
VOLUMES OF SPHERES AND SPECIAL VALUES OF
ZETA FUNCTIONS OF Z AND Z/nZ

ANDERS KARLSSON AND MASSIMILIANO PALLICH

Abstract. The volume of the unit sphere in every dimension is given
an interpretation as a product of special values of the zeta function of
Z, akin to volume formulas of Minkowski and Siegel in the theory of
arithmetic groups. A product formula is found for this zeta function
that specializes to Catalan numbers. Moreover, certain closed-form ex-
pressions for various other zeta values are deduced, in particular leading
to an alternative perspective on Euler’s values for the Riemann zeta
function.

1. Introduction

The determination of circumference, area, and volume of spheres is one
of the oldest topics in geometry. A more sophisticated volume formula, due
to Minkowski, is the following:

vol(SLn(R)/SLn(Z)) = ζ(2)ζ(3)...ζ(n),

where ζ(s) is the Riemann zeta function, and with a suitable coherent choice
of normalization of the Haar measure. This is not an incidental fact, instead
it is part of a more general phenomenon discovered and developed by Siegel,
Weil, Langlands, Harder, and others. It takes the form

vol(G/Γ) = c[K:Q]

l∏
i=1

ζK(−mi),

and without going into details about this formula and when it holds (see
[H71, P01] for more information), let us just highlight one further example:

vol(Spn(R)/Spn(Z)) = ζ(2)ζ(4)...ζ(2n).

The passage from negative integers to positive ones is done by means of the
fundamental functional equation. In the present paper we will in particular
provide a zeta value interpretation of the (n − 1)-dimensional volume of
spheres, which are the homogeneous spaces Sn−1 ∼= SO(n)/SO(n− 1).
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As is well known, the Riemann zeta function is essentially the spectral
zeta function of the circle R/Z, more precisely

ζ(s) =
1

2
(2π)sζR/Z(s/2) =

(2π)s

2

1

Γ(s)

∫ ∞

0

1√
4πt

∑
k ̸=0

e−k2/4tts/2
dt

t
,

for Re(s) > 1 and then extended by meromorphic continuation. From
Fourier analysis we know that the circle and the integers are dual groups.
The function e−2tI0(2t), with the 0th order I-Bessel function appearing, is
the Z-analog of the theta series for the circle inside the Mellin transform
expression above. Therefore, entirely analogously to R/Z as is explained in
[FK17], one can define the spectral zeta function of Z as

ζZ(s) =
1

Γ(s)

∫ ∞

0

e−2tI0(2t)t
sdt

t
,

for 0 < Re(s) < 1/2 and then extend by a meromorphic continuation as will
soon become clear. In parallel to the above, we next define the function

Z(s) =
1

2
2π2sζZ(s/2),

which shares with ζ(s) the property of having a functional equation of the
type of a s←→ 1−s symmetry ([FK17]). We observe the following formula
very reminiscent of the above volume expressions:

Theorem 1.1. For n > 0, the n-dimensional volume of the unit sphere in
Rn+1 is

vol(Sn) = 2 · Z(0) · Z(−1)... · Z(−n+ 1).

It turns out, by [FK17], and then by Dubout’s formula in [D19], that
ζZ(s) is an analytic continuation essentially of the Catalan numbers

ζZ(s) =
1

4s
√
π

Γ(1/2− s)
Γ(1− s)

=

(
−2s
−s

)
.

The appearance of the gamma function begins explaining the volume for-
mula. Indeed, with the values Z(0) = π, Z(−1) = 2 and Z(−2) = π/2 one
sees that the volume formula is true for the first cases. One could alterna-
tively say that the Catalan numbers

Cm =
1

m+ 1

(
2m
m

)
,

but now at the nonstandard indices m = k/2, appear in the classical ex-
pression of the surface area of spheres.

The spectral zeta function of Z has the following beautiful product for-
mula:
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Theorem 1.2. It holds that

ζZ(s) =
∞∏
k=1

(k − s)2

k(k − 2s)

interpreted suitably when s is a positive integer or half-integer.

From this expression, the simple zeros and poles of ζZ(s) at the posi-
tive integers and half-integers respectively, are clearly visible. As will be
shown below, it specializes to the standard product expression for Catalan
numbers:

Cm =
m∏
k=2

m+ k

k
.

In the following we shall also provide an exposition of special values of
ζZ(s) and ζ(s), including correcting a few minor inaccuracies in [FK17], as
well as studying the related and analogously defined spectral zeta function
of Z/nZ,

ζZ/nZ(s) =
1

22s

n−1∑
k=1

1

sin2s(πk/n)
.

The special values ζZ/nZ(g), their limits as n→∞, and the values ζ(2g) all
appear in a more elaborate volume context in Witten’s paper [W91].

In the present note we will provide an elementary calculation of ζZ/nZ(1/2−
m), and indicate how then to pass to Euler’s ζ(1 − 2m) values from the
asymptotics expansions in [Si04, FK17, MV22]. After that via the symme-
try s vs 1− s one gets ζ(2m), which leads to ζZ/nZ(m).

In this way we connect ζZ/nZ(2m/2) to ζZ/nZ((1 − 2m)/2). Note that
asymptotical symmetries of the type s vs 1 − s for ζZ/nZ(s/2) and related
finite sums is not a trivial matter, in fact certain versions of it are equivalent
to various Riemann hypotheses: for ζ(s) as shown in [FK17], for certain
Dirichlet L-functions as proven in [F16], and for the Dedekind zeta function
of the Gaussian rationals as established in [MV22].

2. Proof of the volume and product formulas

Proof of the volume formula. The well-known volume (hypersurface
area) of spheres is

vol(Sn) =
2π(n+1)/2

Γ((n+ 1)/2)
,

generating the numbers 2, 2π, 4π, 2π2 etc.
This leads to the following calculation

vol(Sn)

vol(Sn−1)
=

2π(n+1)/2

Γ((n+ 1)/2)

Γ(n/2)

2πn/2
=

√
πΓ(n/2)

Γ(n/2 + 1/2)
.
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This we can rewrite as follows

vol(Sn)

vol(Sn−1)
=

√
πΓ(1/2− (1/2− n/2)
Γ(1− (1/2− n/2))

= π41/2−n/2ζZ((1−n)/2) = Z(−n+1).

Since vol(S0) = 2 we inductively arrive at the proof of the formula stated
in Theorem 1.1.

Proof of the product formula. Recall that the Euler’s beta function
has the following product formula [AR99, Formula 1.1.26]

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=
x+ y

xy

∞∏
k=1

(1 + (x+ y)/k)

(1 + x/k)(1 + y/k)

with poles for x or y equal to 0 or a negative integer, and analytic elsewhere.
On the other hand, Dubout’s expression gives

ζZ(s) =
Γ(1− 2s)

Γ(1− s)Γ(1− s)
=

Γ(2− 2s)

(1− 2s)Γ(1− s)Γ(1− s)

=
(1− s)2

(1− 2s)(2− 2s)

∞∏
k=1

(1 + (1− s)/k)2

(1 + (2− 2s)/k)

=
(1− s)2

(1− 2s)(2− 2s)

∞∏
k=1

(k + 1− s)2

k(k + 2− 2s)
=

∞∏
k=1

(k − s)2

k(k − 2s)
,

as was to be proved.
To see that it gives back a correct expression in the case of s = −m a

negative integers (the Catalan number case) note that except for the small
values, the others integer appear twice in the numerator as well as in the
denominator:

(2.1) Cm =
1

m+ 1
ζZ(−m) =

1

m+ 1

∞∏
k=1

(k +m)2

k(k + 2m)

=
1

m+ 1

(m+ 1)2(m+ 2)2...

1 · 2...(1 + 2m)(2 + 2m)...
=

m∏
k=2

m+ k

k
,

which is an expression whose validity is immediate from the definition of
Cm.

3. Special values of ζZ(s) and ζ ′Z(s)

To begin with, note that the special values ζZ(−m), m ∈ N, are rational,
indeed integral. This is not a priori obvious, but in view of the Dubout
formula for ζZ this becomes clear since they are just binomial coefficients at
these points. This is the counterpart of theorems by Hecke, Siegel, Klingen,
and others for classical zeta functions.
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The following is taken from [FK17, Pa22]. First, we recall that for integers
n ≥ 0, we have

Γ(n+ 1) = n! and Γ

(
1

2
+ n

)
=

(2n)!

4nn!
π

1
2 ,

the latter being the Legendre duplication formula. Thus, by using these
formulas and the expressions above, we get for integers n ≥ 1 that

(3.1)

ζZ(0) = 40π− 1
2
Γ(1

2
)

Γ(1)
= 1,

ζZ(−n) = 4nπ− 1
2
Γ(1

2
+ n)

Γ(1 + n)
=

(2n)!

n!n!
=

(
2n

n

)
,

ζZ(−n+ 1
2
) = 4n−1/2π− 1

2
Γ(n)

Γ(1
2
+ n)

=
42n

2πn

n!n!

(2n)!
=

42n

2πn

(
2n

n

)−1

.

As said before the values at positive integers and positive half-integers are
precisely the zeros and poles.

Now, if we differentiate ζZ(s), we get

ζ ′Z(s) = π− 1
2

(
Γ(1

2
− s)

4sΓ(1− s)

)′

= π− 1
2
−Γ(1

2
− s)ψ0(

1
2
− s)− Γ(1

2
− s)

(
log(4)− ψ0(1− s)

)
4sΓ(1− s)

= ζZ(s)

(
−ψ0

(
1

2
− s
)
− 2 log(2) + ψ0(1− s)

)
,

since Γ(1
2
−s)′ = −Γ(1

2
−s)ψ0(

1
2
−s) and (4sΓ(1−s))′ = 4sΓ(1−s)(log(4)−

ψ0(1− s)), and where ψn(s) is the polygamma function, which is defined by

ψn(s) =
dn

dsn
Γ′(s)

Γ(s)
.

We can therefore deduce the following special values of ζ ′Z.

Proposition 3.1. It holds that

ζ ′Z(0) = 0 and ζ ′Z(−1
2
) =

8

π
(1− 2 log(2)),

and

ζ ′Z(−n) =
(
2n

n

)( n∑
k=1

1

k
− 2

2k − 1

)

ζ ′Z(−n+ 1
2
) =

42n

2πn

(
2n

n

)−1
(
−4 log(2)−

n−1∑
k=1

1

k
+ 2

n∑
k=1

1

2k − 1

)
for n ≥ 1 and n ≥ 2, respectively.
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Proof. According to 6.3.2 and 6.3.3 in [AS64], we have the following values

ψ0

(
1

2

)
= −γ − 2 log(2) and ψ0(1) = −γ.(3.2)

Furthermore, by formulas 6.3.2 and 6.3.4 in [AS64], we also have

ψ0

(
n+

1

2

)
= −γ − 2 log(2) + 2

n∑
k=1

1

2k − 1
for n ≥ 1,(3.3)

ψ0(n) = −γ +
n−1∑
k=1

1

k
for n ≥ 2.(3.4)

Hence, combining (3.2), (3.3), (3.4) and the special values already computed
in (3.1) concludes the proof of the proposition. □

Note that these values correct (confirmed by computer numerics) small
errors in [FK17, Proposition 6.1]. Indeed, the second formula in that refer-
ence should have −4 log 2 instead of −4 log 4, and the case n = 1 needs to
be interpreted correctly in view of the term 1/(n− 1) appearing. Finally it
is stated in [FK17] that ζ ′Z(s) is zero at the positive integers, this is not true
(checked by numerics) and instead the values are given here:

Proposition 3.2. Let n be a positive integer, then

ζ ′Z(n) =
1

n

(
2n

n

)−1

.

Proof. By the reflection formula 6.3.7 in [AS64], we have

ψ0(1− z) = ψ0(z) + π cot(πz).

Hence, applying this last formula, as well as (3.3) and (3.4), gives

ζ ′Z(n) =

(
−2n
−n

)(
−ψ0

(
1

2
− s
)
− 2 log(2) + ψ0(1− n)

)
=

(
−2n
−n

)(n−1∑
k=1

1

k
− 2

n∑
k=1

1

2k − 1
+ π cot(πn)

)
.

We observe that for any positive integer n, we have
(−2n
−n

)
= 0. Therefore the

two sums are eliminated by the multiplication with the binomial. However
we also note that we have cot(πn) = ±∞. Hence

ζ ′Z(n) =

(
−2n
−n

)
π cot(nπ) =

Γ(1− 2n)

Γ(1− n)2
π cot(nπ) =

1

n

(
2n

n

)−1

,

where the last equality is obtained first by applying the reflection formula
Γ(1− z)Γ(z) = π sin−1(πz), then by applying the recurrence formula Γ(z +

1) = zΓ(z) and finally by using the double-angle formulas for sine. □
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4. Special values of ζZ/nZ(s) and ζ(s)

Sums of powers of the sine function are special cases of important sums
in works of Dedekind, Verlinde, Dowker and others in number theory and
physics, see [Do92, Z96, Do15, K20]. From our perspective, and also partly
from Dowker’s, they are special values of spectral zeta functions of discrete
circles. It is therefore of interest to recall the following values, see for example
[Me14, dF17]. Let n and m be two positive integer, then we have

ζZ/nZ(−m) = 22m
n−1∑
k=1

sin2m

(
πk

n

)
= n

⌊m
n
⌋∑

k=−⌊m
n
⌋

(−1)kn
(

2m

m+ kn

)
.

In the special case m < n, we have

ζZ/nZ(−m) = 22m
n−1∑
k=1

sin2m

(
πk

n

)
= n

(
2m

m

)
.

Comparing the last formula to the one of ζZ(−m) above (3.1), one sees a
manifestation of all the trivial zeros of the Riemann zeta function at the
negative even integers, in view of the asymptotics in [Si04, FK17, MV22]
n−1∑
k=1

1

sins(kπ/n)
=

1√
π

Γ(1/2− s/2)
Γ(1− s/2)

n+2π−sζ(s)ns+
s

3
π2−sζ(s− 2)ns−2+ ...

as n→∞. This asymptotic relation demonstrates the intimate connection
between the three zeta functions appearing in this paper, ζ(s), ζZ(s) and
ζZ/nZ(s).

Friedli provided us with the proof of the following formula that was
empirically discovered in [Pa22]. Note that as n → ∞ the right hand side
remains a sum with m terms:

Proposition 4.1. Let n and m be positive integer, then

ζZ/nZ

(
−1

2
−m

)
= 22m+1

n−1∑
k=1

sin2m+1

(
πk

n

)

= 2
m∑
j=0

(−1)m−j

(
2m+ 1

j

)
cot

(
2m+ 1− 2j

2n
π

)
.

Proof. First we recall

sin2m+1(kπ/n) = (2i)−2m−1
(
eiπk/n − e−iπk/n

)2m+1

= (2i)−2m−1

2m+1∑
j=0

(−1)j
(

2m+ 1
j

)
eiπk(2j−2m−1)/n.
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This gives switching the finite sums
n−1∑
k=1

sin2m+1(kπ/n) = (2i)−2m−1

2m+1∑
j=0

(−1)j
(

2m+ 1
j

) n−1∑
k=1

eiπk(2j−2m−1)/n.

The interior sum is of geometric type and can therefore be summed and
equals

−i · cot (π(2j − 2m− 1)/2n) .

Observe that there is a symmetry j vs 2m+ 1− j

cot (π(2(2m+ 1− j)− 2m− 1)/2n) = − cot (π(2j − 2m− 1)/2n) .

Using the same symmetry for the binomial coefficients one arrives at
n−1∑
k=1

sin2m+1

(
πk

n

)
=

1

22m

m∑
j=0

(−1)m−j

(
2m+ 1

j

)
cot

((
2m+ 1− 2j

2n

)
π

)
.

□

Thanks to the above asymptotics and the well-known series expansion
of the cotangent function

cot(z) =
∞∑
n=0

(−1)n22nB2n

(2n)!
z2n−1,

one can deduce Euler’s celebrated formulas that for odd positive integers
m,

ζ(−m) = (−1)m Bm+1

m+ 1
,

and for even positive m, zeta(−m) = 0 (as already remarked above) , to-
gether with ζ(0) = −1/2. Indeed, setting s = 0 in the asymptotics one
has

n− 1 =
1√
π

Γ(1/2)

Γ(1)
n+ 2π0ζ(0)n0 + ...

giving ζ(0) = −1/2. Specializing to s = −1 produces
n−1∑
k=1

sin(kπ/n) =
1√
π

Γ(1)

Γ(3/2)
n+ 2πζ(−1)n−1 +

−1
3
π3ζ(−3)n−3 + ...

and on the other hand from Proposition 4.1,
n−1∑
k=1

sin(kπ/n) = cot(π/2n) =
2n

π
B0 +

π

2n
(−2)B2 +

π3

8n3

16B4

24
+O(1/n5).

This gives that

ζ(−1) = −B2

2
= − 1

12
, ζ(−3) = −B4

4
=

1

120
, ...

In view of the functional equation of ζ(s) one can then get the values of
ζ(2m) such as π2/6, π4/90 etc. which appear in the volume formulas in
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the introduction. This, in turn, again via the above stated asymptotics (the
asymptotics for these special s here is just a formula due to the trivial zeros
ζ(−2m) = 0) gives the values in closed form of

ζZ/nZ(m) =
1

4s

n−1∑
k=1

1

sin2m(πk/n)
.

For example,

ζZ/nZ(1) = 0n+
2

4π2

π2

6
n2 +

2

12
π2−2

(
−1

2

)
+ 0 =

1

12
(n2 − 1)

and

ζZ/nZ(2) =
1

720

(
n4 + 10n2 + 11

)
.

An easier approach to these last two formulas can be found in [Do92, Z96].
In contrast, the values of ζZ/nZ at the positive half-integral points do not
have such polynomial expressions, which is related to the elusive nature of
the zeta values ζ(2m+ 1), m > 0.

Here we determined ζ(−m) from the asymptotics of ζZ/nZ(−1/2), while
in the literature one finds in several places the approach from ζZ/nZ(g) to
ζ(2g), g > 0 as n → ∞. One of the more general and rigorous such latter
limit formulas can be found in [CJK10, section 7.3].

Let us remark that the Riemann Hypothesis can be reformulated solely
in terms of a hypothetical functional symmetry of the standard type s←→
1 − s for ζZ(s/2) and ζZ/nZ(s/2). This is not an incidental fact, as it was
shown to extend in [F16] and [MV22] to some cases of a generalized Riemann
Hypothesis.
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