David JAROSSAY

Post-doc of NCCR SwissMAP
University of Geneva, Section of Mathematics
Group of Professor Anton Alekseev
Villa Battelle, 7 route de Drize, 1227 Carouge, Switzerland

e-mail : david.jarossay@unige.ch


Introduction
Notes on "Adjoint multiple zeta values and multiple harmonic values" (in preparation)
Notes on "Computation of p-adic multiple zeta values by pro-unipotent harmonic actions" (in preparation)
p-adic multiple zeta values and p-adic pro-unipotent harmonic actions : summary of parts I and II (49 pages, revised version of a text of Proceedings of the conference "Various aspects of multiple zeta values" July, 2016, RIMS, Kyoto, Japan)

Research papers
p-adic multiple L-functions and cyclotomic multiple harmonic values (joint with H. Furusho) (submitted)
Associators, adjoint actions and depth filtrations (submitted)
A bound on the norm of overconvergent p-adic multiple polylogarithms (submitted)
Pro-unipotent harmonic actions and a computation of p-adic cyclotomic multiple zeta values (submitted)
Pro-unipotent harmonic actions and a dynamical method for the computation of p-adic cyclotomic multiple zeta values
Adjoint cyclotomic multiple zeta values and cyclotomic multiple harmonic values
The adjoint quasi-shuffle relation of p-adic cyclotomic multiple zeta values recovered by explicit formulas
Interpretation of cyclotomic multiple harmonic values as periods
Ramified p-adic cyclotomic multiple zeta values : definition and computation
p-adic cyclotomic multiple zeta values extended to sequences of integers of any sign
Non-vanishing of certain cyclotomic multiple harmonic sums and p-adic cyclotomic multiple zeta values

Recent talks
University of Osaka, number theory seminar, June 8, 2018

A video related to my work
Integrality of p-adic multiple zeta values and application to finite multiple zeta values Talk by Seidai Yasuda at the Séminaire d'Arithmétique et Géométrie Algébrique Paris-Pékin-Tokyo (2015, april, 8). My proof of a conjecture of Akagi, Hirose and Yasuda on p-adic multiple zeta values (proved in the paper "Pro-unipotent harmonic actions and computation of p-adic cyclotmoic multiple zeta values"), is explained from 47' to 59' and used afterwards for an application to the finite multiple zeta values of Kaneko and Zagier

Notes of announcement
Double mélange des multizêtas finis et multizêtas symétrisés Comptes rendus - Mathématique 352 (2014) pp.767-771
Un cadre explicite pour les polylogarithmes multiples p-adiques et les multizêtas p-adiques Comptes-rendus - Mathématique 353 (2015) pp.871-876
Une notion de multizêtas finis associée au Frobenius du groupe fondamental de P^1 - {0,1,infty} Comptes rendus - Mathématique 353 (2015) pp.877-882

Teaching assistant work
2017 - 2018 at Université de Genève. Fall semester : Analyse réelle (second year course). Spring semester : Analyse complexe, Algèbre (second year courses).
2014 - 2015 at Université Paris Diderot. Spring semester : Algèbre et analyse élémentaires (first year course)
2013 - 2014 at Université Paris Diderot. Spring semester : Algèbre et analyse fondamentales (second year course)
2012 - 2013 at Université Paris Diderot. Spring semester : Algèbre et analyse fondamentales (second year course)

Other texts
Curriculum vitae
Espaces principaux homogènes localement triviaux Mémoire "Introduction au domaine de recherche" of end of studies at Ecole Normale Supérieure, Paris (october 2011). Under the supervision of Philippe Gille
Modèle p-spin sur des hypergraphes aléatoires : des systèmes vitreux aux ensembles aléatoires d'équations linéaires booléennes. Mémoire of first year at Ecole Normale Supérieure, Paris (september 2009, with Renaud Detcherry). Under the supervision of Marc Lelarge and Guilhem Semerjian