99
120
144
164

12
6
0
2

14

19

0.18 -
0.42 -
-1079

0.17

0.10-
0.53 -
0.43 -

108
10-8

108
1079
107

ai(t,y) = ty?(t), as explained in the first section,
) (yi
Yo

Yya(t)

with

f1(t,y1,92, 21, 22)

f2(t,y1,92, 21, 22)

10

—Y2(t) + cos (£)(1 + 21(2)) + ey (t) 22(F) +

(1 —¢) sint cos (t sin®t) — sin (¢ + ¢ sin® ¢).

(

Then we have applied our code RADAR5 with Rtol = Atol = 1078.

case).

For conciseness we do not report the driver program and present only part of the user-defined

routines.

The function ARGLAG

Provides the deviating argument, o (t,y) = ty3.

FUNCTION ARGLAG(IL,X,Y,RPAR,IPAR)
IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER ::
REAL(kind=DP), dimension(1) ::
INTEGER, dimension(1) ::
REAL (kind=DP), dimension(1) ::

ARGLAG=X*Y (1) **2
RETURN
END

DP=kind (1DO)

IPAR

We display the total
number of steps (accepted and rejected), the number of steps where difficulties appeared in solving
the nonlinear system (so that the correct matrix L had to be used in (9)), and the global error at
the endpoint of integration. We observe that such difficulties appear only for values close to +1.
It is somewhat surprising that our code solves the problem correctly even for ¢ = 1 (the singular

The subroutine FCN
Provides the right hand side of the differential system (11).

SUBROUTINE FCN(N,X,Y,F,ARGLAG,PHI,RPAR,IPAR,PAST,IPAST,NRDS)
IMPLICIT REAL*8 (A-H,K,0-Z)
INTEGER, PARAMETER :: DP=kind(1DO)
REAL(kind=DP), dimension(N) :: Y
REAL(kind=DP), dimension(N) :: F
REAL(kind=DP), dimension(1) :: PAST
INTEGER, dimension(1) :: IPAST
REAL(kind=DP), dimension(1) :: RPAR
EXTERNAL PHI

C Contains the parameter ¢ in the equation
C=RPAR(1)

CALL LAGR5(1,X,Y,ARGLAG,PAST,THETA,IPOS,RPAR,IPAR)

Z1=YLAGR5 (1, THETA, IPOS,PHI,RPAR,IPAR,PAST,IPAST,NRDS)

Z2=YLAGR5 (2, THETA, IPOS,PHI,,RPAR, IPAR,PAST, IPAST,NRDS)

F(1)= Y(2)

F(2)=-Y(2)+C0S (X)*(1.DO+Z1) +C*Y (1) *Z2+ (1.D0-C) *SIN (X) *COS (X*SIN (X) **2)
& —SIN(X+X*SIN(X)**2)

RETURN

END

The subroutine JACLAG
Provides the Jacobian (with respect to the variables z; and z2) of the right hand side analytically.

In this case we have
of _ (0 0
8z \cost ciy

Hence both entries are relevant to the second equation and the routine is written as follows.

SUBROUTINE JACLAG(N,X,Y,DFYL,ARGLAG,PHI,IVE,IVC,IVL,
& RPAR,IPAR,PAST, IPAST,NRDS)

C ——- JACOBIAN OF DELAY TERMS IN THE EQUATION

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER, PARAMETER :: DP=kind(1DO)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(1) :: DFYL

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

REAL (kind=DP), dimension(1) :: RPAR

INTEGER, dimension(1) :: IVE,IVC,IVL

EXTERNAL PHI

C=RPAR(1)
C the first entry ((1)) is relevant to
C - the first (and only) delay, whose index is hence equal to 1 (IVL(1)=1)

27

Q

- the second equation (IVE(1)=2)
- the first component of the solution (IVC(1)=1)

IVL(1)=1

IVE(1)=2

Ive(1)=1
C The value of the derivative with respect to the delayed second
component in the first equation is finally given by
DFYL(1)=C0s (X)

Q

Q

the second entry ((2)) is relevant to
- the first (and only) delay, whose index is hence equal to 1 (IVL(2)=1)
- the second equation (IVE(2)=1)
- the second component of the solution (IVC(2)=2)

IVL(2)=1

IVE(2)=2

IvC(2)=2

DFYL(2)=C*Y (1)

aQaaQaaaQ

RETURN
END

The subroutine JAC

Is not provided. In this case the standard Jacobian is approximated numerically (see the released
driver program).

The initial function PHI

Provides the necessary initial functions, if required.

FUNCTION PHI(I,X,RPAR,IPAR)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER, PARAMETER :: DP=kind(1DO)
REAL (kind=DP), dimension(1) :: RPAR
SELECT CASE (I)
CASE (1)
PHI=SIN(X)
CASE (2)
PHI=COS (X)
END SELECT
RETURN
END

The mass matrix subroutine

Provides the mass matrix for the implicit DDE.

SUBROUTINE QFUN(N,Q,LQ,RPAR,IPAR)

C ———— MATRIX "M" FOR THE NEUTRAL PROBLEM
INTEGER, PARAMETER :: DP=kind(1DO)
REAL(kind=DP), dimension(1) :: RPAR

28

REAL (kind=DP), dimension(LQ,N) :: Q

Q(1,1)=1.D0
Q(1,2)=0.D0
Q(2,1)=0.D0
Q(2,2)=0.D0
RETURN

END

9 Copyright Notice

The RADARS5 Package, Version 1.0, double-precision, Copyright (C) 2000, Nicola Guglielmi and
Ernst Hairer,

COPYRIGHT NOTICE. The RADARS5 Package is a set of subroutines developed by Nicola
Guglielmi and Ernst Hairer (the Authors) at the University of Geneva. The package has been made
available to you (the User) under the following terms and conditions. Your use of RADARS is an
implicit agreement to these conditions.

1. RADARS may only be used for educational and research purposes by the person or organi-
zation to whom they are supplied (the “User”).

2. Code that uses RADARS (a code that calls subroutines in RADARS) does not fall under
this Copyright Notice. However, code derived from RADARS does fall under this Copyright
Notice.

3. RADARS5 is provided without warranty of any kind, either expressed or implied. Neither the
University of Geneva nor the Authors shall be liable for any direct or consequential loss or
damage whatsoever arising out of the use of RADARS by the User.

4. Any use of RADARSD in any commercial application shall be subject to prior written agreement
between the Authors and the User on suitable terms and conditions.

10 Final comments

As soon as you receive a copy of RADARS, please send email to us at guglielm@univaq.it or
Ernst.Hairer@unige.ch, so that we can put you on a mailing list for news and updates. Please
include your postal address as well.

While we would appreciate hearing any bug reports and comments, we cannot promise that we
can fix any specific bugs. We would also appreciate receiving copies of publications that refer to
the package.

If you find this software to have a different performance than the software you were previously
using, we would be very interested in getting copies of your delay equations. Of particular interest
are large stiff problems coming from real-life applications.

29

Acknowledgments

We thank Alfredo Bellen, Marino Zennaro and Gerhard Wanner for fruitful discussions concerning
the development of the code.

References

[1] C.T.H. Baker, J.C. Butcher, C.A.H. Paul, Experience of STRIDE applied to delay differential
equations, Technical Report 208, Univ. Manchester, 1992.

[2] G.A. Bocharov, G.I. Marchuk, A.A. Romanyukha, Numerical solution by LMMs of stiff delay
differential systems modelling an immune response, Numer. Math. 73, 131-148 (1996).

[3] R.N. Castleton, L.J. Grimm, A first order method for differential equations of neutral type,
Math. Comp. 27, 571-577 (1973).

[4] W.H. Enright, H. Hayashi, A delay differential equation solver based on a continuous Runge-
Kutta method with defect control, Numer. Algorithms 16, 349-364 (1998).

[6] I. Epstein, Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the
cross-shaped phase diagram and the Oregonator, J. Chemical Physics 95, 244-254 (1991).

[6] N. Guglielmi, E. Hairer, Order stars and stability for delay differential equations, Numer. Math.
83, 371-383 (1999).

[7] N. GuGLIELMI AND E. HAIRER, Implementing Radau II-A methods for stiff delay differential
equations, Comouting, in press (2001).

[8] E. Hairer, S.P. Ngrsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Prob-
lems, 2nd edition, Springer Series in Computational Mathematics 8, Springer-Verlag Berlin,
1993.

[9] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems, 2nd edition, Springer Series in Computational Mathematics 14, Springer-
Verlag Berlin, 1996.

[10] Z. Jackiewicz, E. Lo, The numerical solution of neutral functional-differential equations by
Adams predictor-corrector methods, Appl. Numer. Math. 8, 477-491 (1991).

[11] M. Okamoto, K. Hayashi, Frequency conversion mechanism in enzymatic feedback systems, J.
Theor. Biol. 108, 529-537 (1984).

[12] P. Waltman, A threshold model of antigen—stimulated antibody production, Theoretical Im-
munology (Immunology Ser. 8), Dekker, New York, 437-453 (1978).

[13] R. Weiner, K. Strehmel, A type insensitive code for delay differential equations basing on
adaptive and explicit Runge-Kutta interpolation methods, Computing 40, 255-265 (1988).

[14] M. Zennaro, P-stability properties of Runge-Kutta methods for delay differential equations,
Numer. Math. 49, 305-318 (1986).

30

