Erratum II to our paper "A simplification problem in manifold theory"

Jean-Claude HAUSMANN and Bjørn JAHREN

January 2024

Alexander Kupers reecently pointed out that our proof of Lemma 5.8 in [2] is not correct. As a consequence, the lemma is currently unsettled. Note that this lemma is not used elswhere in [2].
Lemma 5.8. (Unsettled) Let M be a smooth closed connected manifolds of dimension 4. Then, the map $\mathcal{T}: \mathcal{B}(M) \rightarrow \mathrm{Wh}(M)$ is surjective.

Recall that $\mathcal{B}(M)$ is the set of invertible cobordisms starting from M, up to diffoemorphism relative to M (see [2, (3.6)]). The point is that our proof of Lemma 5.8 uses [1. Theorem 11.1A], which only produces a topological semi-scobordism. In addition, it requires some " good" fundamental group hypothesis. Thus, our proof establishes the following topological version of Lemma 5.8, where $\mathcal{B}_{\text {Top }}(M)$ is the analogue of $\mathcal{B}(M)$ for topological manifolds and cobordisms.
Lemma 5.8. (Topological version) Let M be a closed connected topological manifolds of dimension 4 with poly-(finite or cyclic) fundamental group. Then, the map $\mathcal{T}: \mathcal{B}_{\text {Top }}(M) \rightarrow \mathrm{Wh}(M)$ is surjective.
Proof. As said above, our original proof provides, for each $\sigma \in \mathrm{Wh}(M)$, a topological h-cobordism (W, M, M^{\prime}) with $\tau(W, M)=\sigma$. The same can be done for M^{\prime}, providing, for each $\sigma^{\prime} \in \mathrm{Wh}\left(M^{\prime}\right) \approx \mathrm{Wh}(M)$ a topological h-cobordism ($W^{\prime}, M^{\prime}, M^{\prime \prime}$) with $\tau\left(W^{\prime}, M^{\prime}\right)=\sigma^{\prime}$. The topological s-cobordism theorem holds for closed 4 -manifold with poly-(finite or cyclic) fundamental group [1 Theorem 7.1A]. As in [2, proof of Theorem 3.15], this permits us to prove that W is invertible.

The above topological Lemma 5.8 would imply the smooth one (with a good fundamental group hypothesis) if the following problem has a positive answer.
Problem. Let (W, M, M^{\prime}) be a topological invertible cobordism, where M is a closed smooth 4-manifold. Does the smooth structure on M extend to W ?

References

[1] M. H. Freedman and F. Quinn. Topology of 4-manifolds, volume 39 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1990.
[2] JC. Hausmann and B. Jahren. A simplification problem in manifold theory. Enseign. Math., 64(1-2):207-248, 2018.

