Singular leaves of singular foliations
Joint work with Leonid Ryvkin

Camille Laurent-Gengoux

Université de Lorraine

July 2nd, 2020
Table of content

1 Definitions.
   - Singular foliation
   - Leaves

2 Simply-connected singular leaves

3 General leaves: what is the first return map?

4 Future
Two well-known examples

Here are two well-known singular foliations

1. For \((M, \pi)\) a Poisson structure, *symplectic leaves* are a singular foliation.
2. For \(\Gamma \rightrightarrows M\) a source-connected Lie groupoid, *end points of arrows* form a singular foliation

Natural answers:

1. A disjoint union of submanifolds of varying dimension?
2. An integrable singular distribution?
3. No need of definition, Lie algebroids give the generic example?
Definitions.

Simply-connected singular leaves

General leaves: what is the first return map?

Future

Two well-known examples

Here are two well-known singular foliations

1. For \((M, \pi)\) a Poisson structure, *symplectic leaves* are a singular foliation.

2. For \((A, \rho, [\cdot, \cdot])\) a Lie algebroid, *algebroid leaves* form a singular foliation

Natural answers:

1. A disjoint union of submanifolds of varying dimension？
2. An integrable singular distribution？
3. No need of definition, Lie algebroids give the generic example？
Definitions.

Simply-connected singular leaves

General leaves: what is the first return map?

Future

Two well-known examples

Here are two well-known singular foliations

1. For \((M, \pi)\) a Poisson structure, *symplectic leaves* are a singular foliation.

2. For \((A, \rho, [\cdot, \cdot])\) a Lie algebroid, *algebroid leaves* form a singular foliation.

Let \(M\) be a manifold, and \(\mathcal{X}(M)\) its sheaf of vector fields.

Définition

A singular foliation \(\mathcal{F}\) on a manifold \(M\) is a sub-sheaf of \(\mathcal{X}(M)\) which is:

(i) stable under multiplication by \(C^\infty(M)\),

(ii) stable under Lie bracket,

(iii) locally finitely generated over \(C^\infty(M)\).
Définition
A singular foliation $\mathcal{F}$ on a manifold $M$ is a locally finitely generated sub-sheaf of the sheaf of Lie-Rinehart algebra $\mathcal{X}(M)$.

Or the one used by non-commutative geometers (Androulidakis, Debord, Skandalis)

Définition
A singular foliation $\mathcal{F}$ on a manifold $M$ is a sub $C^\infty(M)$-module of compactly supported vector fields $\mathcal{X}_c(M)$ which are:

(i) stable under Lie bracket.
(ii) locally finitely generated over $C^\infty(M)$.

This makes no difference!
Local picture

Definition

A singular foliation is said to be *locally real analytic* when around each point there exists a chart + generators $X_1, \ldots, X_r$ real analytic in that chart.

Does not require the whole manifold to be real analytic! These charts may not glue in real analytic manner.
**Proposition**

For \((A, \rho, [\cdot, \cdot])\) a Lie algebroid, \(\mathcal{F} = \rho(\Gamma(A))\) is a singular foliation.

Hence, quite a few singular foliations come from Lie algebroids:

1. Lie group actions,
2. Symplectic leaves,
3. Regular foliations.

**Question (Androulidakis-Zambon)**

Are all singular foliations image through the anchor map of a Lie algebroid?

Still open!
Question

Are vector fields on $\mathbb{R}^2$ vanishing at least quadratically at zero the image through the anchor map of a Lie algebroid over $\mathbb{R}^2$?

1. Vector fields on $M$ vanishing at order $\geq k$ at a given point is a singular foliation.
2. Polynomial vector fields on $\mathbb{C}^n$ tangent to a given affine variety.
3. Polynomial vector fields on $\mathbb{C}^n$ that "kill" some given polynomial functions $\varphi_1, \ldots, \varphi_k \in \mathbb{R}[x_1, \ldots, x_k]$

No Lie algebroid known in general! Probably no relevant one.
Leaves

Let $\mathcal{F}$ be a singular foliation on $M$.

Définition
For all $m \in M$, the tangent space of $\mathcal{F}$ at $m$, denoted $T_m \mathcal{F}$, is

$$\{X_{|m} \mid X \in \mathcal{F}\} \subset T_m M$$

What is a leaf?

**Def 1.** $m, n$ in same leaf iff one can go from $m$ to $n$ through flows of vect. fi. in $\mathcal{F}$.

**Def 2.** Leaf = submanif. $L$ s.t. $T_m L = T_m \mathcal{F}$, $\forall m \in M$ + maximal among those.
Let $\mathcal{F}$ be a singular foliation on $M$.

**Définition**

For all $m \in M$, the *tangent space of $\mathcal{F}$ at $m$*, denoted $T_m\mathcal{F}$, is

$$\{X|_m \mid X \in \mathcal{F}\} \subset T_mM$$

**Def 1.** $m, n$ in same leaf iff one can go from $m$ to $n$ through flows of vect. fi. in $\mathcal{F}$.

**Def 2.** Leaf = submanif. $L$ s.t. $T_mL = T_m\mathcal{F}$, $\forall m \in M$ + maximal among those.
Weinstein’s splitting theorem

Poisson and Lie algebroids admits "transversal structures to leaves".

<table>
<thead>
<tr>
<th>If structure is</th>
<th>there is the</th>
<th>for a given leaf there is a transverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>Weinstein’s splitting Theorem</td>
<td>Poisson (vanishing at 0)</td>
</tr>
<tr>
<td>Lie algebroid</td>
<td>Zung’s splitting theorem</td>
<td>Lie algebroid (with anchor 0 at 0)</td>
</tr>
</tbody>
</table>

**Question**

What for singular foliation?
Transverse singular foliation

Let $\mathcal{F}$ be a singular foliation on a manifold of dimension $d$. Let $\ell$ be a point. Assume the leaf $L$ through $\mathcal{F}$ has dimension $k$.

1. Any submanifold $T_\ell$ transverse to $L$ at $\ell$ comes equipped with a natural singular foliation $\mathcal{T}_\ell$ near $\ell \in T \cap L$ ($\simeq$ Dirac reduction)

2. Any two such induced singular foliations are diffeomorphic (even for different $\ell$’s).

3. and locally, it is a trivial product.
Transverse singular foliation

Let $\mathcal{F}$ be a singular foliation on a manifold of dimension $d$. Let $\ell$ be a point. Assume the leaf $L$ through $\mathcal{F}$ has dimension $k$.

1. There is a splitting theorem.
2. There is a well-defined notion of *transverse singular foliation at a point*,
3. ...which is a germ of singular foliation near 0 on an open ball.
4. ...and which is the same all along the leaf.
Let $\mathcal{F}$ be a singular foliation on a manifold of dimension $d$. Let $\ell$ be a point. Assume the leaf $L$ through $\mathcal{F}$ has dimension $k$.

There is a splitting theorem.
Let \( \mathcal{F} \) be a singular foliation on a manifold of dimension \( d \). Let \( \ell \) be a point. Assume the leaf \( L \) through \( \mathcal{F} \) has dimension \( k \).

1. There is a well-defined notion of transversal singular foliation to a leaf.

2. There is a splitting theorem: \textit{Near } \( m \), \( \mathcal{F} \) is the direct product of vector fields along \( L \) and the transverse singular foliation.
Of course, this is not true around the leaf. Hence the question:

**Question**

When is a neighborhood of a leaf isomorphic to the direct product of vector fields along the leaf with the transverse foliation to the leaf?

Formal means "formal along $L". 
Of course, this is not true around the leaf. Hence the question:

**Question**

When is a neighborhood of a leaf isomorphic to the direct product of vector fields along the leaf with the transverse foliation to the leaf?

1. Ask it for Poisson: there is no clear answer,
2. Ask it for Lie algebroid: there is no clear answer,
3. Ask it for regular foliation: there is a clear answer, yes, if the leaf is simply connected.
**Definition**

We say that a leaf $L$ is *formally trivial* if the formal jet $\hat{F}$ along $L$ is isomorphic to the direct product of $\mathfrak{x}(L)$ with the formal jet $\mathcal{T}$ of the transverse foliation.

"Formally trivial" could be defined for symplectic/Lie algebroid leaves.

1. When is a simply-connected symplectic leaf locally trivial? No idea.
2. When is a simply connected Lie algebroid leaf locally trivial? No idea.
3. When is a regular leaf locally trivial? *always!*
4. When is a simply connected singular leaf locally trivial? Quite often, as we will see.
The non-simply connected case

Let us assume the leaf to be simply-connected to avoid the "self-eating snake".
Main theorem

Theorem

(C.L.-G., Leonid Ryvkin) A simply-connected and locally closed leaf $L$ of a locally real analytic singular foliation $\mathcal{F}$ is formally trivial if and only if there exists a Lie algebroid section $TL \to A^\text{lin}_L$.

Meaning:

1. (Androulidakis-Zambon) Every leaf $L$ comes with a transitive Lie algebroid defined by

   $$\Gamma(A_L) = \frac{\mathcal{F}}{I_L \mathcal{F}}$$

   with $I_L$ functions vanishing along $L$,

2. Divide by sections of $A_L$ coming from sections of $\mathcal{F}$ vanishing at order 2, the outcome is a transitive Lie algebroid over $L$ denoted $A^\text{lin}_L$. 
Transversally quadratic

Here an instance of a "non-oid" phenomena.

Corollary

(C.L.-G., Leonid Ryvkin) Every simply-connected, transversally quadratic and locally closed leaf $L$ of a locally real analytic singular foliation $\mathcal{F}$ is formally trivial.

Proof.

1. From the previous theorem.
2. Direct proof (to give the idea).
The proof: several lemmas

1. Tubular neighborhoods $\simeq$ Euler-like vector fields.

2. For every flat bundle over a simply connected manifold $L$, $H^1(L, E) = 0$.

3. For every section $\sigma : \mathfrak{X}(\mathcal{M}) \to \mathcal{F}_{proj}$ whose curvature is 0 up to order $n$, the bundle implicitly defined by

$$E_n := \frac{\text{v.f. vanishing at order } n + 1 \text{ along } L}{\mathcal{I}_L^{n+1} \mathcal{F}}$$

is flat.

Here $\mathcal{F}_{proj} = \text{vector fields in } \mathcal{F} \text{ projectable on } L \text{ for some tubular neighborhood.}$
The proof: step by step construction + vanishing obstructions

We construct by recursion:

1. A section $\sigma_n : \mathfrak{X}(\mathcal{M}) \to \mathcal{F}_{proj},$
2. An Euler-like vector field $E_n,$

such that

1. $\sigma_n$ takes values in vector fields "linear up to order $n",$
2. and therefore $\sigma_n$ is "flat up to order $n".$

Because "linearizable" + "flat at order 1" $\implies$ "flat".
<table>
<thead>
<tr>
<th>Definitions.</th>
<th>Simply-connected singular leaves</th>
<th>General leaves: what is the first return map?</th>
<th>Future</th>
</tr>
</thead>
</table>

The proof: step by step construction + vanishing obstructions
A transitive Lie algebroid admits a maximal solvable ideal: call semi-simple part its quotient. For $A_L$ we call it $A_L^s$.

**Theorem**

*(C.L.G, Leonid Ryvkin)* Let $L$ be a simply-connected locally closed leaf. If there exists a Lie algebroid section $z$ from the semi-simple holonomy $A_L^s$ to the linear holonomy $A_L^{lin}$, then:

1. the normal bundle $\nu = \frac{T_{\text{M}|L}}{TL} \to L$ comes equipped with a flat $A_L^s$-connection,

2. there is a formal diffeomorphism

$$\hat{F} \simeq A_L^s \rtimes \hat{R}_\nu$$

where $R_\nu$ is an $A_L^s$-invariant vertical singular foliation on $\nu$. 
A transitive Lie algebroid admits a maximal solvable ideal: call semi-simple part its quotient. For $A_L$ we call it $A_L^s$.

**Theorem**

*Let $L$ be a simply-connected locally closed leaf. If $A_L^{\text{lin}}$ satisfies Levi-Malcev theorem, then $\mathcal{F}$ also satisfies Levi-Malcev theorem (at least formally).*

$\implies$ an old result by Dominique Cerveau (1978): for a singular foliation vanishing at a point $m$, there is a Lie algebra morphism from the semi-simple part of the isotropy Lie algebra at $m$ to $\widehat{\mathcal{F}}_m$. 
Universal Q-manifold

Definition

(A bit wrong…) A Q-manifold over $M$ is a sequence $E_{-r}, \ldots, E_{-1}$ of vector bundles over $M + a$ degree $+1$ derivation $Q$ of $\Gamma(S(\bigoplus_{i=1}^{d} E^*_{-i}))$.

Theorem

(Vaintrob, Voronov) (A bit vague) Lie $\infty$-algebroids $\simeq$ Q-manifolds.

Lie algebroid correspond to "only $E_{-1}$ is not zero".

Theorem

(C.L.G, Sylvain Lavau, Thomas Strobl) (Vague statement first) Behind almost any singular foliation there is a universal Q-manifold.

"Universal" := in the category of Q-manifolds defining a sub-foliation of $\mathcal{F} +$ homotopy classes of Q-manifold morphisms.
The universal $Q$-manifold: precise statement

**Theorem**

(C.L.G, Sylvain Lavau, Thomas Strobl) Let $U$ be a relatively compact open subset of a locally real analytic singular foliation $\mathcal{F}$. Then:

1. $\mathcal{F}$ admits a projective resolution by sections of finitely many vector bundles $\Gamma(E_{-n-1}) \xrightarrow{d} \ldots \xrightarrow{d} \Gamma(E_{-1}) \xrightarrow{\rho} \mathcal{F}$.

2. these vector bundles admit a $Q$-manifold structure whose linear part is $d$.

3. Any two such $Q$-manifolds are homotopy equivalent.

We call the homotopy classes of these $Q$-manifolds **the universal $Q$-manifold of a singular foliation** and denote it by $\mathbb{U}_\mathcal{F}$.
The algebraic counterpart

Let $\mathcal{O}$ be a ring.

**Theorem**

*(Ruben Louis’s PhD)* There is an equivalence of category between:

1. Lie Rinehart algebras over $\mathcal{O}$
2. Lie $\infty$-algebroid structures on projective $\mathcal{O}$-resolutions, with homotopy classes of $\infty$-$\mathcal{O}$-morphisms as arrows.
What is the first return map for a singular leaf?

The holonomy of a leaf \( L \) of a regular foliation \( \mathcal{F} \) on a manifold \( M \) is a group morphism:

\[
\text{Hol} : \pi_1(L, \ell) \mapsto \text{Diff}_\ell(T_\ell),
\]\n
(1)

\( \text{Diff}_\ell(T_\ell) \) is the group of germs of diffeomorphisms of a transversal \( T_\ell \) of \( L \) at a point \( \ell \in L \). This is classical.

**Question**

How to define an analogue of the holonomy (1) for a singular leaf of a singular foliation?

Already two attempts:

1. Dazord (1985)

Based on \( \pi_1(L) \) and Androulidakis-Skandalis holonomy groupoid.

**Our idea:** use all \( \pi_n(L) \).
Our idea 1: what is $\pi_n(\mathcal{F})$?

**Definition**

We call $n$-th homotopy group $\pi_n(\mathcal{F})$ the $n$-th homotopy group of any of its universal $Q$-manifold. In equation:

$$\pi_n(\mathcal{F}) := \pi_n(\mathbb{U}\mathcal{F})$$

For instance,

1. $\pi_0(\mathcal{F})$ are diffeomorphisms of $M/\mathcal{F}$.
2. $\pi_1(\mathcal{F})$ is (more or less) the isotropy groups of Androulidakis-Skandalis isotropy holonomy groupoid.
3. $\pi_n(\mathcal{F})$ involves
   1. $\pi_n$ of all leaves.
   2. $\pi_n$ of all isotropy groups of the holonomy groupoid.
   3. $\text{Tor}^n(\mathcal{F}, \mathbb{R})$ ($\mathbb{R}$ is a module through evaluation)
Our idea 1: what is $\pi_n(\mathcal{F})$?

**Definition**

We call $n$-th homotopy group $\pi_n(\mathcal{F})$ the $n$-th homotopy group of any of its universal $Q$-manifold. In equation:

$$\pi_n(\mathcal{F}) := \pi_n(\mathcal{U}_\mathcal{F})$$

For instance,

1. $\pi_0(\mathcal{F})$ are diffeomorphisms of $M/\mathcal{F}$.
2. $\pi_1(\mathcal{F})$ is (more or less) the isotropy groups of Androulidakis-Skandalis isotropy holonomy groupoid.
3. $\pi_n(\mathcal{F})$ involves
   1. $\pi_n$ of $s$-fibers of the holonomy groupoid.
   2. $\text{Tor}^n(\mathcal{F}, \mathbb{R})$ ($\mathbb{R}$ is a module through evaluation)

A fundamental result is Claire Debord’s statement that the holonomy algebroid $A_L$ is integrable.
Our idea 2: what is generalized first return map

Let $L$ be a leaf, $\ell$ a point on that leaf. Assume "$L$ admits a complete Ehresmann $\mathcal{F}$-connection $(\mathcal{M}_L, p, H)$." (= some assumptions that force leaves near $L$ to stay near $L$) (= no self-eating-snake!). Let $\mathcal{T}_l$ be the transverse singular foliation.

Theorem

(C.L.G., Leonid Ryvkin) For every $\ell \in L$, there exist canonical group morphisms

$$\text{Hol} : \pi_n(L, \ell) \to \Gamma (\pi_{n-1}(\mathcal{T}_\ell))$$

such that for all $m \in p^{-1}(\ell)$ the sequence

$$\ldots \xrightarrow{\text{Hol}|_m} \pi_n(\mathcal{T}_\ell, m) \xrightarrow{i} \pi_n(\mathcal{F}|_{\mathcal{M}_L}, m) \xrightarrow{P} \pi_n(L, \ell) \xrightarrow{\text{Hol}|_m} \pi_{n-1}(\mathcal{T}_\ell, m) \to \ldots$$

is exact.
Proof inspired by a similar result by Brahic-Zhu

The idea is

1. that the natural projection

$$\mathbb{U}_\mathcal{F} \longrightarrow TL$$

is a surjective submersion of $Q$-manifolds with typical fiber $\mathbb{U}_{\mathcal{T}_\ell}$.

2. to remember that Olivier Brahic and Chenchang Zhu had given a long exact sequence of Lie algebroid fibrations.

3. to extend Brahic-Zhu to Lie $\infty$-algebroid fibrations.

Then it paves the way to our construction.

!! Also, one has to compare with the same construction made with the holonomy groupoid of $\mathcal{F}$. 
Here is a list of examples:

1. The map $\pi_1(L) \to \pi_0(\mathcal{T}_\ell) = \text{Diff}(T_\ell/\mathcal{T}_\ell)$ is Dazord first return map.

2. The map $\pi_2(L) \to \pi_1(\mathcal{T}_\ell)$ highly linked to Crainic-Fernandes obstruction to integrability.

3. For $\mathcal{F} =$ vector fields on $TS^n$ tangent to the zero-section, the $n$-th holonomy is not trivial.
Conclusions

Singular foliations do not behave as Lie algebroids or Poisson structure. At least not always. Even if the answer to Androulidakis-Zambon’s open question about the existence of a Lie algebroid was yes, this Lie algebroid might be arbitrary.

The important objects behind a singular foliations are rather:

1. Androulidakis-Skandalis holonomy groupoid, which is only leafwise Lie (Debord),
2. The universal Q-manifold.
Open questions

There are natural questions.

For local structure.

1. Can we get semi-local convergence rather than formal?
2. What about non-simply connected leaves (and self-eating snakes)?

For first-return maps.

3. To understand the first return entirely, \( \pi_n(L) \) is probably not enough. We need the whole homotopy of \( L \), for instance \( H^n(L) \)