Section de mathématiques

1. Soit $f = \sum a_n(z-z_0)^n$ une série convergente pour $|z-z_0| < R$. Montrer l'égalité de Parseval :

$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})|^2 d\theta$$

pour tout r < R, et en déduire :

$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \leqslant \sup_{|z-z_0|=r} |f(z)|^2$$

- 2. Donner les rayons de convergence des séries $\sum n^p z^n$, $\sum \frac{2^n}{n!} z^n$, $\sum \frac{n^3}{3^n} z^n$ et de la série de Taylor en 0 de $f(z) = \frac{z}{e^z 1}$.
- 3. Lemme de Schwarz.
- a) Soit f une fonction holomorphe dans le disque unité telle que $|f| \le 1$ et f(0) = 0. Appliquer le principe du maximum à la fonction g(z) = f(z)/z dans le disque $\overline{D(0,r)}$, r < 1, et en déduire $|f(z)| \le |z|$, pour tout $z \in D(0,1)$ et $|f'(0)| \le 1$.
- b) En plus de ces hypothèses, on suppose qu'il existe $z_0 \in D(0,1)$ avec $|f(z_0)| = |z_0|$. Vérifier qu'alors $f(z) = c \cdot z$, pour tout $z \in D(0,1)$, avec $c \in \mathbb{C}$, |c| = 1.
- c) Corriger ces énoncés quand $f \in \mathcal{O}(D(0,R)), |f| \leq M$ et f(0) = 0.

4. Trouver les solutions des systèmes d'équations suivants :

$$\begin{cases} \dot{x} = x - 2y \\ \dot{y} = 4x + 5y \end{cases} \qquad \begin{cases} \dot{x} = -3x + 4y \\ \dot{y} = -2x + 3y \end{cases}$$

en mettant sous forme de Jordan les matrices correspondantes.

5. Décrire l'allure des solutions des systèmes suivants :

$$\begin{cases} \dot{x} = -3x - 4y \\ \dot{y} = 4x + 3y \end{cases} \begin{cases} \dot{x} = -x - 2y \\ \dot{y} = 4x - 5y \end{cases} \begin{cases} \dot{x} = -3x + 4y \\ \dot{y} = -2x + 3y \end{cases}$$