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Complexity and heights of tori

Gautam Chinta, Jay Jorgenson, and Anders Karlsson

Abstract. We prove detailed asymptotics for the number of spanning trees,
called complexity, for a general class of discrete tori as the parameters tend

to infinity. The proof uses in particular certain ideas and techniques from
an earlier paper [CJK10]. Our asymptotic formula provides a link between

the complexity of these graphs and the height of associated real tori, and

allows us to deduce some corollaries on the complexity thanks to certain results
from analytic number theory. In this way we obtain a conjectural relationship

between complexity and regular sphere packings.

1. Introduction

The number of spanning trees τ(G), called the complexity, of a finite graph G
is an invariant which is of interest in several sciences: network theory, statistical
physics, theoretical chemistry, etc. Via the well-known matrix-tree theorem of
Kirchoff, the complexity equals the determinant of the combinatorial Laplacian
∆G divided by the number of vertices.

For compact Riemannian manifolds M there is an analogous invariant h(M),
the height, defined as the negative of the logarithm of the zeta-regularized determi-
nant of the Laplace-Beltrami operator, and which is of interest for quantum physics.
The analogy between the height and complexity has been commented on by Sarnak
in [S90].

In statistical physics it is of interest to study the asymptotics of the complex-
ity, and other spectral invariants, for certain families of graphs. Important cases
to study are various subgraphs of the standard lattice Zd. An instance of this is to
study discrete tori, corresponding to periodic boundary conditions, as the parame-
ters tend to infinity, see [DD88], [CJK10], and references therein. It is shown in
[CJK10] that in the asymptotics of the complexity of discrete tori, the height of
an associated real torus appears as a constant.
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In the present paper we study discrete tori of a more general type, defined as
follows. Let Λ be an invertible r × r matrix with all entries being integers. This
matrix defines a lattice ΛZr in Rr. We associate to the group quotient with standard
generators

ΛZr\Zr

its Cayley graph, which we call a discrete torus. In other words, two elements x
and y in ΛZr\Zr are adjacent, denoted x ∼ y, if they differ by ±1 in exactly one of
the coordinates and equal everywhere else (everything mod ΛZr of course).

Let 0 = λ0 < λ1 ≤ ... ≤ λ|det Λ|−1 be the eigenvalues of the combinatorial
Laplacian ∆ΛZr\Zr of the discrete torus – see (2.1) for a definition of ∆ΛZr\Zr .
Define det∗∆ΛZr\Zr to be the product of the nonzero eigenvalues of the Laplacian:

det∗∆ΛZr\Zr := λ1λ2...λ|det Λ|−1.

Note that the trivial eigenvalue is removed. We will nevertheless refer to det∗∆ΛZr\Zr

as the determinant of the Laplacian. For simplicity we will mostly assume that
det Λ > 0.

Theorem 1.1. Let {Λn} be a sequence of r× r integer matrices. Suppose that
det Λn →∞ and Λn/(det Λn)1/r → A ∈ SLr(R). Then as n→∞,

log det∗∆ΛnZr\Zr = cr det Λn +
2

r
log det Λn + log det∗∆AZr\Rr + o(1)

where

cr = log 2r −
∫ ∞

0

e−2rt(I0(2t)r − 1)
dt

t
.

The definition of log det∗∆AZr\Rr will be recalled in section 3 below.

Our earlier paper [CJK10] treats the case when the Λn are diagonal matrices.
The present paper uses several facts that are established in that paper. Thanks to
the fact that the first two terms in the asymptotics are universal in the sense that
they only depend on Λn via det Λn, the theorem gives a close connection between
the complexity of certain graphs and the height of an associated manifold. We
emphasize that this is not at all obvious: while it is true that the appropriately
rescaled eigenvalues of the discrete tori converge to the eigenvalues of ∆AZr\Rr , this
convergence is certainly not uniform. Moreover, the height cannot be defined as
the product of eigenvalues, there is a regularization in the definition. An explicit
expression for the height of flat tori of volume 1, h(AZr\Rr) := − log det ∆AZr\Rr ,
can be found in Theorem 2.3 of [Ch97]. Deninger and Lück have informed us that
the constant cr also has an interpretation as a determinant, namely the Fuglede-
Kadison determinant of the Laplacian on Zr, see [L].

We turn now to a connection between our results and sphere packings. The
problem of finding the densest packing of ordinary space with spheres of equal radii
is an old one with practical importance even in dimensions greater than 3. One type
of packings is regular sphere packings which means that the spheres are centered at
the points of a lattice AZr. Gauss showed that the face centered lattice (fcc) D3 is
optimal among regular packings in three dimensions. By work of Thue and Toth
one knows that the hexagonal lattice A2 is densest in dimension 2. In fact, Thue
and Toth proved that A2 gives the densest packing among all packings — lattice
as well as non-lattice. In dimension 24 it is known that the Leech lattice is optimal
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among unimodular lattices. We refer to the book of Conway-Sloane [CS99] and
the paper of Cohn-Kumar [CK09] for more information.

Conjecturally the height of AZr\Rr has a global minimum when AZr is the
densest regular sphere packing. This conjecture, attributed to Sarnak, appears
as Conjecture 4.5 in [Ch97]. Extremal metrics for heights has been studied in
[OPS88] in dimension 2, and for tori in higher dimensions notably in [Ch97] and
[SS06]. In these papers, the question is phrased as the study of the derivative
of Epstein zeta functions at s = 0. From this theory we can deduce the following
corollaries from our main theorem:

Corollary 1.2. Let {Λn} be a sequence of r×r integer matrices with det Λn →
∞. Suppose that {Λn/(det Λn)1/r} belongs to a compact subset of SLr(R), r = 2, 3,
avoiding lattices equivalent to A2, resp. D3. Assume that there is a sequence {Ln}
with detLn = det Λn such that {Ln/(det Ln)1/r} converges to A2, resp. D3. Then
LnZr\Zr has more spanning trees than ΛnZr\Zr for all sufficiently large n.

Corollary 1.3. Let Λn be a sequence of r× r integer matrices with det Λn →
∞ Suppose that {Λn/(det Λn)1/r} stays in a compact subset of SLr(R). For all
sufficiently large n we have that

τ(ΛnZr\Zr) ≤
(det Λn)

2/r−1

4π
exp(cr det Λn + γ + 2/r),

where γ is Euler’s constant and cr is as in the theorem.

In the trivial case r = 1, this estimate gives a value close to the truth:

det Λn = τ(ΛnZr\Zr) ≤ 1.05 det Λn.

Upper bounds for the number of spanning trees have been considered in the
combinatorics literature since 1970s at least. For regular graphs there is a rather
sharp estimate by Chung and Yau [CY99] improving on an earlier result of McKay
[M]. In general, it is an open problem to decide which simple graph on n vertices
and e edges has the maximal complexity. This is of interest to communication
network theory since this graph invariant appears as a measure of reliability.

It would be of interest to also go in the other direction: proving results on
the extrema of families of Epstein zeta functions via a better understanding of the
number of spanning trees of discrete tori.

2. Spectral preliminaries for discrete tori

Let Λ be an invertible r × r integer matrix. This matrix defines a lattice ΛZr
in Rr. We denote by DT (Λ) the discrete torus, or Cayley graph of the quotient
group ΛZr\Zr with standard generating set: two elements x and y in ΛZr\Zr are
adjacent, denoted x ∼ y, if they differ by ±1 in exactly one of the coordinates and
equal everywhere else (everything mod ΛZr of course).

The associated (combinatorial) Laplacian is defined by

(2.1) ∆DT (Λ)f(x) =
∑

y s.t. y∼x
(f(x)− f(y))

on functions f : ΛZr\Zr → R.
The dual lattice Λ∗Zr is as usual all the points v in Rr such that (v, x) ∈ Z for

all x ∈ ΛZr, where (·, ·) denotes the usual scalar product. Since Zr is self-dual and



4 GAUTAM CHINTA, JAY JORGENSON, AND ANDERS KARLSSON

ΛZr is a subgroup of Zr it follows that Zr is a subgroup of Λ∗Zr. Note that the
respective indices are

[Zr : ΛZr] = [Λ∗ : Zr] = |det Λ| .

Proposition 2.1. The eigenfunctions of ∆DT (Λ) are given by

fv(x) = e2πi(x,v),

for each v ∈ Zr\Λ∗Zr, with corresponding eigenvalue given by

λv = 2r − 2

r∑
k=1

cos(2πvk),

where vk denotes the kth coordinate of v.

Proof. The operator ∆DT (Λ) is a semipositive, symmetric matrix and hence
we are looking for |det Λ| number of eigenfunctions and eigenvalues. The proof is a
trivial calculation:

∆e2πi(x,v) = 2re2πi(x,v) −
∑
y∼x

e2πi(y,v) =

=

(
2r −

∑
z∼0

e2πi(z,v)

)
e2πi(x,v).

�

The heat kernel KΛ(t, x) : R≥0 ×DT (Λ)→ R is the unique bounded function
which satisfies (

∆DT (Λ) +
∂

∂t

)
KΛ(t, x) = 0

KΛ(0, x) = δ0(x),

where δ0(x) = 1 if x = 0 and 0 otherwise. The existence and uniqueness of heat ker-
nels in a general graph setting is established in [DM06]. Recall from e.g. [CJK10]
that

KZr

(t, z) =

r∏
k=1

KZ(t, zk)

for z = (zk) and KZ(t, w) = e−2tIw(2t), where Iw is the I-Bessel function of order
w.

We have the following theta inversion formula (cf. [CJK10]).

Proposition 2.2. The following formula holds for x ∈ ΛZr\Zr and t ∈ R≥0∑
y∈ΛZr

KZr

(t, x− y) =
1

|det Λ|
∑

ν∈Zr\Λ∗Zr

e−tλvfv(x).

In particular,

θΛ(t) := |det Λ|
∑
y∈ΛZr

e−2rtIy1(2t)...Iyr (2t) =
∑

ν∈Zr\Λ∗Zr

e−tλv

Proof. Since both sides of the equation satisfy the conditions for being the
heat kernel, this follows from the uniqueness of heat kernels. The second formula
is the special case x = 0. �
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3. Spectral preliminaries for continuous tori

An r-dimensional (continuous) torus is given as a quotient of Rr by a lattice
AZr where A ∈ GLr(R). The metric structure and the standard (positive) Laplace-
Beltrami operator −

∑
i ∂

2/∂x2
i on Rr projects to the torus. The volume is |detA| .

Let A∗ be the matrix defining the dual lattice A∗Zr, and so A∗ =
(
A−1

)t
. The

eigenfunctions of the Laplacian on the torus in question are fv(x) = exp(2πivtx)
where v are the vectors in the dual lattice. The corresponding eigenvalues are
λv = 4π2 ‖v‖2 or with a different indexing: λm = (2π)2(A∗m)t(A∗m), where m
runs through Zr. We have the associated theta function

ΘA(t) =
∑
m∈Zr

e−(2π)2(A∗m)t(A∗m)·t.

The theta inversion formula, which is equivalent to the Poisson summation formula
in this case, yields

ΘA(t) =
1

(4πt)r/2

∑
x∈AZr

e−|x|
2/4t.

The associated spectral zeta function, which in this case also goes under the
name of the Epstein zeta function, is defined as

ZA(s) =
∑
m6=0

λ−sm =
1

(2π)2s

∑
v 6=0

1

‖v‖2s
.

Classically, one can prove the meromorphic continuation of ZA(s) to all s ∈ C,
showing that its continuation is holomorphic at s = 0. From this, one defines the
spectral determinant det∗∆AZr\Rr by

log det∗∆AZr\Rr = −Z ′A(0).

4. Asymptotics

Let

Ir(s) = −
∫ ∞

0

(
e−s

2te−2rtI0(2t)r − e−t
) dt
t

and

HΛ(s) = −
∫ ∞

0

(
e−s

2t
[
θΛ(t)− |det Λ| · e−2rtI0(2t)r − 1

]
+ e−t

) dt
t
.

Everything in section 3 of [CJK10] carries over with only notational changes,
even though the eigenvalues are different and the theta identity is hence somewhat
different. These differences are not essentially used. In particular the first order
term as t → 0 in the trace of the heat kernel is still (in the present notation)
|det Λ| · e−2rtI0(2t)r since it corresponds to the trivial eigenvalue. In particular the
following extension of Theorem 3.6 in [CJK10] holds:

Theorem 4.1. For any s ∈ C with Re(s2) > 0, we have the relation∑
λv 6=0

log(s2 + λν) = |det Λ| · Ir(s) +HΛ(s).

Letting s→ 0 we have the identity

log(
∏
λv 6=0

λν) = |det Λ| · Ir(0) +HΛ(0).
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Section 4 of [CJK10] is an independent section on uniform bounds on I-Bessel
functions. We recall the following statements, slightly adapted to the present con-
text (keeping in mind that I−y = Iy for integers, and that b may now be real):

Proposition 4.2. For any t > 0 and b ≥ 0, there is a constant C such that

0 ≤
√
b2te−b

2tI0(b2t) ≤ C < 1

Fix t ≥ 0 and integers y, n0 ≥ 0. Then for all b ≥ n0 we have the uniform bound

0 ≤
√
b2t · e−b

2tIy(b2t) ≤
(

1 +
y

bn0t

)−n0y/2b

.

Proposition 4.3. Let N(u) be a sequence of positive integers parametrized by
u ∈ Z+ such that N(u)/u → α > 0 as u → ∞. Then for any t > 0 and integer k,
we have

lim
u→∞

N(u)e−2u2tIN(u)k(2u2t) =
α√
4πt

e−(αk)2/4t.

¿From now on we fix a sequence {Λn} of integer matrices with 0 < det Λn →∞
satisfying

1

(det Λn)1/r
Λn → A as n→∞,

for some A ∈ SLr(R). From the previous propositions we will deduce the following:

Proposition 4.4. For each fixed t > 0 we have the pointwise convergence

θΛn(det(Λn)2/rt)→ θA(t)

as n→∞.

Proof. For any v ∈ Zr and Λ ∈ GLr(R), let

Iv,Λ(t) =

r∏
i=1

I(Λv)i(t)

where (Λv)i denotes the i-th component of Λv. Let un = det(Λn)1/r and ai =
(Av)i . Note that (Λv)i/un → ai. We have

θΛn(u2
nt) =

∑
v∈Zr

urne
−2ru2

ntIv,Λn(2u2
nt).

From Proposition 4.3 (with k = 0 or ±1) we have for any t > 0 and v ∈ Zr that

urne
−2ru2

ntIv,Λn
(2u2

nt)→
1(√

4πt
)r e−a21/4t...e−a2r/4t

as n → ∞. This means that the proposition will be proved if we can interchange
the limit and the infinite sum. We show that for fixed t, the sum is convergent
uniformly in un (or equivalently, in n).

We can rewrite the sum θΛn
(u2
nt) in r + 1 sums depending on how many com-

ponents of the Λnv are zero. Pick n0 sufficiently large so that

|ai| /2 ≤ |(Λnv)i| /un ≤ 2 |ai|
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for all v ∈ Zr and n ≥ n0 and ai 6= 0. Recall that I−n = In. Let us look at a term
with k zeros in the yis and estimate with the help of Proposition 4.2:

urne
−2ru2

ntIv,Λn
(2u2

nt) ≤
(

1√
2t

)r ∏
(Λnv)i 6=0

(
1 +
|(Λnv)i|
unn02t

)−n0|(Λnv)i|/2un

≤
(

1√
2t

)r ∏
ai 6=0

λ|ai|

for all n large and where

λ :=

(
1 +

a

n04t

)−n0/4

< 1

and a is the smallest nonzero absolute value of all the entries in AZr. The whole
theta series is therefore bounded by r+1 sums of a product of convergent geometric
series. This shows that the infinite sum is uniformly convergent and the proof is
complete. �

Lemma 4.5. Given a sequence {Λn} satisfying (det Λn)−1/rΛn → A as above,
there is a constant d > 0 such that for all sufficiently large n

θΛn
(u2
nt) ≤ 1 +

∞∑
j=1

e−dtj ,

for all t > 0.

Proof. Let un = det(Λn)1/r. We have

θΛn(t) =
∑

ν∈Zr\Λ∗
nZr

e−tλv =
∑

ν∈Zr\Λ∗
nZr

e−t(2r−2
∑r

k=1 cos(2πvk))

= 1 +
∑

ν∈Zr\Λ∗
nZ

r

v 6=0

r∏
k=1

e−4t sin2(πvk),

so that

θΛn
(u2
nt) = 1 +

∑
ν∈Zr\Λ∗

nZ
r

v 6=0

r∏
k=1

e−4tu2
n sin2(πvk) .

We use the elementary bounds sinx ≥ x − x3/6 and sin(π − x) ≥ x − x3/6 for
x ∈ [0, π/2] and get

un sin(πvk) ≥ unπvk(1− π2v2
k/6) > cπunvk if vk ≤ 1/2

un sin(πvk) ≥ unπvk(1− π2v2
k/6) > cπun(1− vk) if vk > 1/2

for some positive constant c for all n sufficiently large. Note also that for every
v 6= 0, the values unvk range over the integers times an entry in A as n → ∞
because of the convergence of (det Λn)−1/rΛn to A in SLr(R). We then conclude
there is a constant d > 0 such that for all sufficiently large n

θΛn
(u2
nt) ≤ 1 +

∞∑
j=1

e−dtj .

�
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Now we can show:

Proposition 4.6. With the notation as above and un := det(Λn)1/r, we have
that ∫ ∞

1

(
θΛn

(u2
nt)− urne−2ru2

ntI0(2u2
nt)

r − 1 + e−u
2
nt
) dt
t

=

∫ ∞
1

(θA(t)− 1)
dt

t
− 2

r
(4π)−r/2 + o(1)

as n→∞.

Proof. Write∫ ∞
1

(
θΛn(u2

nt)− urne−2ru2
ntI0(2u2

nt)
r − 1 + e−u

2
nt
) dt
t

=

∫ ∞
1

(
θΛn(u2

nt)− 1
) dt
t
−
∫ ∞

1

urne
−2ru2

ntI0(2u2
nt)

r dt

t
+

∫ ∞
1

e−u
2
nt
dt

t
.

In the last row, the third integral clearly goes to zero as n → ∞. For the first
integral in the same row we have∫ ∞

1

(
θΛn

(u2
nt)− 1

) dt
t
→
∫ ∞

1

(θA(t)− 1)
dt

t

in view of the pointwise convergence from Proposition 4.4 and the uniform inte-
grable upper bound from Lemma 4.5.

The middle integral ∫ ∞
1

urne
−2ru2

ntI0(2u2
nt)

r dt

t

converges to ∫ ∞
1

(4πt)−r/2
dt

t
=

2

r
(4π)−r/2

in view of the heat kernel convergence from Proposition 4.2 and Proposition 4.3, so
then we may appeal to the Lebesgue dominated convergence theorem. �

Next we show:

Proposition 4.7. With the notation as above and un := det(Λn)1/r, we have
that ∫ 1

0

(
θΛn

(u2
nt)− urne−2ru2

ntI0(2u2
nt)

r
) dt
t
→
∫ 1

0

(
θA(t)− (4πt)−r/2

) dt

t

as n→∞.

Proof. For fixed t we have the pointwise convergence as n→∞

θΛn
(u2
nt)− urne−2ru2

ntI0(2u2
nt)

r → θA(t)− (4πt)−r/2.

It remains therefore to exhibit uniform (for n >> 1) integrable bounds on the
integrands. This can be done in the same way as in the proof of Proposition 4.4.
In order to make the bound obtained there, in terms of λ, integrable for 0 ≤ t ≤ 1,
we just need to choose n0 large so that n0a/4 > r/2. �

Finally we recall from [CJK10]:
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Proposition 4.8. For u ∈ R we have the asymptotic formula∫ 1

0

(e−u
2t − 1)

dt

t
= Γ′(1)− 2 log(u) + o(1)

as u→∞.

We now turn to the proof of our main result, Theorem 1.
In view of Theorem 4.1 we have

log det ∆DT (Λn) = det Λn · cr −
∫ ∞

0

(
θΛn

(t)− det Λn · e−2rtI0(2t)r − 1 + e−t
) dt
t
.

After the change of variables t→ u2
nt, the second term becomes

−
∫ ∞

0

(
θΛn

(u2
nt)− det Λn · e−2ru2

ntI0(2u2
nt)

r − 1 + e−u
2
nt
) dt
t

= −
[∫ 1

0

+

∫ ∞
1

](
θΛn

(u2
nt)− det Λn · e−2ru2

ntI0(2u2
nt)

r − 1 + e−u
2
nt
) dt
t
.

In view of Propositions 4.6, 4.7, and 4.8, this integral equals

−
∫ ∞

1

(θA(t)− 1)
dt

t
+

2

r
(4π)−r/2 −

∫ 1

0

(
θA(t)− (4πt)−r/2

) dt

t

− Γ′(1) + 2 log(un) + o(1).

Keeping in mind that un = (det Λn)
1/r

and identifying the constant terms appear-
ing in the meromorphic continuation of −ζ ′(0) = log det ∆AZr\Rr , the main theorem
is proved; cf. equation (15) of [CJK10] with V (A) = detA = 1.

5. Proof of the corollaries

To prove the corollaries in the introduction we recall the statements from the
literature that we use.

For Corollary 1.2 note that the height has a global minimum for the hexagonal
lattice A2 in dimension 2 as is well-known and for the f.c.c. lattice A3

∼= D3 in
dimension 3 by the rigorous numerics of Sarnak-Strömbergsson in [SS06]. Hence
for any unimodular lattice L in the respective dimensions

h(L) ≥ h(A2), so log det ∆L ≤ log det ∆A2

h(L) ≥ h(D3), so log det ∆L ≤ log det ∆D3 .

As already remarked the two leading terms in the asymptotics in Theorem 1.1 are
shape-independent, and so Corollary 1.2 follows from these remarks arguing with
convergent subsequences in view of the compactness.

For Corollary 1.3 note that Corollary 1 on p. 119 in [SS06] implies that

log det ∆M < γ − log 4π +
2

r
< −0.95

where M is an r-dimensional flat torus of volume 1 and γ is Euler’s constant
γ ≈ 0.577. In view of this statement, let us replace Λn by a convergent subsequence.
Then by Theorem 1.1 and the matrix-tree theorem, we have

τ(DT (Λn)) =
det′∆DT (Λn)

det Λn
≤ (det Λn)

2/r−1

4π
exp(det Λn · cr + γ + 2/r)

for all sufficiently large n. This concludes the proof of Corollary 1.3.
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Finally, it may be of interest to mention another estimate in [SS06]:

h(L) ≥ 4

√
π

r

(√
r/2πe

m(L)

)r
(1 + o(1)), as r →∞

where m(L) is the length of the shortest non-zero vector in the lattice L. Recall that
being the densest regular packing is equivalent to being the lattice with co-volume
1 which maximizes the length of the shortest nonzero vector.
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