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Abstract

We consider the optimization problem in which a continuous convex function is to be minimized over
the joint numerical range of two Hermitian matrices. When the defining matrices are of large size, solving
such problems by convex optimization can be computationally very expensive. The goal of this paper is
to present a novel nonlinear eigenvector method to accelerate computation. We will show that the global
minimizer corresponds to a solution of a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv).
The special structure of this NEPv allows for an efficient sequential subspace searching algorithm, which is
a nonlinear analog to NEPv the commonly applied locally optimal conjugate gradient descent methods for
Hermitian linear eigenvalue problems. The global convergence of our new algorithm to an eigenvector can
be proven. Implementation details such as block iteration and preconditioning will be discussed. Numerical
examples, with applications in computing the coercivity constant of boundary integral operators and solving
multicast beamforming problems, show the effectiveness of our approach.
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1 Introduction

In this paper we consider the following convex minimization problem over the numerical range

min
y∈W (A,B)

F (y) and W (A,B) =

{[
xHAx, xHBx

]T
: x ∈ Cn, ‖x‖2 = 1

}
⊂ R2, (1)

where F : R2 → R is a continuous convex function, A and B are n-by-n Hermitian matrices. The set W (A,B),
known as the joint numerical range [1] of the matrix pair (A,B), is a convex region in R2 due to the famous
Toeplitz-Hausdorff theorem.

A number of problems can be written into the form of (2). Take F to be a linear function, then standard
Rayleigh quotient minimization problem becomes a trivial special case in this framework, e.g., for F (y) = y1

the minimzer corresponds to the smallest Rayleigh quotient (xHAx)/(xHx) for x 6= 0. For more general
cases, a famous example is the Crawford number computation problem, where the objective function is given
by the 2–norm F (y) = ‖y‖2. This problem has been studied since 1970s [2], and is of particular interest in
eigenvalue sensitivity analysis [2, 3] and the study of the coercivity constant for boundary operators [4]. Another
example, where the objective function is also non-differentiable, is the max-ratio minimization problem with
F (y) = max {y1, y2}. Such a problem arises in a class of homogeneous quadratic minimization [5], which finds
applications in multicast beamforming problems in signal processing, see, e.g., [6].

Most of the existing methods for solving (1) are based on convex optimization approaches. As a remarkable
property, the boundary of the numerical range W (A,B) can be approximated by sampling its supporting
hyperplanes, each computed by solving a Hermitian eigenvalue problem of size n; see, e.g., [7]. The minimizer
of (1) can then be estimated on this approximated region by standard convex optimization [8]. For some special
functions of F , this approach leads to reformulations of the convex problem (1) as eigenvalue optimization
problems; see, e.g., [9] for the Crawford number computation and [5] for the max-ratio minimization. Such
reformulations are, however, not available for general convex functions F . And in any case, including eigenvalue
optimization, repeated Hermitian eigenvalue evaluations are typically required for the computation. This can
be prohibitively expensive for problems with large coefficient matrices, hence necessitating the use of iterative
methods as presented in the current paper for acceleration.

The main contribution of this work is to present a novel nonlinear eigenvector method for solving (1). Our
approach is based on the reformulation of the convex optimization (1) as the following composite minimization
problem with a pair of Rayleigh quotients

min
x∈Cn\{0}

F(x) := F

(
xHAx

xHx
,
xHBx

xHx

)
. (2)

We will show that the global minimizer of this problem is a solution to a nonlinear eigenvalue problem with
eigenvector nonlinearity (NEPv), for which a sequential subspace searching algorithm can be applied for efficient
computation. Such an algorithm only involves matrix-vector multiplication in each iteration, and allows for
block implementation, both are desirable for large scale problems. Moreover, the global convergence to an
eigenvector can be proven. Issues such as preconditioning and how to handle non-smoothness in F will also be
discussed.

Algorithmically, our sequential subspace methods can be viewed as an extension to NEPv the Locally
Optimal Block Precondition Conjugate Gradient (LOBPCG) method, which is commonly applied for Hermitian
eigenvalue problems; see, e.g., [10, 11, 12, 13]. In our nonlinear version, a reduced-sized NEPv obtained by
subspace projection is solved in each iteration, and the searching subspace is updated by gradient direction.
According to numerical experiments, this algorithms is nearly as fast as LOBPCG in terms of the number of
iterations, whereas the latter can only solve a linear eigenvalue problem, hence is not applicable here. Such an
excellent convergence behavior seems to imply that the considered NEPv is solved at a cost similar to a linear
eigenvalue problem of equal size.

The proposed algorithms are intended for general convex objective functions, but they also provide as, a by-
product, new ways for the Crawford number computation and solving the max–ratio minimization and related
eigenvalue optimization. For those problems, the superior performance of the nonlinear eigenvector approaches,
versus the state-of-the-art optimization methods, will be demonstrated by numerical experiments, with applica-
tions in coercivity constant computation of boundary operators and multicast transmit beamforming in signal
processing.
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The rest of this paper is organized as follows. In Section 2, we present the NEPv characterization for the
global minimizer of the composite optimization (2). In Section 3, we develop and analyze the basic sequential
subspace searching algorithm for NEPv resulting from a smooth objective function F . In Section 4, extensions
to non-differentiable F functions are to be discussed. Implementation details are given in Section 5, followed
by numerical examples in Section 6, and conclusions in Section 7.

Notation. Throughout the paper, we use notation conventions in matrix analysis. We use Cm×n for the
set of m-by-n complex matrices, with Cn = Cn×1 and C = C1. For real numbers we have Rm×n, Rn, and R,
respectively. We use ·T for transpose and ·H for conjugate transpose. Let X be a matrix, span(X) stands for the
subspace spanned by the columns of X, X(i : j, :) for the submatrix consisting row i to j of X, and X(:, k : `)
for columns k to `. For a Hermitian X, we use λmin(X) for its smallest eigenvalue. Since we are dealing with a
real valued objective function F(x) in complex variables, which is not differentiable in the holomorphic sense,
we will work with the Wirtinger derivatives. Namely, we view F(x) = F(p, q) as function in the real and
imaginary components of x = p+ q, and define

∇wF(x) := ∇pF(p, q) + ∇qF(p, q), (3)

where ∇p and ∇q are standard partial derivatives; see, e.g., [14]. Clearly, ∇wF(x) has a one-to-one correspon-
dence with the gradient ∇(p,q)F(p, q), so its angle with a vector h = r + s ∈ Cn is defined as

∠w(∇wF(x), h) := arccos
Re(hH · ∇wF(x))

‖∇wF(x)‖2‖h‖2
≡ ∠

(
∇(p,q)F(p, q),

[
r
s

])
, (4)

where ∠ denotes the angle between two real vectors in standard definition. Hence, F(x) is descending in the
direction of h if cos∠w(∇wF(x), h) < 0.

2 Optimality conditions and nonlinear eigenvalue problems

In this section, we consider the global optimality condition for problem (2). We will use subgradients to present
our main results, so that the case of non-differentiable F will also be included. A vector g ∈ R2 is called a
subgradient of F at y, if it satisfies

f(z) ≥ f(y) + gT (z − y), ∀z ∈ R2. (5)

The set of all subgradients of F at y is called the subdifferential, which is denoted by ∂F (y).
By standard non-smooth analysis, a necessary condition for x ∈ Cn being a local optimizer is given by

0 ∈ ∂wF(x) ≡
{

2g1

xHx
·
(
A− xHAx

xHx
I

)
x+

2g2

xHx
·
(
B − xHBx

xHx
I

)
x

∣∣∣∣ [g1

g2

]
∈ ∂F (ρ(x))

}
, (6)

where

ρ(x) =

[
xHAx

xHx
,
xHBx

xHx

]T
∈ R2, (7)

and ∂wF(x) is the Clarke generalized gradient of F(x), obtained by chain rule1 applied to the composition
F = F ◦ ρ, see, e.g., [15, Prop 2.3.2, Thm 2.3.9] and [16, Thm 2.6, Eq (2.4)]. A vector x satisfying (6) is called
stationary.

By slight reformulation, the stationary condition (6) can be written into a nonlinear eigenvalue problem
with eigenvector nonlinearity (NEPv) as

H(x)x = λx and x 6= 0, (8)

where the coefficient matrix is given by

H(x) := g1(x)A+ g2(x)B, for some

[
g1(x)
g2(x)

]
∈ ∂F (ρ(x)), (9)

1For x ∈ Rn, the formula is obtained by straight forward derivation. In the complex case x ∈ Cn , the formula is obtained in
Wirtinger sense, by viewing F(x) as a function in the real and imaginary part of x and taking derivative w.r.t. each component.
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and λ = xHH(x)x/(xHx). And vice versa, an x satisfying the NEPv has a corresponding λ = xHH(x)x/(xHx),
hence must be stationary.

The NEPv (8) is a type of ‘self-consistent’ eigenvalue problem, in which the solution (λ∗, x∗) is an eigenpair
of the matrix H(x∗) defined by x∗ itself. Since the Hermitian matrix H(x∗) has n eigenvalues, which can be
ordered as λ1 ≤ λ2 ≤ · · · ≤ λn, it holds that λ∗ = λ` for some index 1 ≤ ` ≤ n. Here the order ` turns out
to be crucial for the global optimality of x∗. As shown in the following theorem, the stationary condition (8)
is also sufficient if λ∗ = λ1 is the smallest eigenvalue of H(x∗). Beside global optimality, such an order of the
eigenvalue will also be important to the algorithm design of the NEPv.

Theorem 1. A vector x ∈ Cn is a global minimizer of F(x) if and only if it satisfies the NEPv (8) with the
eigenvalue λ = λmin(H(x)).

Proof. Let us first show the necessary condition. For clarity, we denote by x∗ the global minimizer and
y∗ := ρ(x∗) ∈W (A,B). Let fmin = F(x∗) = F (y∗), we define the (convex) sub–level set of F

Lf := {z ∈ R2 : F (z) < fmin}.

If Lf is empty, then the convex function F achieves minimum at y∗ ∈ R2. Hence, there exists g = 0 ∈ ∂F (y∗)
by convex analysis (see, e.g., [17]), so that (8) holds with H(x∗) = 0. Clearly, λ = 0 is a smallest eigenvalue.

Now, consider Lf being non-empty. Since fmin is a global minimizer, it holds F (y) ≥ fmin for all y ∈
W (A,B), which implies the two convex sets Lf and W (A,B) are disjoint. By standard convex analysis, the
two sets can be divided by a separation hyperplane. Namely, there exist g 6= 0 ∈ R2 and c ∈ R, such that

gT z ≤ c for all z ∈ Lf and gT z ≥ c for all z ∈W (A,B). (10)

By the definition of Lf , that F is a continuous function implies y∗ ∈ Lf lies in the completion. Hence
y∗ ∈ Lf

⋂
W (A,B), and by (10) we have

gT y∗ = c. (11)

Geometrically, it implies that gT z − c = 0 defines a supporting hyperplane of Lf at y∗. The vector g, being
an outer normal direction of the sublevel set Lf at y∗, thus satisfies αg ∈ ∂F (y∗) for some scalar α > 0; see,
e.g., [18, Thm. VI.1.3.5]. Since the defining inequalities of g in (10) still hold with multiplication of α, we can
always assume g ∈ ∂F (y∗).

The condition (11), combined with the right hand side of (10), implies

xH∗ (g1A+ g2B)x∗
xH∗ x∗

≡ gT y∗ = c = min
z∈W (A,B)

gT z ≡ min
x∈Cn

xH (g1A+ g2B)x

xHx
.

Let H(x∗) = g1A + g2B, we have that the Rayleigh quotient (xHH(x∗)x)/(xHx) achieves minimum at x∗.
Hence x∗ is an eigenvector corresponding to the smallest eigenvalue of H(x∗).

Now let us turn to the sufficiency. Let (5) hold with λ = λmin(H(x)). Since g ∈ ∂F (y) for y = ρ(x), the
subgradient inequality implies ∀ ỹ ∈W (A,B) that

F (ỹ)− F (y) ≥ gT (ỹ − y) ≥ min
z∈W (A,B)

gT z − gT y = min
x̃6=0

x̃HH(x)x̃

x̃H x̃
− xHH(x)x

xHx
= 0,

where for the last equation we used eigenvalue minimization principle for the smallest eigenvalue λ. Hence,
F (y) = F(x) is a global minimizer.

We comment that the eigenvalue ordering property in Theorem 1 is a direct consequence of the convexity
of the numerical range and F . The result does not follow immediately from standard second order optimality
conditions, which are sufficient conditions for local optimality that take a very different form from the one
in Theorem 1; see, e.g., [19, Thm 12.6] for differentiable problems, and [16] for general convex composite
minimization problems.
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3 Sequential subspace searching

In this section, we consider numerical methods for solving the NEPv (8) for smooth objective functions. The
non-smooth case will be discussed in Section 4. For a smooth function, the subdifferential ∂F (y) reduces to
the gradient, so the coefficient matrix H(x) in (8) is uniquely defined by

H(x) = F1(ρ(x)) ·A+ F2(ρ(x)) ·B, (12)

where Fj(y) = ∂F
∂yj

(y), for j = 1, 2, denote the partial derivatives of F .

Note that eigenvalue problems similar to (8) also arise in computational physics and chemistry, as well as
a few data analysis applications, see, e.g., [20, 21, 22, 23]. In those applications, a self-consistent-field (SCF)
iteration is usually applied for the solution. But directly applying SCF to a large-scale NEPv is computationally
expensive. For acceleration, we will develop a sequential subspace searching scheme in the following discussion.

3.1 Nonlinear Rayleigh-Ritz procedure

To reduce the computation cost for a large-size NEPv, we apply the popular subspace technique. The basic
idea of subspace searching is as follows. Given a low-dimensional searching subspace U ⊂ Cn, we would like
to compute a vector x̂ ∈ U that best approximates the desired eigenvector. Since we are interested in the
minimization problem (2), such a best approximation can be defined as

x̂ = arg min
x∈U

F

(
xHAx

xHx
,
xHBx

xHx

)
= arg min
x=Uv, v∈Ck

F̂(v) := F

(
vHÂv

vHM̂v
,
vHB̂v

vHM̂v

)
, (13)

where Â = UHAU , B̂ = UHBU , M̂ = UHU , and U ∈ Cn×k is a basis matrix of U (not necessarily orthogonal).
Here the right hand side is again a composite minimization2, but for matrices of a reduced size k. According
to Theorem 1, the minimizer v̂ is therefore a solution to the projected NEPv

Ĥ(v)v = λM̂v (14)

with coefficient matrices

Ĥ(v) ≡ F1

(
ρ̂(v)

)
· Â+ F2

(
ρ̂(v)

)
· B̂ and ρ̂(v) =

(
vHÂv

vHM̂v
,
vHB̂v

vHM̂v

)T
, (15)

where λ corresponds to the smallest eigenvalue of the matrix pencil Ĥ(v) − λM̂ . Since the NEPv (14) is of a
smaller size k, the eigenvector v̂ can be efficiently computed by SCF iteration (see details below), or by convex
optimization approaches as mentioned in the introduction. We can then obtain the desired

x̂ = Uv̂. (16)

Such a procedure from above is called a nonlinear Rayleigh-Ritz procedure, which is a natural generalization of
the well-known Rayleigh-Ritz procedure (see, e.g., [24]) to the NEPv (8).

An SCF iteration for the reduced NEPv (14) is summarized as follows: Given an initial vector v(0), we
iteratively compute v(1), v(2), . . . satisfying

Ĥ(v(p))v(p+1) = λ(p+1)M̂v(p+1), for p = 0, 1, . . . , (17)

where λ(p+1) corresponds to the smallest eigenvalue of the matrix pencil Ĥ(v(p)) − λM̂ . Such a fixed-point
iteration is commonly applied to NEPvs’ in computational physics and chemistry (see e.g., [20]), but its con-
vergence is not always guaranteed. For global convergence, we will employ a safeguarding line search step when
the function value F(v(p+1)) is not reduced. Namely, we damp the new update by

v(p+1) ←− αpv(p+1) + (1− αp)v(p),

2We can always write the reduced minimization problem into the form of (2) using x̂ = UL̂−H û with û =

arg minu∈Ck F
(

uH Ãu
uHu

, u
H B̃u
uHu

)
, where Ã = L̂−1ÂL̂−H , B̃ = L̂−1B̂L̂−H , and M̂ = L̂L̂H is the Cholesky factorization.
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where 0 ≤ αp ≤ 1 is a damping factor, which is obtained by a line search for αp ∈ [0, 1] such that

F̂
(
v(p) + αdp

)
< F̂

(
v(p)

)
with dp = v(p+1) − v(p).

See, for example, Algorithm 1 (line 5 to 8), where this is done by Armijo backtracking. This scheme was also
applied in the SCF iteration of [23].

The line search from above works if dp is already a descent direction, i.e., cos∠w(∇wF̂(v(p)), dp) < 0. This

always holds when v(p)HM̂v(p+1) 6= 0, by which we can assume the eigenvectors v(p) and v(p+1) are normalized
such that v(p)HM̂v(p) = 1 and v(p)HM̂v(p+1) > 0. Then we can derive, using the gradient formula

∇wF̂(v(p)) = 2
(
Ĥ(v(p))v(p) − µ̂pv(p)

)
with µ̂p = v(p)HĤ(v(p))v(p), (18)

that

∇wF̂(v(p))H · dp = 2 · v(p)H
(
Ĥ(v(p))− µ̂p · M̂

)
· (v(p+1) − v(p)) = 2

(
v(p)HM̂v(p+1)

)
·
(
λ(p+1) − µ̂p

)
< 0,

where we used (17) in the second equation, and λ(p+1) ≡ minv(v
HH(v(p))v)/(vHM̂v) bearing the smallest

Rayleigh quotient in the last equation. Hence cos∠w(∇wF̂(v(p)), dp) < 0 by definition (4).

In the rare case of v(p)HM̂v(p+1) = 0, the increment dp is not necessarily a descent direction. In this case,

and, more generally, when dp and ∇wF̂(v(p)) are almost orthogonal, i.e.,

− cos∠w(dp,∇wF̂(v(p))) ≤ γ with γ > 0 small,

we reset the search direction dp as the negative gradient

dp = −∇wF̂(v(p)) / ‖∇wF̂(v(p))‖2.

This safeguarding strategy ensures that the search direction dp is descending, and it is gradient related (i.e.,
its orthogonal projection onto the negative gradient is uniformly bounded by a constant from below). We can
immediately conclude the global convergence of the SCF iteration (Algorithm 1 without break), by a simple
application of the convergence analysis of line search methods; see, e.g. [25, Prop. 1.2.1]. In particular, any
limiting point v∗ of {v(p)}∞p=0 will be stationary, hence is an eigenvector of the NEPv (14).

Algorithm 1 SCF iteration with line search for the NEPv (14)

Input: Starting vector v(0) with v(0)HM̂v(0) = 1, tolerance tol r, maxit, and line search factors γ, c, τ ∈ (0, 1)
(e.g., γ = c = τ = 0.1).

Output: Approximate eigenvector v̂.
1: for p = 0, 1, . . . , maxit do
2: Compute residual vector r̂p = Ĥ(v(p))v(p) − µ̂pM̂v(p) with µ̂p = v(p)HĤ(v(p))v(p).
3: Check convergence: if ‖r̂p‖2 ≤ ‖v(p)‖2 · tol r then break.

4: Solve the Hermitian eigenvalue problem Ĥ(v(p))v = λM̂v for the smallest eigenvalue λ(p+1) and the

eigenvector v(p+1) (normalized such that v(p+1)HM̂v(p+1) = 1 and v(p)HM̂v(p+1) ≥ 0).
5: Prepare for line search: set αp = 1 and dp = v(p+1) − v(p) (use dp = −r̂p/‖r̂p‖2 if − cos∠w(dp, r̂p) ≤ γ).

6: while F̂
(
v(p)

)
− F̂

(
v(p+1)

)
< −αp · cRe(2dHp r̂p) do

7: αp := ταp and v(p+1) = v(p) + αpdp. % backtracking line search
8: end while
9: end for

10: Return v̂ = v(p).

3.2 Sequential subspace searching

Based on the nonlinear Rayleigh-Ritz procedure, we can develop the following sequential subspace searching
algorithm for the NEPv (8): In iteration k, we search for an approximation xk+1 satisfying

xk+1 ∈ span

{
xk−1, xk, rk

}
, (19)
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where the searching subspace is spanned by the current iterate xk, the old iterate xk−1, and the gradient

rk :=
∇wF(xk)

‖∇wF(xk)‖2
= ξk ·

(
H(xk)xk − µ(xk) · xk

)
with µ(xk) =

xHk H(xk)xk
xHk xk

, (20)

and ξk ≥ 0 is a normalization factor such that ‖rk‖2 = 1. By the discussion in Section 3.1, xk+1 can be computed
by the nonlinear Rayleigh-Ritz procedure. This process can be repeated until convergence; see Algorithm 2 for
an outline of the overall searching strategy.

Algorithm 2 Sequential subspace searching for NEPv (8) with smooth F (prototype)

1: Initialize x0, x−1 ∈ Cn.
2: for k = 0, . . . do
3: Compute residual rk = H(xk)xk − µ(xk)xk and normalize rk := rk/‖rk‖2.

4: Let Uk = [xk−1, xk, rk], form reduced Â = UHk AUk, B̂ = UHk BUk, and M̂ = UHk Uk.
5: Solve the reduced NEPv (14) for the eigenvector v̂k, and update xk+1 = Ukv̂k/‖Ukv̂k‖2.
6: end for

Since gradients are used for searching, Algorithm 2 is at least as good as gradient descent in each iteration.
We can therefore show the global convergence of the algorithm in the following theorem. The result also
implies that the NEPv in line 5 needs not be solved exactly, and that accidental failures of convergence of SCF
iteration within maxit will not kill the overall algorithm. This provides us with great flexibilities in choosing
the parameters tol r and maxit for Algorithm 1.

Theorem 2 (Global convergence). Let F be a smooth convex function over W (A,B). Suppose in Algo-
rithm 2 line 5 the reduced NEPv is solved either exactly, or by running a few steps of SCF iteration in Algo-
rithm 1 starting with e1. Then the resulting sequence {xk}∞k=1 is monotonic in function values, i.e., F(xk+1) ≤
F(xk), for k = 1, . . . , and any of its limiting point x̃ is an eigenvector of the NEPv (8).

Proof. It is sufficient to consider the case where the NEPv is solved by SCF iteration. Since safeguarding
line search is applied for the reduced NEPv, we will show that xk+1 in iteration k is as good as an x̃k+1 by
gradient-related backtracking line search for the original function F . Consequently, the global convergence is
obtained by a direct application of [26, Thm. 4.3] for accelerated line search methods.

Consider iteration k of Algorithm 2. Let v̂
(1)
k be the first iterate in the SCF Algorithm 1. Due to the line

search in line 5–8, it satisfies the Armijo back-tracking condition

v̂
(1)
k = e1 + αk,0dk,0 with F̂k(v̂

(1)
k ) ≤ F̂k(e1) + c · αk,0Re(dHk,0 · ∇wF̂k(e1)),

where F̂k is defined as (13) by Uk = [xk, xk−1, rk], and we have used αk,0 and dk,0 for α0 and d0 from the
line search to show their dependence on k. Because of safeguarding in line 5, the searching direction satisfies
cos∠w(dk,0,∇wF̂k(e1)) ≤ −γ.

Since F̂k(v) = F(Ukv), we have by chain rules ∇wF̂(e1) = UHk · ∇wF(xk). Let gk = Ukdk,0, the Armijo
condition from above implies

x̃k+1 := Ukv̂
(1)
k = xk + αk,0gk with F(x̃k+1) ≤ F(xk) + c · αk,0Re(gHk · ∇wF(xk)).

Moreover, the increment gk is also gradient related due to

cos∠w(gk,∇wF(xk)) ≡ Re(gHk · ∇wF(xk))

‖gk‖2 · ‖∇wF(xk))‖2
=

Re(dHk,0 · ∇wF̂k(e1))

‖Ukdk,0‖2 · ‖∇wF(xk))‖2
≤ cos∠w(dk,0,∇wF̂k(e1))√

3
≤ − γ√

3
,

where we used ‖Ukdk,0‖2 ≤
√

3‖dk,0‖2 (since Uk has unitary columns) and ‖∇wF(xk)‖2 = |eH3 UHk ·∇wF(xk)| ≤
‖∇wF̂k(e1)‖2 (since Uke3 = rk ≡ ζk∇wF(xk)) in the third equation. Therefore, x̃k+1 satisfies gradient related
line search Armijo condition. Finally, due to monotonicity of Algorithm 1, it holds that F(xk+1) ≤ F(x̃k+1).
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Note that for linear eigenvalue problems, the sequential subspace searching scheme from above has been
applied in the well known LOBPCG algorithm [11]. The Algorithm 2 presented here is a formal extension of
such an algorithm to the case of NEPv (8). In particular, when H(x) ≡ H is a constant matrix, the NEPv
reduces to an Hermitian linear eigenvalue problem, for which Algorithm 2 coincides with LOBPCG in its
simplest form.

In addition to eigenvalue computation, the sequential subspace searching also occurred in [27] for minimizing
a quadratic function over a sphere, in [28] for unconstrained optimization problems, and in [26] for Riemannian
optimization. Those works all dealt with real variables. Despite looks similar in the formulation, the application
here with complex variables, and Wirtinger derivatives, has an effect of extending the searching subspace. More
precisely, let x = p+ q and view F(x) := F(p, q) as a function in the real variables p and q. Then minimizing
F(p, q) by the real version of sequential subspace scheme results in[

pk+1

qk+1

]
∈ span

{[
pk−1

qk−1

]
,

[
pk
qk

]
,

[
∇pF(xk)
∇qF(xk)

]}
.

For the complex version in (19), by representing xk = pk + qk, it is straightforward verification that we are
searching for local optimizers in a 6-dimensional subspace[

pk+1

qk+1

]
∈ span

{[
pk−1

qk−1

]
,

[
−qk−1

pk−1

]
,

[
pk
qk

]
,

[
−qk
pk

]
,

[
∇pF(xk)
∇qF(xk)

]
,

[
−∇qF(xk)
∇pF(xk)

]}
,

which hence always leads to a better approximation.

3.3 Preconditioned expansion

The sequential subspace algorithm, as a gradient descent method, is linearly convergent in practice. For
acceleration, we can extend the subspace (19) with extra searching vectors. We will show in this section how
to choose those vectors such that the algorithm achieves superlinear convergence. Our analysis also sheds light
on the design of preconditioners to speed up computation.

We begin with Newton’s method for the NEPv. Assuming that A, B and x are real numbers, we can write
the NEPv H(x)x = λx, with the normalization condition bTx = 1, as a root finding problem

G(x, λ) :=

[
H(x)x− λx

1− bTx

]
= 0,

for which one Newton’s step, starting at (xk, λk) with bTxk = 1, leads to the equation

J(xk, λk)

([
xnewton
λnewton

]
−
[
xk
λk

])
= −

[
rk
0

]
with J(xk, λk) =

[
H(xk)− λkI + S(xk) −xk

−bT 0

]
, (21)

where xnewton and λnewton are Newton’s update, rk = H(xk)xk−λkxk, and S(x) = [Ax,Bx]∇2F (ρ(x))[Ax,Bx]H

is a matrix of rank 2. Provided λk is not an eigenvalue of H(xk) and λk 6= 0, we can there on obtain from the
upper block of the equation

xnewton = xk −
(
H(xk)− λkI

)−1(
H(xk)xk − λnewtonxk + S(xk) · (xnewton − xk)

)
= −

(
H(xk)− λkI

)−1 ·
(
(λk − λnewton)xk + S(xk) · (xnewton − xk)

)
∈ span

{(
H(xk)− λkI

)−1 ·
[
xk Axk Bxk

] }
= span

{[
xk p

(a)
k p

(b)
k

]}
, (22)

where [
p

(a)
k , p

(b)
k

]
:= (H(xk)− λkI)

−1
[Axk, Bxk], (23)

and in the third equation we used Range(S(xk)) ⊂ span[Axk, Bxk], in the last equation we used that H(xk) is
a linear combination of A and B by definition (12).

Note that the Newton equation (21), derived for real variables, does not hold for general complex numbers.
Nevertheless, we show in the proof of the next theorem that the inclusion property (22) is valid in both real
and complex cases, and that the quadratic convergence of xnewton is guaranteed under the simple eigenvalue
assumption.
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Theorem 3 (Quadratic convergence). Let F be a function with continuous second derivative, x∗ be a global
minimizer of F(x), and b be an normalization vector with bHx∗ 6= 0. Assume that λ∗ = λmin(H(x∗)) is a
simple eigenvalue. Then for an xk with tan∠(xk, x∗) sufficiently small and with λk = (bHH(xk)xk)/(bHxk)
being nonzero and not an eigenvalue of H(xk), there exists an x̂ in the subspace (22) such that tan∠(x̂, x∗) =
O(| tan∠(xk, x∗)|2).

Proof. For notation simplicity, we use the boldface letters below for the augmented real variables of a complex
vector x ∈ Cn and a matrix X ∈ Cn×n

x =

[
Re(x)
Im(x)

]
, x =

[
−Im(x)
Re(x)

]
∈ R2n and X =

[
Re(X) −Im(X)
Im(X) Re(X)

]
∈ R2n×2n. (24)

Let y = Xx and z = Xx, it is straightforward to verify that y = Xx and z = Xx for the augmentation.
Let λ = α+ β, by separating the real and imaginary part of the NEPv (8) and the normalization condition

bHx = 1, we obtain an augmented real system of 2n+ 2 equations

G(x, α, β) :=

H(x)x−Λx
1− bTx

0− b
T
x

 = 0,

where

Λ =

[
αIn −βIn
βIn αIn

]
, H(x) = F1(ρ(x)) ·A + F2(ρ(x)) ·B with ρ(x) =

[
xTA x

xTx
,
xTB x

xTx

]T
.

Let (xk, αk, βk) with bHxk = 1 be an approximate eigenpair, then a Newton’s iteration leads to

J(xk, αk, βk)

xnewton

αnewton

βnewton

−

xk

αk

βk

 = −

rk
0
0

 with J(xk, αk, βk) =

H(xk) − Λk + S(xk) −xk −xk

−bT 0 0

−b
T

0 0

 , (25)

where rk = H(xk)xk−Λkxk and S(x) := [Ax,Bx] ·∇2F (ρ(x)) · [Ax,Bx]T � 0. Here note that (25) is different
from the augmented real systems of (21), which has in general a different S(x) matrix. Next, following the
same derivation as in (22), we obtain from the leading 2n elements that

xnewton ∈ span
{
xk,xk, (H(xk)−Λk)−1[Axk,Axk,Bxk,Bxk]

}
= span

{
xk,xk,p

(a)
k ,p

(a)
k ,p

(b)
k ,p

(b)
k

}
, (26)

where p
(a)
k ,p

(a)
k ,p

(b)
k ,p

(b)
k are augmented real vectors of [p

(a)
k , p

(b)
k ] = (H(xk) − λkI)−1[Axk, Bxk], and the

last equation can be verified by straightforward calculation (since H(xk) − Λk is the real augmentation of
H(xk)− λkI). By writing the real xnewton back to a length-n complex vector xnewton, we obtain the inclusion
relation (22).

It remains to show that xnewton by (25) leads to quadratic convergence. Since the objective function F(x)
is homogeneous in x, we can always assume x∗ is normalized with bHx∗ = 1, and xk = x∗+O(| tan∠(xk, x∗)|).
Hence, the real augmentation (x∗, α∗, β∗) is a solution to G(x, α, β) = 0, and it also satisfies (x∗, α∗, β∗) =
(xk, αk, βk)+O(| tan∠(xk, x∗)|) due to λk ≡ (bHH(xk)xk)/(bHxk) = λ∗+O(| tan∠(xk, x∗)|). For the quadratic
convergence of Newton’s methods, it is sufficient to show the Jacobian J(x∗, α∗, β∗) is non-singular; see, e.g., [19,
Thm. 11.2].

By the simplicity of λ∗, the matrix H(x∗)− λ∗I is positive semidefinite with the null space spanned by x∗.
Hence, the real augmentation H(x∗)−Λ∗ is also positive semidefinite with Null(H(x∗)−Λ∗) = span{x∗,x∗}
being the null space. Let z = [z1; z2] ∈ R2n+2, with z1 ∈ R2n and z2 ∈ R2, be such that J(x∗, α∗, β∗)z = 0. We
obtain z1⊥span{b,b}, which implies z1 6∈ span{x∗,x∗} ≡ Null(H(x∗)−Λ∗) due to bHx∗ 6= 0. Combined with

0 = zTJ(x∗, α∗, β∗)z = zT1 (H(x∗)−Λ∗ + S(x∗))z1 ≥ zT1 (H(x∗)−Λ∗)z1 ≥ 0,

it implies z1 = 0. Therefore, [x∗,x∗]z2 = 0, hence, z2 = 0. Namely, z = 0 is the only solution to J(x∗, α∗, β∗)z =
0, and the matrix is non-singular.
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Since (22) automatically includes the Newton’s update, we can achieve superlinear convergence by expanding
the searching subspace (19) as follows

span

{
xk−1, xk, rk,

∣∣∣∣ p(a)
k , p

(b)
k

}
. (27)

To compute p
(a)
k and p

(b)
k , we need to solve a linear system of equations (23) with two right hand sides. For

structured matrices, this can be done efficiently by direct solvers; e.g., using sparse LU.
To reduce cost, one can also apply iterative methods for inexact solutions. In this case, it is more appropriate

to represent the expansion vectors as[
p

(a)
k , p

(b)
k

]
:= (H(xk)− λkI)

−1
[rA(xk), rB(xk)], (28)

where

rA(x) =

(
A− xHAx

xHx
I

)
x and rB(x) =

(
B − xHBx

xHx
I

)
x (29)

are residual vectors corresponding to A− λI and B − λI, respectively. Assuming λk 6= (xHk H(xk)xk)/(xHk xk)
is not exactly given by the nonlinear Rayleigh quotient, the defining equation (22) for the two vectors in (28)
can be verified by straightforward calculation. Compared to (23), the new formulas from above apply inversion
not on xk but on the residuals, namely, the gradients of the Rayleigh quotients. When a preconditioner
Tk ≈ (H(xk)− λkI)−1 is available, it leads to[

p
(a)
k , p

(b)
k

]
:= Tk · [rA(xk), rB(xk)], (30)

which resembles the preconditioned residual technique and the generalized Davison methods commonly used
in linear eigenvalue computation; see, e.g., [12, 29].

3.4 Global certification and restarting

The sequential subspace algorithm, as shown in Theorem 2, is globally convergent to an eigenvector of the
NEPv (8), and in practice it always converges to the one corresponding to the smallest eigenvalue, hence, the
global minimizer of F . Such a global convergence is partially because of the ‘global search’ within the subspace,
which can more easily escape local optimizers and saddle points than standard line search based optimization
techniques.

Even so, the rare but possible convergence to a local optimizer is undesirable. In applications where global
optimality is a crucial concern, it is necessary to certify that the computed x∗ is indeed a global solution. This
can be done by computing the smallest eigenvalue λmin, and the corresponding eigenvector x̂, of the matrix
H(x∗) with

H(x∗)x̂ = λmin · x̂. (31)

By Theorem 1, x∗ is a global minimizer if λmin = λ∗ ≡ (xH∗ H(x∗)x∗)/(x
H
∗ x∗). The linear eigenvalue problem

from above can be solved by iterative methods such as LOBPCG, and in MATLAB by eigs.
If global certification fails, namely, λmin 6= λ∗, we will have to restart the algorithm for a better solution.

In this case, the eigenvector x̂ from above provides an ideal restarting vector. As justified in Lemma 1, using

x0 := x̂ and x−1 := x∗, (32)

we can always obtain an x1 with a smaller F(x1) < F(x∗), and hence escape the local optimizer x∗.

Lemma 1. Let (λ∗, x∗) be an eigenpair of the NEPv (8), and (λmin, x̂) be a solution to the linear eigenvalue
problem (31). If λ∗ > λmin, then it holds strictly that

min
x∈span([x∗,x̂])

F(x) < F(x∗). (33)

Proof. Let U = [x∗, x̂], we have U is of full column rank since λ∗ 6= λmin(H(x∗)). Hence, (33) can be written
as

min
y∈W

F (y) < F (ρ(x∗)) with W := {[vHÂv, vHB̂v] : vHM̂v = 1},
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where Â = UHAU , B̂ = UHBU , and M̂ = UHU . Due to the convexity of the numerical range W , and that
both ρ(x∗), ρ(x̂) ∈ W , we have the entire line segment [ρ(x∗), ρ(x̂)] ⊂ W . Therefore, it is sufficient to show
that F is descending along the line segment [ρ(x∗), ρ(x̂)], which follows from

∇F (y)|y=ρ(x∗) · (ρ(x̂)− ρ(x∗)) = x̂HH(x∗)x̂− xH∗ H(x∗)x∗ = λmin(H(x∗))− λ∗ < 0,

where we have assumed that both x∗ and x̂ are unitary.

4 Extension to non-smooth objective functions

In this section, we consider the application of sequential subspace methods to non-differentiable objective
functions. One issue that has to be addressed is how to choose the searching subspace. A generalized gradient
in ∂wF(x) can not be used immediately as searching direction, since it is neither uniquely defined nor necessarily
descending. But due to the special composite formulation of F , the generalized gradient (6) will always satisfy
the following inclusion relation

∂wF(x) ⊂ span
{
rA(x), rB(x)

}
, (34)

where rA(x) and rB(x) are residuals, defined in (29), for matrix pencils A − λI and B − λI, respectively.
Therefore, we can take the two-dimensional ‘descent subspace’, in place of the single gradient direction, for
local searching. More precisely, for sequential subspace methods, we propose the following searching strategy
in analogy to (19) for the smooth case

xk+1 ∈ span

{
xk−1, xk, rA(xk), rB(xk)

}
, (35)

where the subspace is spanned by the current iterate xk, the old iterate xk−1, and the descent subspace.
The best approximation xk+1 can be defined in the same way as (13), and it is a solution to the following

reduced NEPv

Ĥ(v)v = λM̂v with Ĥ(v) = g1Â+ g2B̂ for some

[
g1

g2

]
∈ ∂F (ρ̂(v)), (36)

where λ is the smallest eigenvalue of the matrix pencil Ĥ(v) − λM̂ . This NEPv, unlike (14) in the smooth

case, can not be immediately solved by SCF iteration since Ĥ(v) is not uniquely defined. Nevertheless, it can
be reformulated, and efficiently solved, as a convex minimization in the form of (1) thanks to its small size.
For the moment, we assume the solution is always available, but do not make any assumption on how it is
computed.

Algorithm 3 Sequential subspace searching for NEPv (8) with nonsmooth F (prototype)

1: Initialize x0, x−1 ∈ Cn.
2: for k = 0, . . . do

3: Compute residuals r
(a)
k = rA(xk) and r

(b)
k = rB(xk) using (29).

4: Let Uk = [xk−1, xk, r
(a)
k , r

(b)
k ], form reduced Â = UHk AUk, B̂ = UHk BUk, and M̂ = UHk Uk.

5: Solve the reduced NEPv (36) for the eigenvector v̂k, and update xk+1 = Ukv̂k/‖Ukv̂k‖2.
6: end for

We therefore obtain an algorithm framework of sequential subspace searching outlined in Algorithm 3.
Despite the non-smoothness in F , we can show a global convergence similar to the smooth version in Theorem 2.

Theorem 4. The sequence {xk}∞k=1 produced by Algorithm 3 is monotonic in function values F(xk+1) ≤ F(xk),
for k = 1, . . . , and any of its limiting point x̃ is an eigenvector of the NEPv (8).

Proof. The monotonicity is a direct consequence of (13), since the current iterate xk is included in the searching
subspace (35). As a result, we have F (ρ(x̃)) = F∞ with F∞ ≤ limk→∞ F(xk). For global convergence, it suffices
to consider ρ(x̃) being a non-smooth point of F , since otherwise Theorem 2 applies.

Let us first show that for any non-stationary point x̃, it holds strictly that F(x̃) < minx∈U F(x) with
U ≡ span{x̃, rA(x̃), rB(x̃)}. Since otherwise, we have F(x̃) = minx∈U F(x). Let U be an orthogonal base of U ,
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then by the projection formula (13), we have ṽ = UH x̃ is a global minimizer of the reduced F̂(v). According

to Theorem 1, it satisfies the NEPv H(ṽ)ṽ = λ̃ṽ, namely,

0 = (g1 · UHAU + g2 · UHBU − λ̃I)ṽ = UH(g1A+ g2B − λ̃I)x̃,

for some g ∈ ∂F (ρ(x̃)). Since (g1A+g2B− λ̃I)x̃ ∈ U , we have (g1A+g2B− λ̃I)x̃ = 0. Hence x̃ is an eigenvector
of the NEPv (8), contradicting x̃ being non-stationary.

Let us assume x̃ is non-stationary, then ∃ x̂ ∈ span{x̃, rA(x̃), rB(x̃)}, s.t., ‖x̂‖2 = 1 and F(x̂) = F(x̃) − δ
for some constant δ > 0. Since x̃ is a limiting point, we obtain by the continuity of rA(x), rB(x) that

∀ε > 0, ∃xk, s.t., [x̃, rA(x̃), rB(x̃)] = [xk, rA(xk), rB(xk)] + E and ‖E‖2 ≤ ε,

hence x̂ = x̂k +O(ε) for some x̂k ∈ span{[xk, rA(xk), rB(xk)]}. This implies

F(xk+1) ≤ min
x∈span{[xk,rA(xk),rB(xk)]}

F(x) ≤ F(x̂k) = F(x̂) +O(ε) = F∞ − δ +O(ε).

Take ε→ 0, then F(xk+1) < F∞, which contradicts limk→∞ F(xk) ≥ F∞.

We make two comments about Algorithm 3 in comparison with its smooth counterpart. First, for a dif-
ferentiable F function, we can also apply the extended subspace (35). In practice, however, this only makes
marginal improvement in approximation over the single vector formula (19), whereas the computation cost is
increased due to larger projection matrices. Hence, for efficiency consideration, the smooth version Algorithm 2
is always recommended. Secondly, since the matrix H(xk) is not uniquely defined at a non-smooth point, it is
generally difficult to apply the global certification for a computed eigenvector xk as in Section 3.4.

5 Implementation issues

In this section, we consider implementation details for the sequential subspace searching algorithms. The three-
term recurrence (19) and (35) allows for efficient implementation, and many techniques developed for LOBPCG
(see, e.g., [11]) can be applied in parallel for our nonlinear version, including the use of difference vectors to
improve the condition number of the basis matrix, and block iteration to enhance performance. For simplicity of
exposition, those techniques will be explained mainly for the smooth version Algorithm 2, but their application
to the non-smooth case is straightforward.

Difference vectors. In the basis matrix Uk of Algorithm 2, the vectors xk−1 and xk tend to be linearly
dependent upon convergence, which can bring up numerical issues for solving the reduced problem. One way to
address this issue is to use difference vectors to improve the condition number. More precisely, we can introduce
a new vector pk = xk − xk−1 representing the difference between xk−1 and xk. Rather than using explicitly
[xk−1, xk, rk] as a basis, we keep [xk, pk, rk] in the process and proceed with the recurrence

xk+1 = αkxk + βkrk + γkpk,

pk+1 = βkrk + γkpk,

rk+1 = H(xk+1)xk+1 − µ(xk+1)xk+1,

where αk, βk and γk are coefficients determined by the nonlinear Rayleigh Ritz procedure with U = [xk, rk, pk].
By the recurrence relation pk+1 = xk+1 − αkxk and the reasonable assumption αk 6= 0, it holds

span
{[
xk+1 pk+1 rk+1

]}
= span

{[
xk xk+1 rk+1

]}
. (37)

Hence we can obtain xk+2 by [xk+1, pk+1, rk+1], and repeat this process until convergence.

Block iteration. Block iteration is widely used in eigenvalue computation. The idea is to iterate over `

vectors Xk = [x
(1)
k , . . . , x

(`)
k ] simultaneously rather than a single xk. This is appealing from efficiency perspective

for particular computer architectures, in addition to other benefits such as easy for parallelization and faster
convergence by extended searching subspace. For a straightforward block implementation of Algorithm 2, we
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can take the leading x
(1)
k to serve as the approximate eigenvector, and the rest x

(2)
k , . . . , x

(`)
k as auxiliary vectors.

The three-term recurrence (19) can be formally written as

Xk+1 ∈ span{[Xk−1, Xk, Rk]},

where “∈” holds for each column of Xk+1, and Rk = [r
(1)
k , . . . , r

(`)
k ] consists of the residuals

r
(j)
k = H

(
x

(1)
k

)
x

(j)
k − µk

(
x

(j)
k

)
x

(j)
k for j = 1, . . . , `, with µk(x) =

xHH(x
(1)
k )x

xHx
, (38)

which is a natural generalization of the formula (20) to the block version, with the leading r
(1)
k = ∇wF(x

(1)
k )/2

corresponding to the gradient at the optimizer x
(1)
k . In analogy to the single vector version, we can apply

nonlinear Rayleigh-Ritz procedure with U = [Xk−1, Xk, Rk], and define the new block as

Xk+1 = [Xk−1, Xk, Rk]Vk+1, (39)

where the columns in Vk+1 consist of the eigenvectors corresponding to the ` smallest eigenvalue of the linear

eigenvalue problem Ĥ(v̂k)v = λM̂v, defined by the eigenvector v̂k of the reduced NEPv. The first column of

Vk+1 is always set to v̂k, so that the leading x
(1)
k+1 is the local optimal approximation.

Algorithm 4 Sequential subspace searching for NEPv (8)

Input: Coefficient matrices A,B, block size `, starting vectors X0 ∈ Cn×` and P0 = 0n×`, tolerance tol.

Output: Approximate eigenvector x
(1)
k = Xk(:, 1).

1: for k = 0, . . . do

2: Compute Rayleigh quotients y
(j)
k = ρ(x

(j)
k ) for j = 1, . . . , `.

3: if F is differentiable then {% smooth case}
4: Compute gradient gk = ∇F (y

(1)
k ), and µ

(j)
k = gTk y

(j)
k for j = 1, . . . , `.

5: Compute residual vectors r
(j)
k =

(
H(x

(1)
k )− µ(j)

k I
)
x

(j)
k for j = 1, . . . , `.

6: Convergence check: if ‖r(1)
k ‖ ≤ tol, then break.

7: (Optional, for ` ≥ 2) Preconditioned expansion: Rk := [r
(1)
k , . . . , r

(`−2)
k , | p(a)

k , p
(b)
k ] by (23) or (30).

8: else {% non-smooth case, require ` = 2s is even}
9: Convergence check: if k ≥ 1 and F (y

(1)
k ) ≥ F (y

(1)
k−1) then return.

10: Set residuals Rk = [rA(x
(1)
k ), rB(x

(1)
k ), . . . , rA(x

(s)
k ), rB(x

(s)
k )] using (29).

11: end if
12: Orthogonalize Rk = orth(Rk).

13: Let Uk = [Xk, Pk, Rk] and compute projection Â = UHk AUk, B̂ = UHk BUk, and M̂ = UHk Uk.

14: Solve the reduced NEPv (14) (or (36) for non-smooth F ) for the eigenvector v̂k and Ĥ(v̂k).

15: Find eigenvectors Vk+1 = [v̂k, v̂
(2)
k , . . . , v̂

(`)
k ] corresponding to the ` smallest eigenvalues of Ĥ(v̂k)− λM̂ .

16: Update Xk+1 = [Xk, Pk, Rk] · Vk+1.
17: Update Pk+1 = [Pk, Rk] · Vk+1(`+ 1 : 3`, :).
18: end for
19: (Optional) Global certification: compute the smallest eigenvalue λmin and the eigenvector x of H(x

(1)
k ). If

λmin < µ
(1)
k then restart the process with X0 and P0 satisfying X0(:, 1) = x and P0(:, 1) = x− x(1)

k .

We summarize in Algorithm 4 the actual sequential subspace algorithm, with a few implementation details
listed as follows.

(a) Matrix-vector multiplications (MatVec) G[Xk, Pk, Rk] for G ∈ {A,B} are required in lines 2, 5, 10 and 13.
To avoid unnecessary recalculations, we can precompute, and save with 4` auxiliary vectors, the results of
Ak := A[Xk, Pk] and Bk := B[Xk, Pk]. Then for the projection in line 13, we only need 2` extra MatVecs

Ark := A ·Rk and Brk := B ·Rk. (40)
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In the following iterations, Ak and Bk can be updated (using lines 16, 17) without any explicit MatVecs by

Ak+1 = [Ak, A
r
k]Xk, Bk+1 = [Bk, B

r
k]Xk with Xk =

[
Vk+1,

[
0

Vk+1(`+ 1 : 3`, :)

]]
. (41)

In this way, only 2` MatVecs in (40) are required in each iteration.

In practice, numerical error will accumulate in the updating formulas (41) as k increases, causing Ak and
Bk deviate from the exact A[Xk, Pk] and B[Xk, Pk]. To avoid such a problem, both matrices can be
recalculated explicitly every Nrec iterations, e.g., with Nrec = 50 as used in our numerical experiments.

(b) In line 6 we use the residual norm of r
(1)
k = ∇wF(x

(1)
k )/2 (i.e., the gradient) for the stopping criteria. As

a common practice in numerical optimization, we can take the tolerance tol = O(
√
εmach) to be of order

of square root of the machine precision εmach.

This scheme can not be applied for the non-smooth case, where the gradient is not defined. In line 9, we
stop the algorithm when the function values F(xk) lose monotonicity, an indication of accuracy close to
machine precision.

(c) For efficiency consideration, we implement the preconditioned extension in line 7 by replacing the last two

columns of Rk with p
(a)
k and p

(a)
k (assuming the block size ` ≥ 3). In this way, the size of searching subspace

(i.e., [Xk, Pk, Rk]), averaged by the number of MatVecs (see (a) and (40)) in each iteration, defines the
Subspace-to-MatVecs Ratio

SMR :=
subspace size

#MatVec
=

3`

2`
=

3

2
.

In comparison, for the naive implementation of appending p
(a)
k , p

(a)
k directly to Rk := [Rk, p

(a)
k , p

(a)
k ], the

algorithm would use a searching subspace [Xk, Pk, Rk] of size 3`+ 2, and require 2(`+ 2) MatVecs in (40),
which leads to smaller SMR = (3`+ 2)/2(`+ 2) < 3/2. Namely, by the same number of MatVecs, such a
strategy can only search in a smaller subspace.

As the algorithm proceeds, x
(1)
k , p

(a)
k , p

(b)
k tend to be linearly dependent. For numerical stability, we can

explicitly project the vectors [p
(a)
k , p

(b)
k ] := (I − x(1)

k x
(1)H
k )[p

(a)
k , p

(b)
k ].

(d) Due to the same reason as in (c), the columns of Rk, in line 10 for the non-smooth F , are replaced by the
s leading rA and rB vectors, assuming the block size ` = 2s is an even number.

(e) For a smooth function F , the reduced NEPv in line 14 can always be solved by the SCF iteration Algo-
rithm 1. In the non-smooth case, convex optimization has to be employed. The exact algorithm will be
problem dependent, but usually cheap to apply due to the small problem size; see, e.g., Section 6.2 for
discussions about the max-ration minimization.

6 Numerical experiments

In this section, we illustrate the performance of the proposed algorithms with several numerical examples.
The experiments are organized as follows. In Section 6.1, we discuss a p-norm distance problem of numerical
range, with applications to coercivity constant computation for boundary element operators. In Section 6.2, we
consider a non-differentiable max-ratio minimization problem. All numerical experiments are done in MATLAB
2017b, and run on an HP machine with Intel(R) Xeon(R) CPU E5–2620 v3 @ 2.40GHz, and 264 GB memory.
No parallelization is applied.

6.1 Smooth objective function

Consider the minimization problem (1) with objective function given by F (y) = ‖y‖p with p > 1. Geometrically,
the minimizer can be regarded as the p-norm distance from the origin (0, 0) to the given numerical range
W (A,B). For the special case of p = 2, it corresponds to the Crawford number problem mentioned in the
introduction, where the problem also admits the eigenvalue optimization formula

min
y∈W (A,B)

‖y‖2 =

(
max

{
max

θ∈(0,2π]
λmin(A sin θ +B cos θ), 0

})
, (42)

14
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Figure 1: Numerical range and the p-norm distance to (0, 0): 2-norm on the left and 1.1-norm on the right.
The nearest points are marked as ◦, with dashed lines being the contour plot of F .

see, e.g., [9, Thm. 2.1] and [30, eq. (2.8)]. In our experiment, we will also consider a general p = 1.1 problem,
where no eigenvalue optimization formula such as (42) is available. It is clear that F is convex and is differ-
entiable for all y 6= 0. To apply Algorithm 4, we set the tolerance tol = 10−8 ≈ √εmach, and we solve the
reduced NEPv in line 14 by SCF iteration Algorithm 1 with tol r = tol and maxit = 30.

Example 1. This is a small size example to show the convergence of Algorithm 4 without preconditioned
expansion steps. The testing matrices are given by

A = cos(π/3)G− 4In, B = sin(π/3)G− 2In,

where G is a Grcar matrix of size n = 120. The numerical range W (A,B), and the contours of F corresponding
to p = 2 and 1.1, are depicted in Fig. 1.

In the first experiment, we apply Algorithm 4 with block size ` = 1 and randomly generated starting vectors
(normally distributed elements with 0 mean and unit variance). The convergence history is reported in Fig. 2,
where the relative error is measured by

|F(xk)−F(x∗)|/|F(x∗)|,

and the ‘exact’ minimizer x∗ is computed by SCF iterations applied to the NEPv (8) directly.
For comparison, we also depict the convergence history of LOBPCG3 for solving the Linear Eigenvalue

Problem (LEP) in (31), where the relative error is measured by |λk − λ∗|/|λ∗| with λ∗ computed by MATLAB
function eig. Note that this can be regarded as verification of global optimality for a given x∗; see, e.g.,
Section 3.4. From the reported result, Algorithm 4 solved an NEPv (8) in the number of iterations comparable
to LOBPCG for a linear eigenvalue problem, and its convergence also seems less sensitive to the choice of initial
vectors.

In our second experiment, we test with block size ` = 1, 2, 4, 8. For each `, the algorithms are repeatedly
applied 200 times using random starting vectors. The computation result is reported in Fig. 3. We can observe
a great reduction in the number of iterations and its variance as the block size ` grows, whereas the total number
of MatVecs slightly increases since each iteration needs more matrix vector multiplications. The performance
are also similar to LOBPCG for the LEP (31).

Example 2. We consider the preconditioned expansion schemes discussed in Section 3.3. For the testing,
Algorithm 4 is applied to the same problem from above, with the preconditioned expansion in line 7 set on.
In Fig. 4, we illustrate the superlinear convergence when (23) is applied, which is consistent with our theoretical

3MATLAB code available from https://mathworks.com/matlabcentral/fileexchange/48-lobpcg-m.
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Figure 2: The p-norm distance problem in Example 1. Convergence history for 20 randomly generated starting
vectors: (Left) Algorithm 4 for NEPv (8); (Right) LOBPCG for the LEP (31).

analysis in Theorem 3. In Fig. 5, we report the performance of inexactly expanding vectors, which are computed
by a few steps of MATLAB gmres (only the 2-norm case is reported, the performance for p = 1.1 is similar).
Both formulas (??) are tested. The former seems more affected by the error in the expanding vectors, but it
also converges faster when their accuracy increase.

Example 3. In this example, we consider the problem of computing the coercivity constant for boundary
integral operators in acoustic scattering [4, 31]. The major computation task is to evaluate

γ(L) := min
u6=0

|uHLu|
uHu

= min
u 6=0

(∣∣∣∣uHAuuHu

∣∣∣∣2 +

∣∣∣∣uHBuuHu

∣∣∣∣2
)1/2

,

where A = (L+ LH)/2 and B = (L− LH)/2, and L is a discrete boundary integral operator (matrix) of

aν(u, v) =

∫
Γ

Bνu(y) · v(y) ds(y), with Bν = I +Kν − νSν ,

where ν > 0 is the wave number, Γ is the boundary of a sound-soft bounded obstacle in R3, u(x), v(x) ∈ L2(Γ),
I is the identity operator, and Kν and Sν are defined by

Kνu(x) = 2

∫
Γ

∂Φ(x, y)

∂n(x)
u(y) ds(y), Sνu(x) = 2

∫
Γ

Φ(x, y)u(y) ds(y), x ∈ Γ.

Here, Φ(x, y) = eν|x−y|/(2π|x− y|) for x, y ∈ R3, x 6= y, and n(x) is the outpoint unit normal at Γ.
In the following test, we consider two different geometry of Γ shown in Fig. 6 (smooth and non-smooth),

as well as three wavenumbers ν = 1, 2, 5. Each coefficient matrix L(ν) is generated by the Galerkin boundary
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Figure 3: The p-norm distance problem in Example 1. Boxplot of number of iterations (top), and number of
matrix vector multiplications (bottom) for Algorithm 4 (marked as black larger boxes), and LOBPCG (marked
as red smaller boxes), with block size p = 1, 2, 4, 8. Statistics collected from 200 repeated experiments for each
p with random starting vectors.

element library BEM++ 4, with triangular mesh (generated by gmsh 5 with Delaunay’s algorithm) and piecewise
linear basis functions; see [32] for details about the discretization method. For convenience, we use a relatively
coarse mesh size h = 0.1.

To solve the problem, we applied Algorithm 4 with block size ` = 3. Both the standard and preconditioned
version (labeled pcond) are tested, where the preconditioning formula (30) is applied with

Tk = (AH · F1(xk) +BH · F2(xk)− λkI)
−1
,

where λk = (xHk H(xk)xk)/(xHk xk), and AH and BH are hierarchical matrix approximation [33] of A and B
(generated by BEM++ using a truncation threshold 0.1). To reduce cost, we apply Tkx by running 10 steps of
GMRES instead of solving exactly. This can be done very efficiently since each AHx (and BHx) takes around
10% of the timing of Ax (and Bx). We repeated the experiment 15 times with random starting vectors. The
iteration number and timing statistics (mean and max deviation over the repeated experiments) are reported
in Tables 1 and 2. The convergence history is depicted in Fig. 7.

For comparison, we have also applied the full subspace algorithm developed in [31], which is based on the
eigenvalue optimization formula in (42). In each iteration, it solves an Hermitian linear eigenvalue problem for
the smallest eigenvalue, which was done by LOBPCG 6 using a same block size ` = 3 as Algorithm 4. For
comparison, we have also applied LOBPCG using preconditioning (by Tk from above with λk replaced by an

4The software is available from http://www.bempp.org/
5The software is available from http://gmsh.info/
6For efficiency of the full subspace algorithm, we use the eigenvectors from the last iteration to initialize each call to LOBPCG.

Since the inner eigenvalue problems need not be solved accurately, we start with a low tolerance 10−6 for LOBPCG and gradually
increase it to 10−12 upon convergence of the full subspace algorithm.
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Figure 4: Convergence history of preconditioning scheme (23) for 20 random starting vectors.
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Figure 5: Convergence history of the preconditioned expansion schemes (23) (red solid) and (28) (blue dashed)
using ‘inexact’ linear system solver, where expanding vectors are computed by running 4 and 10 steps of
GMRES. Results were collected for the 2-norm problem, from 20 repeated experiments with random starting
vectors.

underestimate of the Crawford number available in the full subspace algorithm). From Tables 1 and 2, the
algorithms are significantly accelerated, although still slower than Algorithm 4 in the standard version. In
the best case, the full subspace algorithm converges in less number of MatVecs than Algorithm 4 (without
preconditioning), but each of its MatVec is more costly due to the extra preconditioning step.
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Figure 6: The geometry of Γ and the corresponding numerical range of the discrete operator L(ν).

Table 1: Computation results for Example 3: peanut-shaped domain, size n = 18, 060.

ν γ(L(ν)) its MatVec timing (s)

1

Alg. 1 in [31] 3.231643542030261E-01 5 (LOBPCG) 1188 1810
Alg. 1 in [31](pcond) 3.231643542030258E-01 5 (LOBPCG ) 366 839
Algorithm 4 3.231643542030256E-01 (±1 · 10−15) 47 (±4 ) 286(±28) 426 (±40)
Algorithm 4 (pcond) 3.231643542030258E-01 (±3 · 10−16) 15 (±4 ) 88(±22) 175 (±40)

2

Alg. 1 in [31] 3.227569492274415E-01 5 (LOBPCG) 822 1277
Alg. 1 in [31](pcond) 3.227569492274416E-01 5 (LOBPCG) 252 592
Algorithm 4 3.227569492274416E-01 (±4 · 10−16) 62 (±6 ) 378 (±36) 567 (±54)
Algorithm 4 (pcond) 3.227569492274415E-01 (±3 · 10−16) 15 (±2 ) 94 (±16) 182 (±23)

5

Alg. 1 in [31] 1.985483883517590E-01 6 (LOBPCG) 1032 597
Alg. 1 in [31](pcond) 1.985483883517590E-01 6 (LOBPCG) 504 1168
Algorithm 4 1.985483883517627E-01 (±3 · 10−15) 56 (±6 ) 342(±36) 503 (±61)
Algorithm 4 (pcond) 1.985483883517589E-01 (±3 · 10−16) 15 (±2 ) 93(±12) 183 (±24)
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Figure 7: Example 3 with wave number ν = 1, 2, 5. Convergence history of Algorithm 4 with block size ` = 3
for peanut-shaped (top) and L-shaped (bottom) domains. Solid lines are for the standard version, and dashed
for the preconditioned version. For relative error, we take the minimal eigenvalue of the 15 random runs as the
‘exact’ solution. Results were collected from 15 repeated experiments with random starting vectors.

Table 2: Computation results for Example 3: L-shaped domain, size n = 16, 116.

ν γ(L(ν)) its MatVec timing (s)

1

Alg. 1 in [31] 1.719991140659281E-01 6 (LOBPCG) 2562 3108
Alg. 1 in [31](pcond) 1.719991140659281E-01 6 (LOBPCG) 474 907
Algorithm 4 1.719991140659368E-01 (±7 · 10−15) 81 (±13) 490 (±76) 588 (±89)
Algorithm 4 (pcond) 1.719991140659283E-01 (±3 · 10−16) 22 (±3 ) 130 (±16) 212 (±26)

2

Alg. 1 in [31] 1.950697449793223E-01 6 (LOBPCG) 3126 3767
Alg. 1 in [31](pcond) 1.950697449793218E-01 6 (LOBPCG) 528 1022
Algorithm 4 1.950697449793266E-01 (±3 · 10−15) 104 (±13) 634 (±82) 762 (±95)
Algorithm 4 (pcond) 1.950697449793223E-01 (±4 · 10−16) 23 (±2 ) 138 (±12) 231 (±19)

5

Alg. 1 in [31] 2.100416346643941E-01 7 (LOBPCG) 1896 2334
Alg. 1 in [31](pcond) 2.100416346643939E-01 7 (LOBPCG) 456 897
Algorithm 4 2.100416346643952E-01 (±6 · 10−16) 80 (±8 ) 486 (±48) 585 (±57)
Algorithm 4 (pcond) 2.100416346643941E-01 (±3 · 10−16) 27 (±3 ) 160 (±16) 267 (±25)

6.2 Non-smooth objective function

We consider the max-ratio minimization problem with F (y) := max{y1, y2}, which is non-differentiable at y
with y1 = y2. To apply Algorithm 4, the reduced problem in line 14 will be solved by the equivalent eigenvalue
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optimization problem in the following lemma, for which a similar result can be found in [5], but we prove the
optimizing domain is [0, 1] instead of R.

Lemma 2. Let A and B be Hermitian matrices.

(a) It holds

min
x∈Cn

max

{
xHAx

xHx
,
xHBx

xHx

}
= max
t∈[0,1]

λmin

(
tA+ (1− t)B

)
. (43)

(b) Let t∗ be an optimizer of (43), and x∗ be the eigenvector corresponding to the smallest eigenvalue λ∗ of

H(x∗) := A(1− t∗) +Bt∗. (44)

It holds that

[
t∗

1− t∗

]
∈ ∂F (ρ(x∗)) for F (y) := max{y1, y2}.

Proof. The proof is deferred to Appendix A.

The eigenvalue optimization (43) is convex in t ∈ R [34], therefore, it can be conveniently solved, at least
for problems with a small size n, by golden section search (e.g., the MATLAB function fminbd) or other
eigenvalue optimization techniques (see, e.g., [35]). In our implementation, we adopt the level-set based criss-
cross search [36] for the maximizer, which works quite well in the numerical experiments.

For testing problem, we consider a multicast transmit beamforming problem [6] in a simple setting that the
base station sends a common signal to two receivers a and b using N antennas. Following the problem setting
up as in [37, Sec C] we arrive at a quadratic optimization problem

min
w∈CN

wHw, s.t. wHRaw ≥ σ2
aτa, w

HRbw ≥ σ2
b τb,

where τa, τb, σa, τb are prescribed parameters, and in the case the antenna array is linear and the receivers
are located at θa and θb relative array broadside, the covariance matrices Ri ∈ CN×N are defined with (`, p)
elements

[Ri]`p = exp

(
π(`− p) sin θi

)
· exp

(
− (π(`− p)si cos θi)

2

2

)
, for i = {a, b}, (45)

where si is the spread angle of local scatterers for user i, see, e.g., [38] for details. For convenience, we use
parameters θa = −5◦ and θb = 10◦, si = 2◦, and τi = 1/σ2

i in our experiment.
By straightforward derivation, the quadratic optimization from above can be reformulated as 7

min
w∈Cn

(
max

{
wHAw

wHw
,
wHBw

wHw

})
with A = − Ra

σ2
aτa

, B = − Rb
σ2
b τb

. (46)

Therefore, Algorithm 4 can be applied for the solution. For convenience, we use the block size ` = 2 in the
computation.

Example 4. In the first experiment, we consider a small size problem with n = 120. The Rayleigh quotients
at the optimizer x̂, computed by solving the eigenvalue optimization (43) directly, are given by

x̂HAx̂

x̂H x̂
= −11.27112794653678,

x̂HBx̂

x̂H x̂
= −11.27112794653939.

Hence, x̂ is a numerically non-smooth point of F(x). The convergence history of Algorithm 4 is reported
in Fig. 8, where for the relative error the ‘exact’ eigenvalue is computed using the eigenvalue optimization
formula (43). For comparison we also applied LOBPCG (with a same block size of 2) for the smallest eigenvalue
of the Hermitian matrix H(x∗) at the optimizer in (44). Again we observe a similar convergence rates for both
algorithms.

7Let γ = −(wHw)−1, the minimization problem is equivalent to min γ s.t. (wHAw)/(wHw) ≤ γ and (wHBw)/(wHw) ≤ γ.
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Figure 8: Convergence history for 20 randomly generated starting vectors: (Left) Algorithm 4 for the NEPv (8);
(Right) LOBPCG for computing the smallest eigenvalue of H(x∗) in (44).

Example 5. We now test with larger problem size n = 1000, 2000, 4000. In the experiment, we treat matrices A
and B as linear operators, and only allow for matrix-vector (or matrix-matrix) multiplication in computation.
The testing results for 20 repeated experiments with random starting vectors are reported in Table 3, with
the convergence history depicted in Fig. 9. Recall that the max-ratio minimization problem can also be
reformulated and solved as an eigenvalue optimization problem. For comparison, we applied the leigopt8

to (43) (with convergence tolerance set to tol = 10−13). This algorithm is based on the subspace framework
presented in [39], and in each iteration it needs to solve a large-scale linear eigenvalue problem, which is done
by the MATLAB function eigs.

In all testing cases, Algorithm 4 used less number of MatVecs, which consists the dominant cost of both
algorithms as the problem size n grows. For leigopt, the percentages of time spent for MatVecs are about
72%, 84% and 90%, for n = 1000, 2000, 4000, respectively. From Table 3, we can also observe that the saving
of Algorithm 4 in the computing time is more than that in the number of MatVecs. Take n = 2000 for
example, the ratio between the MatVecs of Algorithm 4 and leigopt is 1770/3082 ≈ 0.57, whereas that for
the computation time is 7.7/23.3 ≈ 0.33. This difference is largely because of the block operations: The 1770
MatVecs (on average) in Algorithm 4 are executed as approximate 1770/2 = 885 number of matrix-matrix
multiplications A ·Rk and B ·Rk, rather than 1770 sequential matrix-vector multiplications. On a hierarchical
memory machine, the former multiplication is more efficient since it uses level-3 BLAS operation. Such block
operation is, however, not exploited by the MATLAB function eigs in leigopt.

Table 3: Computation results for Example 4.

size n optimal value its MatVec timing (s)

1000
leigopt -1.15337555620605E+01 6 (eigs) 1772 3.0
Algorithm 4 -1.15337555620603E+01 (±1 · 10−13) 229 (±87) 903 (±357 ) 1.4 (±0.5)

2000
leigopt -1.15372647515872E+01 6 (eigs) 3082 23.3
Algorithm 4 -1.15372647515869E+01 (±4 · 10−13) 435 (±81) 1770 (±330) 7.7 (±1.7)

4000
leigopt -1.15381560642041E+01 7 (eigs) 5760 159.8
Algorithm 4 -1.15381560642033E+01 (±1 · 10−12) 809 (±258) 3295 (±1053) 49.7 (±16.3)

8Available at http://home.ku.edu.tr/~emengi/software.html. We slightly modified the calling of eigs function to accept
linear operators as input.
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Figure 9: Convergence history of Example 4 with 20 randomly generated starting vectors. For relative error,
we take the minimal eigenvalue of the 20 runs as the ‘exact’ solution.

7 Conclusions

In this paper, we considered the convex minimization problem over the joint numerical range of a pair of Her-
mitian matrices. For such problems, a nonlinear eigenvalue problem characterization of the global optimizer
has been established. Iterative methods based on locally optimal subspace search was proposed, with both
smooth and non-smooth objective function considered. The convergence of the algorithms, as well as their
implementation details, were also discussed. The effectiveness and efficiency of the proposed nonlinear eigen-
vector approach were demonstrated by numerical examples for computing the coercivity constant of boundary
integral operators and solving multicast beamforming problems.

The theory and algorithms considered in this paper can be naturally extended to convex minimization over
the joint numerical range of a d-tuple of Hermitian matrix Ai ∈ Cn×n for i = 1, . . . , d:

W (A1, A2, . . . , Ad) =

{(
xHA1x, x

HA2x, . . . , x
HAdx

)
: x ∈ Cn, ‖x‖2 = 1

}
,

provided that the considered joint numerical range is a convex set in Rd. Such an assumption holds in particular
in the case of d = 3 and n ≥ 3 as shown by [40], while for more general cases of d ≥ 3, the convexity can
only hold in certain conditions (see, e.g., [41, 1]). Under the convexity assumption, most of the results in this
paper can be applied, but a detailed technical treatment is beyond the scope of this paper and is left for future
research.

A Proof of Lemma 2

In this section, we provide proof of Lemma 2 for the max–ratio problem, for which a similar result has been
presented in [5], where the optimizing parameter t is on R. By exploiting the convexity of the numerical
range W (A,B), we can simplify the proof and obtain a bounded region for the parameter t, which makes the
optimization problem more tractable in practice.

(a) We can reformulate the left hand side as

min
x∈Cn

max

{
xHAx

xHx
,
xHBx

xHx

}
= min
y∈W (A,B)

max

{
y1, y2

}
= min
y∈W (A,B)

max
t∈[0,1]

ty1 + (1− t)y2.

Note that W (A,B) is convex, and f(t, y) = ty1 + (1 − t)y2 is linear in t and y, respectively. By von
Neumann’s minimax theorem the min and max in the equation above can switch position, namely

min
y∈W (A,B)

max
t∈[0,1]

f(t, y) = max
t∈[0,1]

min
y∈W (A,B)

f(t, y). (47)
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The inner minimization satisfies

min
y∈W (A,B)

f(t, y) = min
x∈Rn

xT (tA+ (1− t)B)x

xTx
= λmin

(
tA+ (1− t)B

)
,

where in the last equation we applied eigenvalue minimization principle for Hermitian definite matrix pair.

(b) Due to the minimax relation (47) from above, we have (t∗, ρ(x∗)) to be an equilibrium point of the minimax
problem. Therefore, it holds

f(t∗, ρ(x∗)) = min
y∈W (A,B)

max
t∈[0,1]

f(t, y) = max
t∈[0,1]

f(t, ρ(x∗)) = F (ρ(x∗)).

It is straightforward to verify that for all y it holds

F (y) = max
t∈[0,1]

f(t, y) ≥ f(t∗, y) = f(t∗, ρ(x∗)) + f(t∗, y − ρ(x∗)) = F (ρ(x∗)) + [t∗, (1− t∗)] · (y − ρ(x∗)).

Hence, by the definition of subgradient it holds [t∗, (1− t∗)]T ∈ ∂F (ρ(x∗)).
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