Correction du contrôle du 1er février 2005
cours Analyse II réelle

Felice Ronga

le 8 mars 2005
Distance de Hausdorff

Trouver la distance entre A et B:

$$A = \left\{ (x, y) \in \mathbb{R}^2 \left| \sup \{|x|, |y|\} = 1 \right. \right\},$$

$$B = \left\{ (x, y) \in \mathbb{R}^2 \left| |x| + |y| = \frac{3}{2} \right. \right\}$$
Figure: \(\sup \{ d(y, A), y \in B \} = \frac{1}{2} \), \(\sup \{ d(x, B), x \in A \} < \frac{1}{2} \)

\[\cdots \] et donc \(d_H(A, B) = \frac{1}{2} \).
L’ellipse d’équation $x^2 + xy + y^2 - 1 = 0$
Limite des graphes de $\sin(nx)$, $0 \leq x \leq \pi$ dans $\mathcal{C}(\mathbb{R})^2$

Figure: Graphe de $\sin(10x)$
Figure: Graphe de sin(1000x)
Figure: Graphe de $\sin(10000x)$