An index theorem on the tempered dual of a real reductive Lie group

Xiang Tang

Washington University in St. Louis

June 18th, 2020
Outline

In this talk, we will report our study on the geometry of the tempered dual of a (real reductive) Lie group G. As an application, we will present an index theorem for proper cocompact G actions.
In this talk, we will report our study on the geometry of the tempered dual of a (real reductive) Lie group G. As an application, we will present an index theorem for proper cocompact G actions.

Plan:
In this talk, we will report our study on the geometry of the tempered dual of a (real reductive) Lie group G. As an application, we will present an index theorem for proper cocompact G actions.

Plan:

1. The example of $SL(2, \mathbb{R})$
In this talk, we will report our study on the geometry of the tempered dual of a (real reductive) Lie group G. As an application, we will present an index theorem for proper cocompact G actions.

Plan:

1. The example of $SL(2, \mathbb{R})$
2. Geometry of the tempered dual
In this talk, we will report our study on the geometry of the tempered dual of a (real reductive) Lie group G. As an application, we will present an index theorem for proper cocompact G actions.

Plan:

1. The example of $SL(2, \mathbb{R})$
2. Geometry of the tempered dual
3. An index theorem
This talk is based on several joint works with Peter Hochs, Markus Pflaum, Hessel Posthuma, and Yanli Song.
Let $SL(2, \mathbb{R})$ be the Lie group of 2×2 real matrices with determinant being 1, e.g.

$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid ad - bc = 1 \right\}.$$
Let $SL(2, \mathbb{R})$ be the Lie group of 2×2 real matrices with determinant being 1, e.g.

$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid ad - bc = 1 \right\}.$$

Let $SO(2)$ be the subgroup of $SL(2, \mathbb{R})$ consisting of orthogonal matrices with positive determinant.
Let $SL(2, \mathbb{R})$ be the Lie group of 2×2 real matrices with determinant being 1, e.g.

$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid ad - bc = 1 \right\}.$$

Let $SO(2)$ be the subgroup of $SL(2, \mathbb{R})$ consisting of orthogonal matrices with positive determinant.

Let X be the quotient $SL(2, \mathbb{R})/SO(2)$, which can be identified with the Poincaré disk.
Let $SL(2, \mathbb{R})$ be the Lie group of 2×2 real matrices with determinant being 1, e.g.

$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid ad - bc = 1 \right\}.$$

Let $SO(2)$ be the subgroup of $SL(2, \mathbb{R})$ consisting of orthogonal matrices with positive determinant.

Let X be the quotient $SL(2, \mathbb{R})/SO(2)$, which can be identified with the Poincaré disk.

The left action of $SL(2, \mathbb{R})$ on X is proper, and X is equipped with an $SL(2, \mathbb{R})$-invariant Kähler structure.
We look at the Dolbeault complex on X, e.g.

$$\overline{\partial} : \Omega^{0,0}(X) \rightarrow \Omega^{0,1}(X).$$
Euler characteristic

We look at the Dolbeault complex on X, e.g.

$$\bar{\partial} : \Omega^{0,0}(X) \rightarrow \Omega^{0,1}(X).$$

The differential operator $\bar{\partial}$ is invariant with respect to the $SL(2, \mathbb{R})$ action. The (co)kernel of $\bar{\partial}$ is naturally equipped with an $SL(2, \mathbb{R})$-representation. Therefore, $H^{0,0}(X)$ and $H^{0,1}(X)$ are also equipped with $SL(2, \mathbb{R})$-representations.
We look at the Dolbeault complex on X, e.g.

$$
\bar{\partial} : \Omega^{0,0}(X) \to \Omega^{0,1}(X).
$$

The differential operator $\bar{\partial}$ is invariant with respect to the $SL(2, \mathbb{R})$ action. The (co)kernel of $\bar{\partial}$ is naturally equipped with an $SL(2, \mathbb{R})$-representation. Therefore, $H^{0,0}(X)$ and $H^{0,1}(X)$ are also equipped with $SL(2, \mathbb{R})$-representations.

Question

Understand the Euler characteristic, $[H^{0,0}(X)] - [H^{0,1}(X)]$?
Line bundles on X

Let \mathbb{C}_n be the 1-dimensional complex vector space equipped with an $SO(2)$ representation of weight n, e.g.

$$\rho_n : \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \mapsto T^n_\theta,$$

$$T^n_\theta : \mathbb{C}_n \to \mathbb{C}_n, \quad T^n_\theta(z) := \exp(2\pi \sqrt{-1} n \theta) z.$$
Line bundles on X

Let \mathbb{C}_n be the 1-dimensional complex vector space equipped with an $SO(2)$ representation of weight n, e.g.

$$
\rho_n : \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \mapsto T^n_\theta,
$$

$$
T^n_\theta : \mathbb{C}_n \to \mathbb{C}_n, \quad T^n_\theta(z) := \exp(2\pi\sqrt{-1}n\theta)z.
$$

Define $\tilde{V}_n := SL(2, \mathbb{R}) \times SO(2) \mathbb{C}_n$, an $SL(2, \mathbb{R})$-equivariant line bundle over X.

Question

Understand the index of ∂_n, $[\ker(\partial_n)] - [\text{coker}(\partial_n)]$.

Xiang Tang

Index theory on the tempered dual of a real reductive Lie group
Line bundles on X

Let \mathbb{C}_n be the 1-dimensional complex vector space equipped with an $SO(2)$ representation of weight n, e.g.

$$\rho_n : \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \mapsto T^n_\theta,$$

$$T^n_\theta : \mathbb{C}_n \to \mathbb{C}_n, \quad T^n_\theta(z) := \exp(2\pi \sqrt{-1} n \theta) z.$$

Define $\tilde{V}_n := SL(2, \mathbb{R}) \times SO(2) \mathbb{C}_n$, an $SL(2, \mathbb{R})$-equivariant line bundle over X.

With an appropriate connection on \tilde{V}_n, we obtain the following generalization of the Dolbeault operator

$$\overline{\partial}_n : \Omega^{0,0}(X, \tilde{V}_n) \to \Omega^{0,1}(X, \tilde{V}_n).$$
Line bundles on X

Let \mathbb{C}_n be the 1-dimensional complex vector space equipped with an $SO(2)$ representation of weight n, e.g.

$$\rho_n : \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \mapsto T^n_{\theta},$$

$$T^n_{\theta} : \mathbb{C}_n \to \mathbb{C}_n, \quad T^n_{\theta}(z) := \exp(2\pi \sqrt{-1}n\theta)z.$$

Define $\tilde{V}_n := SL(2, \mathbb{R}) \times SO(2) \mathbb{C}_n$, an $SL(2, \mathbb{R})$-equivariant line bundle over X.

With an appropriate connection on \tilde{V}_n, we obtain the following generalization of the Dolbeault operator

$$\overline{\partial}_n : \Omega^{0,0}(X, \tilde{V}_n) \to \Omega^{0,1}(X, \tilde{V}_n).$$

Question

Understand the index of $\overline{\partial}_n$, $[\ker(\overline{\partial}_n)] - [\coker(\overline{\partial}_n)]$.
The example of $SL(2, \mathbb{R})$

Geometry of the tempered dual

Index theory

Unitary representation

- We can choose $SL(2, \mathbb{R})$-invariant Hermitian metrics on T^*X and \tilde{V}_n so that

 \[
 \bar{\partial}_n : \mathcal{L}^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right) \rightarrow \mathcal{L}^2\left(\Omega^{0,1}(X, \tilde{V}_n)\right)
 \]

 is an unbounded closed operator.
Unitary representation

- We can choose $SL(2, \mathbb{R})$-invariant Hermitian metrics on T^*X and \tilde{V}_n so that

$$\bar{\partial}_n : \mathcal{L}^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right) \longrightarrow \mathcal{L}^2\left(\Omega^{0,1}(X, \tilde{V}_n)\right)$$

is an unbounded closed operator.

- The inner product on $\mathcal{L}^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right)$ is invariant with respect to the $SL(2, \mathbb{R})$ action, and therefore $\mathcal{L}^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right)$ is a unitary $SL(2, \mathbb{R})$ representation.
We can choose $SL(2, \mathbb{R})$-invariant Hermitian metrics on T^*X and \tilde{V}_n so that

$$\bar{\partial}_n : L^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right) \longrightarrow L^2\left(\Omega^{0,1}(X, \tilde{V}_n)\right)$$

is an unbounded closed operator.

- The inner product on $L^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right)$ is invariant with respect to the $SL(2, \mathbb{R})$ action, and therefore $L^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right)$ is a unitary $SL(2, \mathbb{R})$ representation.

- The kernel $\ker(\bar{\partial}_n)$ is a closed $SL(2, \mathbb{R})$-invariant subspace, and therefore is a unitary $SL(2, \mathbb{R})$ representation.
We can choose $SL(2, \mathbb{R})$-invariant Hermitian metrics on T^*X and \tilde{V}_n so that

$$\bar{\partial}_n : \mathcal{L}^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right) \longrightarrow \mathcal{L}^2\left(\Omega^{0,1}(X, \tilde{V}_n)\right)$$

is an unbounded closed operator.

- The inner product on $\mathcal{L}^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right)$ is invariant with respect to the $SL(2, \mathbb{R})$ action, and therefore $\mathcal{L}^2\left(\Omega^{0,0}(X, \tilde{V}_n)\right)$ is a unitary $SL(2, \mathbb{R})$ representation.
- The kernel $\ker(\bar{\partial}_n)$ is a closed $SL(2, \mathbb{R})$-invariant subspace, and therefore is a unitary $SL(2, \mathbb{R})$ representation.
- Define $\text{ind}(\bar{\partial}_n) := [\ker(\bar{\partial}_n)] - [\text{coker}(\bar{\partial}_n)] \in \text{Rep}(SL(2, \mathbb{R}))$.
Regular representations

Let G be a connected real reductive Lie group, e.g. a subgroup of $GL(n, \mathbb{R})$ closed under transpose.
Regular representations

Let G be a connected real reductive Lie group, e.g. a subgroup of $GL(n, \mathbb{R})$ closed under transpose. Fix μ be a Haar measure on G. Let $L^2(G)$ be the Hilbert space of square integrable functions on G.
Regular representations

Let G be a connected real reductive Lie group, e.g. a subgroup of $GL(n, \mathbb{R})$ closed under transpose. Fix μ be a Haar measure on G. Let $L^2(G)$ be the Hilbert space of square integrable functions on G. For $f \in C_c(G)$, define $L_f : L^2(G) \to L^2(G)$ by

$$L_f(\xi)(g) := \int_G f(h)\xi(h^{-1}g)d\mu(h).$$
Regular representations

Let G be a connected real reductive Lie group, e.g. a subgroup of $GL(n, \mathbb{R})$ closed under transpose.

Fix μ be a Haar measure on G. Let $L^2(G)$ be the Hilbert space of square integrable functions on G.

For $f \in C_c(G)$, define $L_f : L^2(G) \to L^2(G)$ by

$$L_f(\xi)(g) := \int_G f(h) \xi(h^{-1}g) d\mu(h).$$

Observation : L_f is a bounded linear operator on $L^2(G)$.

Definition

- The (reduced) C^*-algebra $C^*_r(G)$ is the norm closed $*$-subalgebra of $B(L^2(G))$ generated by L_f for all $f \in C_c(G)$.
- The Harish-Chandra Schwartz algebra $\mathcal{C}(G)$ is a subalgebra of $C^*_r(G)$ consisting of functions on G with rapid decay derivatives.
Let K be a maximal compact subgroup of G, and $X = G/K$.
Index

Let K be a maximal compact subgroup of G, and $X = G/K$. Assume that X is spin and even dimensional. Let S^\pm be the spinor bundles on X.
Let K be a maximal compact subgroup of G, and $X = G/K$. Assume that X is spin and even dimensional. Let S^\pm be the spinor bundles on X. Let V_μ be an irreducible representation of K with highest weight μ. On the associated vector bundle $\tilde{V}_\mu := G \times_K V_\mu$, we consider the operator

$$D_\mu : \Gamma(X, S^+ \otimes \tilde{V}_\mu) \to \Gamma(X, S^- \otimes \tilde{V}_\mu).$$

Definition

The index of the operator D_μ is the element

$$\text{Ind}(D_\mu) := [\ker(D_\mu)] - [\text{coker}(D_\mu)] \in K_0(C^*_r(G)).$$
Definition

The tempered dual \(\hat{G}_\lambda \) of \(G \) is the space of isomorphism classes of irreducible unitary representations of \(C^*_r(G) \) equipped with the Fell topology (hull-kernel topology).
Definition

The tempered dual \hat{G}_λ of G is the space of isomorphism classes of irreducible unitary representations of $C^*_r(G)$ equipped with the Fell topology (hull-kernel topology).

Example

When $G = \mathbb{R}$, $\hat{\mathbb{R}}_\lambda = \mathbb{R}$, and $C^*_r(\mathbb{R}) = C_0(\mathbb{R})$.
The example of $SL(2, \mathbb{R})$

Geometry of the tempered dual

Index theory

Tempered dual

Definition

The tempered dual \hat{G}_λ of G is the space of isomorphism classes of irreducible unitary representations of $C^*_r(G)$ equipped with the Fell topology (hull-kernel topology).

Example

When $G = \mathbb{R}$, $\hat{\mathbb{R}}_\lambda = \mathbb{R}$, and $C^*_r(\mathbb{R}) = C_0(\mathbb{R})$.

Example

When G is compact, $C^*_r(G) = \bigoplus_\mu \text{End}(V_\mu)$, where V_μ runs through isomorphism classes of finite dimensional irreducible representations of G, and \hat{G}_λ is the disjoint union of isomorphism classes of irreducible representations.
The example of $SL(2, \mathbb{R})$

Geometry of the tempered dual

Index theory

Tempered dual of $SL(2, \mathbb{R})$

The tempered dual of $SL(2, \mathbb{R})$ has the following description. There are three parts.
The example of $SL(2, \mathbb{R})$
Geometry of the tempered dual
Index theory

Tempered dual of $SL(2, \mathbb{R})$

The tempered dual of $SL(2, \mathbb{R})$ has the following description. There are three parts.

1. A disjoint union of points indexed by $n \in \mathbb{Z}$ such that $n \neq 0$. They are given by $\ker(\overline{\partial}_n)$ or $\coker(\overline{\partial}_n)$.

Xiang Tang
The tempered dual of $SL(2, \mathbb{R})$ has the following description. There are three parts.

1. A disjoint union of points indexed by $n \in \mathbb{Z}$ such that $n \neq 0$. They are given by $\ker(\partial_n)$ or $\coker(\partial_n)$.

2. $\mathbb{R} \rtimes \mathbb{Z}_2$.

Xiang Tang
The tempered dual of $SL(2, \mathbb{R})$ has the following description. There are three parts.

1. A disjoint union of points indexed by $n \in \mathbb{Z}$ such that $n \neq 0$. They are given by $\ker(\bar{\partial}_n)$ or $\text{coker}(\bar{\partial}_n)$.
2. $\mathbb{R} \rtimes \mathbb{Z}_2$.
3. \mathbb{R}/\mathbb{Z}_2.

Xiang Tang

Principle

We view $C^*\pi(G)$ as "$C_0(\hat{G}_\lambda)$", and $C(G)$ as "$\mathcal{S}(\hat{G}_\lambda)$", and $K^*(C^*\pi(G)) = K^*(C(G)) = K^*(\hat{G}_\lambda)$.

Xiang Tang
The example of $SL(2, \mathbb{R})$

Geometry of the tempered dual

Index theory

Tempered dual of $SL(2, \mathbb{R})$

The tempered dual of $SL(2, \mathbb{R})$ has the following description. There are three parts.

1. A disjoint union of points indexed by $n \in \mathbb{Z}$ such that $n \neq 0$. They are given by $\ker(\partial_n)$ or $\coker(\partial_n)$.

2. $\mathbb{R} \rtimes \mathbb{Z}_2$.

3. \mathbb{R}/\mathbb{Z}_2.

At the algebra level, we have

$$C^*_r(SL(2, \mathbb{R})) \sim \bigoplus_{n \neq 0} \mathbb{C} \oplus C_0(\mathbb{R}) \rtimes \mathbb{Z}_2 \oplus C_0(\mathbb{R}/\mathbb{Z}_2).$$
Tempered dual of $SL(2, \mathbb{R})$

The tempered dual of $SL(2, \mathbb{R})$ has the following description. There are three parts.

1. A disjoint union of points indexed by $n \in \mathbb{Z}$ such that $n \neq 0$. They are given by $\ker(\partial_n)$ or $\text{coker}(\partial_n)$.
2. $\mathbb{R} \rtimes \mathbb{Z}_2$.
3. \mathbb{R}/\mathbb{Z}_2.

At the algebra level, we have

$$C^*_r(SL(2, \mathbb{R})) \sim \bigoplus_{n \neq 0} \mathbb{C} \oplus C_0(\mathbb{R}) \rtimes \mathbb{Z}_2 \oplus C_0(\mathbb{R}/\mathbb{Z}_2).$$

Principle

We view $C^*_r(G)$ as “$C_0(\hat{G}_\lambda)$”, and $\mathcal{C}(G)$ as “$S(\hat{G}_\lambda)$”, and $K_\bullet(C^*_r(G)) = K_\bullet(\mathcal{C}(G))$ as $K^\bullet(\hat{G}_\lambda)$.
Decomposition of $C^*_r(G)$

The structure of $C^*_r(G)$ is studied by Wassermann and Clare-Crisp-Higson. It is shown that $C^*_r(G)$ and also $C(G)$ have the following decomposition,

$$C^*_r(G) \cong \bigoplus_{[P,\sigma]} C^*_r(G)[P,\sigma].$$
Decomposition of $C^*_r(G)$

The structure of $C^*_r(G)$ is studied by Wassermann and Clare-Crisp-Higson. It is shown that $C^*_r(G)$ and also $C(G)$ have the following decomposition,

$$C^*_r(G) \cong \bigoplus_{[P,\sigma]} C^*_r(G)[P,\sigma].$$

For each pair $[P,\sigma]$, there is a connected abelian Lie group A_P together with a finite group W_σ of the form $W'_\sigma \rtimes R_\sigma$ that acts faithfully on \hat{A}_P.

Xiang Tang
Decomposition of $C^*_r(G)$

The structure of $C^*_r(G)$ is studied by Wassermann and Clare-Crisp-Higson. It is shown that $C^*_r(G)$ and also $C(G)$ have the following decomposition,

$$C^*_r(G) \cong \bigoplus_{[P,\sigma]} C^*_r(G)[P,\sigma].$$

For each pair $[P,\sigma]$, there is a connected abelian Lie group A_P together with a finite group W_{σ} of the form $W'_{\sigma} \rtimes R_{\sigma}$ that acts faithfully on \hat{A}_P.

The component $C^*_r(G)[P,\sigma]$ is Morita equivalent to

$$C_0(\hat{A}_P/W'_{\sigma}) \rtimes R_{\sigma}.$$
Essential components

It turns out that two types of components in the above direct sum contribute nontrivially to the K-theory of \hat{G}_λ.
Essential components

It turns out that two types of components in the above direct sum contribute nontrivially to the K-theory of \hat{G}_λ.

- $W_\sigma = R_\sigma = 1$. $C^*_r(G)[P,\sigma]$ is Morita equivalent to $C_0(\hat{A}_P)$.
It turns out that two types of components in the above direct sum contribute nontrivially to the K-theory of \hat{G}_λ.

- $W_\sigma = R_\sigma = 1$. $C^*_r(G)[P,\sigma]$ is Morita equivalent to $C_0(\hat{A}_P)$.
- $W_\sigma = R_\sigma = (\mathbb{Z}/2\mathbb{Z})^{\dim(A_P)}$. $C^*_r(G)[P,\sigma]$ is Morita equivalent to $C_0(\hat{A}_P) \rtimes R_\sigma$, where R_σ acts on \hat{A}_P by hyperplane reflections.
Essential components

It turns out that two types of components in the above direct sum contribute nontrivially to the K-theory of \hat{G}_λ.

- $W_\sigma = R_\sigma = 1$. $C^*_r(G)[P,\sigma]$ is Morita equivalent to $C_0(\hat{A}_P)$.
- $W_\sigma = R_\sigma = (\mathbb{Z}/2\mathbb{Z})^{\dim(A_P)}$. $C^*_r(G)[P,\sigma]$ is Morita equivalent to $C_0(\hat{A}_P) \rtimes R_\sigma$, where R_σ acts on \hat{A}_P by hyperplane reflections.

The K-theory group of these components can be computed,

$$K_0(C_0(\hat{A}_P)) = \mathbb{Z}, \quad K_0(C_0(\hat{A}_P) \rtimes R_\sigma) = \mathbb{Z}.$$
Let us look at Poisson geometry on the essential components.
Let us look at Poisson geometry on the essential components.

- When $W_\sigma = R_\sigma = 1$, we have usual Poisson structures on \hat{A}_P.

Theorem (Pflaum-Posthuma-T)

$$\text{HH}^\bullet(\mathcal{C}_\infty^c(\hat{A}_P) \rtimes \mathbb{R}^\sigma) = \Gamma(\wedge^\bullet T\hat{A}_P)^{\mathbb{R}_\sigma}.$$
Let us look at Poisson geometry on the essential components.

- When $W_\sigma = R_\sigma = 1$, we have usual Poisson structures on \hat{A}_P. And we have the Kontsevich formality theorem for deformation quantization of Poisson structures on \hat{A}_P.
Let us look at Poisson geometry on the essential components.

- When $W_\sigma = R_\sigma = 1$, we have usual Poisson structures on \hat{A}_P. And we have the Kontsevich formality theorem for deformation quantization of Poisson structures on \hat{A}_P.

- When $W_\sigma = R_\sigma = (\mathbb{Z}/2\mathbb{Z})^{\dim(A_P)}$. We need to study $HH^2(C(\hat{A}_P) \rtimes R_\sigma)$ for (noncommutative) Poisson structures on the crossed product algebra $C_c^\infty(\hat{A}_P) \rtimes R_\sigma$.

Let us look at Poisson geometry on the essential components.

- When $W_\sigma = R_\sigma = 1$, we have usual Poisson structures on \hat{A}_P. And we have the Kontsevich formality theorem for deformation quantization of Poisson structures on \hat{A}_P.
- When $W_\sigma = R_\sigma = (\mathbb{Z}/2\mathbb{Z})^{\dim(A_P)}$. We need to study $HH^2(C(\hat{A}_P) \rtimes R_\sigma)$ for (noncommutative) Poisson structures on the crossed product algebra $C_c^\infty(\hat{A}_P) \rtimes R_\sigma$.

Theorem (Pflaum-Posthuma-T)

$$HH^\bullet(C_c^\infty(\hat{A}_P) \rtimes R_\sigma) = \Gamma\left(\land^\bullet T\hat{A}_P\right)^{R_\sigma}.$$

We have the Dolgushev equivariant formality theorem for deformation quantization of invariant Poisson structures.

Question: What are the corresponding deformations of $C^*_r(G)$?
The example of $SL(2, \mathbb{R})$

Geometry of the tempered dual

Index theory

Differential currents on \hat{G}_λ

Recall that the index of \mathcal{D}_μ is an element

$$\text{Ind}(\mathcal{D}_\mu) \in K_0(C^*_r(G)) = K_0(C(\hat{G}_\lambda)).$$
Recall that the index of \mathcal{D}_μ is an element

$$\text{Ind}(\mathcal{D}_\mu) \in K_0(C^*_r(G)) = K_0(C(\hat{G}_\lambda)).$$

Applying the Chern character, we have

$$\text{Ch} \left(\text{Ind}(\mathcal{D}_\mu) \right) \in H^{\text{even}}(\hat{G}_\lambda).$$
Recall that the index of \mathcal{D}_μ is an element

$$\text{Ind}(\mathcal{D}_\mu) \in K_0(C^*_r(G)) = K_0(C(\hat{G}_\lambda)).$$

Applying the Chern character, we have

$$\text{Ch} \left(\text{Ind}(\mathcal{D}_\mu) \right) \in H^{\text{even}}(\hat{G}_\lambda)$$

In order to extract characteristic numbers for $\text{Ind}(\mathcal{D}_\mu)$, we need to consider differential currents and homology on \hat{G}_λ.
Recall that the index of \mathcal{D}_μ is an element

$$\text{Ind}(\mathcal{D}_\mu) \in K_0(C^*_r(G)) = K_0(C(\hat{G}_\lambda)).$$

Applying the Chern character, we have

$$\text{Ch} \left(\text{Ind}(\mathcal{D}_\mu) \right) \in H^{\text{even}}(\hat{G}_\lambda).$$

In order to extract characteristic numbers for $\text{Ind}(\mathcal{D}_\mu)$, we need to consider differential currents and homology on \hat{G}_λ. The right object to work with is cyclic homology of $C(G)$.
When $G = \mathbb{R}^n$, $\mathcal{C}(\mathbb{R}^n) = \mathcal{S}(\hat{\mathbb{R}}^n)$.
When \(G = \mathbb{R}^n \), \(C(\mathbb{R}^n) = S(\hat{\mathbb{R}}^n) \).
The homology of \(\hat{\mathbb{R}}^n \) can be computed,

\[
H_{\bullet}(\hat{\mathbb{R}}^n) = \begin{cases}
\mathbb{R}, & \bullet = n, \\
0, & \text{otherwise}.
\end{cases}
\]
Differential currents on $\hat{\mathbb{R}}^n$

When $G = \mathbb{R}^n$, $C(\mathbb{R}^n) = S(\hat{\mathbb{R}}^n)$.

The homology of $\hat{\mathbb{R}}^n$ can be computed,

$$H_\bullet(\hat{\mathbb{R}}^n) = \begin{cases} \mathbb{R}, & \bullet = n, \\ 0, & \text{otherwise.} \end{cases}$$

On $S(\hat{\mathbb{R}}^n)$, $H_n(\hat{\mathbb{R}}^n)$ is generated by a degree n differential current,

$$\Psi(f_0, \cdots, f_n) = \int_{\mathbb{R}^n} f_0 df_1 \cdots df_n.$$
Cyclic cocycle on $\mathcal{C}(\mathbb{R}^n)$

On $\mathcal{C}(\mathbb{R}^n)$, the Fourier transform of Ψ can be computed as following.
Cyclic cocycle on $\mathcal{C}(\mathbb{R}^n)$

On $\mathcal{C}(\mathbb{R}^n)$, the Fourier transform of Ψ can be computed as following.
Define a function $C : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ by

$$C(x_1, \cdots, x_n) := \begin{vmatrix} x_1^1 & \cdots & x_n^1 \\ \vdots & \ddots & \vdots \\ x_1^n & \cdots & x_n^n \end{vmatrix}$$
On $C(\mathbb{R}^n)$, the Fourier transform of Ψ can be computed as following.

Define a function $C : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ by

$$C(x_1, \cdots, x_n) := \begin{vmatrix} x_1^1 & \cdots & x_n^1 \\ \cdots & \cdots & \cdots \\ x_1^n & \cdots & x_n^n \end{vmatrix}$$

Define Φ to be a cocycle on $C(\mathbb{R}^n)$ by

$$\Phi(f_0, \cdots, f_n) := \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} dx_1 \cdots dx_n C(x_1, \cdots, x_n) f_0(-x_1 - \cdots - x_n) f_1(x_1) \cdots f_n(x_n).$$
General case

For a general connected real reductive group G, we can generalize the above construction.
General case

For a general connected real reductive group G, we can generalize the above construction.
Let $P = MAN$ be a cuspidal parabolic subgroup of G. Using the Iwasawa decomposition $G = KMAN$, we introduce a generalization of the determinant function

$$C : C^\infty(K \times G^{\times m}),$$

for $m = \dim(A)$.
For a general connected real reductive group G, we can generalize the above construction. Let $P = MAN$ be a cuspidal parabolic subgroup of G. Using the Iwasawa decomposition $G = KMAN$, we introduce a generalization of the determinant function

$$C : C^\infty(K \times G^\times m),$$

for $m = \dim(A)$. For a semisimple element $x \in M$, define a degree m cocycle on $\mathcal{C}(G)$ by

$$\Phi_{P,x}(f_0, f_1, \ldots, f_m) : = \int_{h \in M/Z_M(x)} \int_K \int_{G^\times m} dhdkdndg_1 \cdots dg_m$$

$$\quad \quad C(k, g_1g_2 \cdots g_m, \ldots, g_{m-1}g_m, g_m) f_0(khxh^{-1}nk^{-1}(g_1 \cdots g_m)^{-1})$$

$$\quad \quad f_1(g_1) \cdots f_m(g_m).$$
The example of \(SL(2, \mathbb{R}) \)

Geometry of the tempered dual

Index theory

Cyclic cocycle

Theorem (Song-T)

The functional \(\Phi_{P,x} \) satisfies the following identities.
The example of $SL(2, \mathbb{R})$
Geometry of the tempered dual
Index theory

Cyclic cocycle

Theorem (Song-T)

The functional $\Phi_{P,x}$ satisfies the following identities.

- $\partial \Phi_{P,x} = 0$, e.g.

$$
\Phi_{P,x}(f_0 \ast f_1, f_2, \cdots, f_{m+1}) - \Phi_{P,x}(f_0, f_1 \ast f_2, \cdots, f_{m+1}) + \cdots + (-1)^{m+1} \Phi_{P,x}(f_{m+1} \ast f_0, \cdots, f_m) = 0.
$$
The example of $SL(2, \mathbb{R})$
Geometry of the tempered dual
Index theory

Cyclic cocycle

Theorem (Song-T)

The functional $\Phi_{P,x}$ satisfies the following identities.

- $\partial \Phi_{P,x} = 0$, e.g.

 $$
 \Phi_{P,x}(f_0 \ast f_1, f_2, \cdots, f_{m+1}) - \Phi_{P,x}(f_0, f_1 \ast f_2, \cdots, f_{m+1})
 + \cdots + (-1)^{m+1} \Phi_{P,x}(f_{m+1} \ast f_0, \cdots, f_m) = 0.
 $$

- $\Phi_{P,x}$ is cyclic, e.g.

 $$
 \Phi_{P,x}(f_m, f_0, \cdots, f_{m-1}) = (-1)^m \Phi_{P,x}(f_0, \cdots, f_m).
 $$
Index pairing

Let H be a Cartan subgroup of G, and $T := K \cap H$ with $x \in T$.
Index pairing

Let H be a Cartan subgroup of G, and $T := K \cap H$ with $x \in T$. Assume that $T < M$ is a Cartan subgroup of M. Let Δ^M_T be the corresponding Weyl denominator.
Index pairing

Let H be a Cartan subgroup of G, and $T := K \cap H$ with $x \in T$. Assume that $T < M$ is a Cartan subgroup of M. Let Δ^M_T be the corresponding Weyl denominator.
Recall the generalized Dolbeault operator \mathcal{D}_μ on $X = G/K$.
Index pairing

Let H be a Cartan subgroup of G, and $T := K \cap H$ with $x \in T$. Assume that $T < M$ is a Cartan subgroup of M. Let Δ^M_T be the corresponding Weyl denominator.

Recall the generalized Dolbeault operator \mathcal{D}_μ on $X = G/K$.

Theorem (Song-T)

\[
\langle \Phi_{P,x}, \text{Ind}(\mathcal{D}_\mu) \rangle = \sum_{w \in W_K} (-1)^w e^{w \cdot \mu(t)} \frac{\Delta^M(t)}{\Delta^M_T(t)}.
\]
Index pairing

Let H be a Cartan subgroup of G, and $T := K \cap H$ with $x \in T$. Assume that $T < M$ is a Cartan subgroup of M. Let Δ^M_T be the corresponding Weyl denominator. Recall the generalized Dolbeault operator \mathcal{D}_μ on $X = G/K$.

Theorem (Song-T)

\[
\langle \Phi_{P,x}, \text{Ind}(\mathcal{D}_\mu) \rangle = \sum_{w \in W_K} (-1)^w e^{w \cdot \mu(t)} \frac{\Delta^M_T(t)}{\Delta^M_T(t)}.
\]

Theorem (Hochs-Song-T)

Let Y be $M/M \cap K$ and W_μ be the vector bundle on Y associated to \tilde{V}_μ, and $\text{eu}(N^x)$ be the normal bundle of Y^x in Y.

\[
\langle \Phi_{P,x}, \text{Ind}(\mathcal{D}_\mu) \rangle = \int_{Y^x} \chi_{x} \frac{\text{Td}(Y^x) \text{ch}(W_\mu)(x)}{\text{eu}(N^x)(x)}.
\]
Thank you for your attention!