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1 Introduction

Suppose we observe a time series that can be regarded as a realization of
a portion X0, X1, . . . , XN−1 of a real-valued zero mean Gaussian stationary
process {Xt} with autocovariance sequence (ACVS) sX,τ ≡ cov {Xt, Xt+τ}.
Suppose also that we compute a statistic based upon our time series, e.g., the
sample autocorrelation for unit lag:

ρ̂X,1 ≡
∑N−2

t=0 XtXt+1∑N−1
t=0 X2

t

. (1.1)

To thoroughly assess the quality of ρ̂X,1 as an estimator of the corresponding
population quantity ρX,1 ≡ sX,1/sX,0, we need to know the distribution of
ρ̂X,1; however, calculating the exact distribution of a statistic of a time series
can be very difficult, so it is of interest to find reasonable approximations.
If our time series were a white noise process (i.e., a sample of uncorrelated
random variables (RVs), which — because of the Gaussian assumption —
yields independent and identically distributed (IID) RVs), we could make use
of two quite different approximations. The first approximation is based on
large sample theory, which says that, as N → ∞, ρ̂X,1 is approximately nor-
mally distributed with mean zero and variance 1/N (Bartlett, 1946; Priestley,
1981, Equation (5.3.39)). The second approximation is based on bootstrapping
(Efron and Tibshirani, 1993; Davison and Hinkley, 1997). Here we randomly
sample with replacement from the original time series to create a new series
of N values, for which we then compute the unit lag sample autocorrelation,
say, ρ̂

(1)
X,1. If we repeat this procedure M times to obtain ρ̂

(1)
X,1, ρ̂

(2)
X,1, . . . , ρ̂

(M)
X,1 ,

we can use the sample distribution of these M bootstrap estimates as an ap-
proximation to the unknown distribution of ρ̂X,1. While the large sample
distribution is obviously faster to compute than the bootstrap distribution
for the case of ρ̂X,1, a major advantage of the bootstrap approximation is its
adaptability to other statistics of interest, for which a significant amount of
research might be required to work out the large sample distribution.

More generally, if {Xt} is not necessarily white noise, we must reconsider
both the large sample and bootstrap approximations to the distribution of
ρ̂X,1. Under an assumption that the ACVS damps down to zero ‘rapidly,’
large sample approximations to the distribution of ρ̂X,1 have been worked

1



2 Percival, Sardy & Davison

out, but are unappealing. In particular, if we let ρX,τ ≡ sX,τ/sX,0 denote
the τth element of the autocorrelation sequence (ACS), then N1/2(ρ̂X,τ −
ρX,τ ) converges in distribution to a Gaussian distribution with mean zero and
variance (Priestley, 1981, (5.3.37))

∞∑
τ=−∞

{
ρ2

X,τ (1 + 2ρ2
X,1) + ρX,τ+1ρX,τ−1 − 4ρX,1ρX,τρX,τ−1

}
.

This expression depends upon the entire ACS, which is typically unknown in
practice. Under the same assumption of rapid decorrelation, several variations
on the bootstrap procedure have been proposed that provide good approxima-
tions to the distribution of ρ̂X,1 and related statistics (see Davison and Hinkley,
1997, Chapter 8, and §3 below). On the other hand, if the ACVS does not
damp down rapidly but rather exhibits ‘long memory’ (see §2), then the large
sample theory for ρ̂X,1 is currently incomplete, and standard bootstrapping
procedures are known not to work very well. Stationary long memory processes
(LMPs) are becoming increasingly important as models for a wide range of
time series (Beran, 1994), so it is of interest to have decent approximations
for the distribution of ρ̂X,1 and related statistics that allow for such processes.

In this paper, we propose ‘wavestrapping,’ an adaptive wavelet-based scheme
for bootstrapping certain statistics for time series that can be modeled by sta-
tionary processes with either rapidly decaying (‘short memory’) or long mem-
ory ACVSs. The basis for this methodology is the work of Flandrin (1992),
Wornell (1995) and McCoy and Walden (1996), who show that the discrete
wavelet transform (DWT) approximately decorrelates long memory processes.
We demonstrate that, by applying the bootstrap in the wavelet domain, we
can approximate the distribution of ρ̂X,1 reasonably well for long memory
processes. When applied to certain short memory processes, this DWT-based
scheme is not as successful, a result that can be attributed to the fact that
the DWT need not be an adequate decorrelating transform for such processes;
however, in such cases, a generalization of the DWT based on discrete wavelet
packet transforms (DWPTs) can yield an acceptable decorrelating transform.
We propose a procedure for adaptively selecting a decorrelating transform for
a given time series that involves a ‘top-down’ search of a collection of DWPTs
with the help of white noise tests.

The remainder of this paper is organized as follows. We first review short
and long memory models for time series (§2) and current approaches for boot-
strapping time series (§3), after which we discuss the basic ideas behind the
DWT (§4). Because the DWT acts a decorrelating transform for long memory
processes, we can use it to define a bootstrapping scheme. We demonstrate
the effectiveness of this scheme via Monte Carlo experiments (§5). We then
consider why DWT-based bootstrapping does not work well for certain short
memory processes and why wavestrapping can correct this deficiency (§6).
We demonstrate via Monte Carlo experiments that wavestrapping works rea-
sonably well for both short and long memory processes (§7). We then give
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examples of wavestrapping (§8), including one involving two time series of in-
terest in atmospheric science, and we conclude with a discussion of directions
for future research (§9).

2 Models for stationary time series

In this paper we concentrate on time series that can be modeled as a stationary
process {Xt} with an ACVS sX,τ and spectral density function (SDF) SX(·)
related by

sX,τ =
∫ 1/2

−1/2
ei2πfτSX(f) df, τ = . . . ,−1, 0, 1, . . . .

Let {εt} be a Gaussian white noise process with mean zero and variance σ2
ε .

Two simple models that fit into the above framework are the first order au-
toregressive model (AR(1)) Xt = φXt−1 + εt with |φ| < 1, for which

sX,τ =
φ|τ |σ2

ε

1 − φ2
and SX(f) =

σ2
ε

|1 − φe−i2πf |2 ,

and the first order moving average model (MA(1)) Xt = εt − θεt−1, for which

sX,τ =

⎧⎨⎩
(1 + θ2)σ2

ε , τ = 0;
−θσ2

ε , τ = ±1;
0, otherwise.

and SX(f) = σ2
ε |1 − θe−i2πf |2.

Both these models have ACVSs that rapidly decay to zero: in the case of the
AR(1) model, the rate of decay is exponential, whereas the MA(1) ACVS is
identically zero for all lags |τ | ≥ 2. Because of this rapid decorrelation with
increasing τ , the AR(1) and MA(1) models are sometimes said to have ‘short
memory.’

As an example of a simple model exhibiting long memory, let us consider a
stationary Gaussian fractionally differenced (FD) process {Xt} (Granger and
Joyeux, 1980; Hosking, 1981; Beran, 1994). In terms of the white noise process
{εt}, we can represent an FD process as an infinite order MA process, namely,

Xt =
∞∑

k=0

Γ(k + δ)
Γ(k + 1)Γ(δ)

εt−k,

where −1
2 < δ < 1

2 . The SDF for this process is given by

SX(f) = σ2
ε |2 sin(πf)|−2δ,

while its ACVS can be obtained using

sX,τ = sX,τ−1
τ + δ − 1

τ − δ
, τ = 1, 2, . . . , with sX,0 =

σ2
ε Γ(1 − 2δ)
Γ2(1 − δ)
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(for τ < 0, we have sX,τ = sX,−τ ). When 0 < δ < 1
2 , the SDF has a pole

at zero, in which case the process exhibits slowly decaying autocovariances
because we have, for some Cs > 0,

lim
τ→∞

sX,τ

Csτ2δ−1
= 1;

i.e., the ACVS decays at a slower (hyperbolic) rate than for the AR(1) and
MA(1) models.

3 Current approaches for bootstrapping time series

Existing procedures for bootstrapping time series can be divided into those
which resample in the time and the frequency domains. In this section we
review them; see Davison and Hinkley (1997, Chapter 8) and Bühlmann (1999)
for details and further references.

3.1 Time domain

3.1.1 Residual bootstrap

When it is credible that X0, . . . , XN−1 result from a model for which residuals
can be identified, a form of model-based resampling may be applied. For
example, if the series has AR(p) representation

Xt =
p∑

u=1

φuXt−u + εt, (3.1)

where {εt} is a white noise process, we can use the estimated coefficients φ̂u

to determine residuals

rt = Xt −
p∑

u=1

φ̂uXt−u.

We then generate bootstrap series according to (3.1), but with the φu replaced
by their estimates, and with {εt} replaced with a white noise process generated
by sampling independently with replacement from the residuals rt, ideally
centered and scaled to have the same mean and variance as the {εt}. Under
suitable conditions the properties of statistics constructed from the bootstrap
series will mimic repeated sampling properties of statistics constructed from
the original series. This procedure has the drawback that a specific model
must be fitted and used for the resampling, and it will fail if that model is
incorrect.

In practice the model fitted is generally selected from the data. For example,
the p in (3.1) is often selected by minimizing a model selection criterion such as
AIC. This corresponds to the sieve bootstrap, whose philosophy is that a wide
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class of models should be compared, with the best-fitting model chosen for the
bootstrap. This can greatly improve on the simplistic approach in which the
model is fixed, but its performance depends heavily on the adequacy of the
model class chosen.

3.1.2 Block bootstrap

A nonparametric time domain approach is block resampling (Künsch, 1989).
The motivation is that for many purposes the dominant property of a time
series is its short-range dependence, which may (largely) be preserved by re-
sampling blocks of consecutive observations. The simplest example is the
sample autocorrelation for unit lag, ρ̂X,1, which is (almost) the solution of

N−2∑
t=0

Xt(Xt+1 − ρXt) = 0

and depends only on the marginal distribution of successive pairs of observa-
tions. The idea is to rewrite the original series as the bivariate time series

Y0, Y1, . . . , YN−2 =
(

X0

X1

)
,

(
X1

X2

)
, . . . ,

(
XN−2

XN−1

)
,

rewrite the algorithm that computes ρ̂X,1 as a function of the Y s, resample b
blocks of l consecutive Y s, where bl = N , and compute the statistic from the
resampled data. This preserves dependence between the Xs from which the
statistic is calculated and can give excellent results for short-range dependent
series. Its main drawbacks are twofold. First, it is not automatic because
consideration has to be given to the rewriting of the statistic. Second, not
every statistic can be written as a function of short blocks of data. Both
drawbacks are non-trivial, and a simplified approach is usually applied in
practice.

The simplification is to construct a new series by concatenating resampled
blocks of X0, . . . , XN−1, but this generally yields resampled series that are
much less dependent than the original data. A drawback of this simple ap-
proach is the choice of block length, about which little is known of practical
use; somewhat discouragingly, this is analogous to the choice of bandwidth
in smoothing problems. Moreover, the method requires that certain sums of
ACVS elements be bounded and so fails entirely for LMPs.

3.2 Bootstrapping in the frequency domain

A quite different approach is based on the Fourier transform for stationary
processes (Priestley, 1981). Let

X̃k =
N−1∑
t=0

Xte
−i2πkt/N , k = 0, . . . , N − 1,
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be the discrete Fourier transform (DFT) of the time series. The sequence
X̃0, . . . , X̃N−1 comprises the empirical Fourier transform of the data; the pe-
riodogram has elements N−1|X̃k|2, which summarize frequency information
in the series. Under suitable conditions and as N → ∞, the real and imag-
inary parts of the X̃k are distributed like a sample of independent normal
variables, with means zero and variances NSX(k/N)/2. One implication of
this is that the phase and modulus of each X̃k are independent. A second
is that the N−1|X̃k|2 are asymptotically independent with scaled chi-squared
distributions. Both properties suggest possible resampling schemes.

3.2.1 Phase scrambling

The independence of the phase and modulus of the X̃k suggests that a re-
sampled series with the same periodogram can be made by generating phases
but keeping moduli fixed. To be specific, let U0, . . . , UN−1 be independent
variables uniform on (0, 2π) and set

X̃∗
k = 2−1/2

{
e−iUkX̃k + e−iUN−kX̃N−k

}
, k = 0, . . . , N − 1,

where the overbar denotes complex conjugate. Then the inverse Fourier trans-
form of X̃∗

0 , . . . , X̃∗
N−1 is a series with the same periodogram as X0, . . . , XN−1

but randomized phases. Unfortunately this resampling scheme and its variants
apply to a very limited range of statistics, because they mimic only second-
order properties of the original data. Moreover variability is underestimated
because this resampling scheme fixes the periodogram, unlike for the original
series whose periodogram is random, and statistics that can be computed from
the periodogram, such as ρ̂X,1, display no variation across resamples.

3.2.2 Bootstrapping the periodogram

Another frequency domain approach potentially suitable for statistics that
can be computed from the periodogram stems from the observation that the
N−1|X̃k|2, k = 1, . . . , N − 1, have independent exponential distributions with
means SX(k/N) as N → ∞. This suggests using an estimate ŜX(k/N) of
the SDF to make residuals r′t = N−1|X̃k|2/ŜX(k/N), k = 1, . . . , N − 1, which
are then resampled and merged with the estimate to give a new periodogram
with elements SX(k/N)r

′∗
t , where the r

′∗
t are a random sample taken with

replacement from the r′t. The motivation is that the N−1|X̃k|2/SX(k/N) form
a random sample from the exponential distribution, and the hope is that the
r′t are (almost) such a sample also.

If the SDF SX(f) is known apart from the values of a few parameters, this
approach is essentially model-based, and will share the good and bad aspects
of the schemes discussed in §3.1.1. If SX(f) is estimated nonparametrically, for
example by a kernel method, then a bandwidth must be chosen. It turns out
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that three bandwidths are needed if the bootstrap is to work, one for the orig-
inal estimate, a smaller one to estimate the residuals consistently and a larger
one to give an estimate to which the resampled residuals should be added.
Unfortunately the literature contains little theoretical guidance about how
they should be chosen, while the numerical evidence is scant and equivocal.
Hence although this method has the appeal of not involving the construction
of a bootstrap series, it cannot yet be recommended for general use, even for
statistics that depend only on the periodogram. In any case it may not be
applied to other statistics.

4 The discrete wavelet transform

The discrete wavelet transform (DWT) is an orthonormal transform W that
takes a time series X = [X0, X1, . . . , XN−1]T and yields a vector of N DWT
coefficients W ≡ WX. The orthonormality condition WTW = IN implies that
we can reconstruct the time series from its DWT coefficients via X = WTW,
so W is fully equivalent to X. Under the assumption that N is an integer
multiple of 2J0 , where J0 is an integer denoting the number of levels in the
DWT, we can partition the DWT coefficient vector into subvectors:

W = [WT
1 ,WT

2 , . . . ,WT
J0

,VT
J0

]T .

The subvector Wj contains Nj ≡ N/2j wavelet coefficients associated with
scale τj ≡ 2j−1, whereas VJ0 contains N/2J0 scaling coefficients associated
with scale λJ0 ≡ 2J0 . To see what we mean by scale and what the wavelet and
scaling coefficients are telling us about the time series, let us define an average
of λ contiguous time series values ending with index t as

Xt(λ) ≡ 1
λ

λ−1∑
l=0

Xt−l.

We define the scale associated with this average to be λ. With this defini-
tion, let us consider the special case of the Haar DWT, for which the DWT
coefficients have the form

Wj,n ∝ Xλj(n+1)−1(τj) − Xλj(n+1)−1−τj
(τj) and VJ0,n ∝ XλJ0

(n+1)−1(λj),

where Wj,n and VJ0,n are the nth elements of, respectively, Wj and VJ0 . Note
that the Haar wavelet coefficients Wj,n are proportional to first differences of
adjacent averages over scale τj , whereas the Haar scaling coefficients VJ0,n are
proportional to averages over scale λJ0 . This same pattern holds for DWTs
other than the Haar, in that we can regard the wavelet coefficients as being
proportional to (higher order) differences of (weighted) averages over scale τj ,
and the scaling coefficients as being proportional to (weighted) averages over
scale λJ0 .
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We can formally describe the DWT in terms of wavelet and scaling filters as
follows. Let h1 = [h1,0, . . . , h1,L−1, 0 . . . , 0]T be a vector of length N whose first
L < N elements are the unit level wavelet filter coefficients for a Daubechies
compactly supported wavelet (see Daubechies, 1992, Chapter 6). For example,
the Haar wavelet filter has L = 2 coefficients, namely, h1,0 = 1√

2 and h1,1 =
− 1√

2 . Let H1,k, k = 0, . . . , N −1, be the DFT of h1. In the Haar case, we have

H1,k = (1 − e−i2πk/N )/
√

2. Let g1 = [g1,0, . . . , g1,L−1, 0, . . . , 0]T be a vector of
length N containing the zero padded scaling filter coefficients for unit level,
defined via g1,l = (−1)l+1h1,L−1−l for l = 0, . . . , L − 1, and let G1,k denote
its DFT. Like the Haar wavelet filter, the Haar scaling filter has two nonzero
elements, namely, g1,0 = g1,1 = 1√

2 , and its DFT is G1,k = (1 + e−i2πk/N )/
√

2.
The level j wavelet filter is given by the elements of the vector hj , which is
the inverse DFT of

Hj,k = H1,2j−1k mod N

j−2∏
l=0

G1,2lk mod N , k = 0, . . . , N − 1.

When N > Lj = (2j − 1)(L− 1) + 1, the last N − Lj elements of hj are zero,
so the jth wavelet filter hj has no more than Lj non-zero elements. In the
Haar case, we have Lj = 2j , and, when N > 2j , the elements of hj are

hj,l =

⎧⎨⎩
1/2j/2, l = 0, . . . , 2j−1 − 1;
−1/2j/2, l = 2j−1, . . . , 2j − 1; and
0, l = 2j , . . . , N − 1.

Similarly, the level J0 scaling filter is contained in gJ0 , whose elements are the
inverse DFT of

GJ0,k =
J0−1∏
l=0

G1,2lk mod N , k = 0, . . . , N − 1.

The elements of the Haar gJ0 are

gJ0,l =
{

1/2J0/2, l = 0, . . . , 2J0 − 1; and
0, l = 2J0 , . . . , N − 1.

To obtain the jth level wavelet coefficients, we filter X using hj and sub-
sample every 2jth value from the filter output:

Wj,n =
min(Lj ,N)−1∑

l=0

hj,lX2j(n+1)−1−l mod N , n = 0, . . . , Nj − 1; (4.1)

an analogous expression yields the J0th level scaling coefficients. In the Haar
case we can write

Wj,n =
1

2j/2

2j−1−1∑
l=0

X2j(n+1)−1−l −
1

2j/2

2j−1∑
l=2j−1

X2j(n+1)−1−l.
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This example is atypical in that we do not need to use the ‘modulo N ’ opera-
tion. For wavelet filters such that L > 2, the wavelet coefficients are obtained
by treating the time series as if it were circular (i.e., as if it were a periodic
sequence with period N). This assumption is problematic and yields a cer-
tain number of ‘boundary’ coefficients whose statistical properties differ from
coefficients unaffected by circularity (the number of boundary coefficients on
any given level is no more than L − 2, which is consistent with there being
no such coefficients in the Haar case). In practice the DWT coefficients are
not computed directly via (4.1) but rather via an elegant pyramid algorithm
(Mallat, 1989) that filters X using h1 and g1, retains the odd-indexed values of
the wavelet filter output as the unit level wavelet coefficients and then repeats
this process with X replaced by the odd-indexed values of the scaling filter
output to obtain the level j = 2 wavelet coefficients and so forth.

5 DWT-based bootstrapping

The idea behind DWT-based bootstrapping is to make use of the fact that, for
FD and certain other stationary processes, the DWT acts as a decorrelating
transform for a time series; i.e., whereas the time series itself can exhibit a
high degree of autocorrelation, its DWT coefficients can — to a reasonable
approximation — be regarded as uncorrelated. To quantify this decorrelation
effect, we first note that, if we ignore boundary coefficients, then within a
given level we have

cov{Wj,n, Wj,n+τ} =
Lj−1∑

m=−(Lj−1)

sX,2jτ+m

Lj−|m|−1∑
l=0

hj,lhj,l+|m|. (5.1)

We can use the above to compute the unit lag correlations corr{Wj,t, Wj,t+1}
for, e.g., an FD process with δ = 0.45. Table 5.1 lists these correlations for the
Haar, D(4) and LA(8) wavelet filters and scales 1, 2, 4 and 8; here ‘D(4)’ and
‘LA(8)’ refer to the Daubechies extremal phase filter with four nonzero coef-
ficients and to her least asymmetric filter with eight coefficients (Daubechies,
1992). Note that these correlations are all negative, with departures from zero
increasing somewhat as j increases. For larger lags, computations indicate that
the autocorrelation damps down roughly as dictated by an AR(1) model, i.e.,
corr{Wj,t, Wj,t+τ} ≈ (corr{Wj,t, Wj,t+1})|τ |. To quantify correlation between
different levels, we note that (again ignoring boundary coefficients)

cov{Wj,n, Wj′,n′} =
Lj−1∑
l=0

Lj′−1∑
l′=0

hj,lhj′,l′sX,2j(n+1)−l−2j′ (n′+1)+l′ . (5.2)

For the same FD process as before, Table 5.2 lists maxn,n′ |corr{Wj,n, Wj′,n′}|
for 1 ≤ j < j′ ≤ 4. We can deduce from these two tables that, while the
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Scale Haar D(4) LA(8)
1 −0.0626 −0.0797 −0.0767
2 −0.0947 −0.1320 −0.1356
4 −0.1133 −0.1511 −0.1501
8 −0.1211 −0.1559 −0.1535

Table 5.1: Lag one autocorrelations for wavelet coefficients of
scales 1, 2, 4, and 8 for an FD process with δ = 0.45 using the
Haar, D(4) and LA(8) wavelet filters.

Haar D(4) LA(8)
Scale 2 4 8 2 4 8 2 4 8

1 0.13 0.17 0.14 0.09 0.09 0.04 0.06 0.03 0.00
2 0.17 0.21 0.12 0.11 0.08 0.03
4 0.18 0.13 0.08

Table 5.2: Maximum absolute cross-correlations for wavelet coef-
ficients between scales for an FD process with δ = 0.45 using the
Haar, D(4) and LA(8) wavelet filters.

unit lag correlations within levels are somewhat larger for the D(4) and LA(8)
wavelets than for the Haar, wavelets of greater width than the Haar lead to a
decrease in maximum absolute correlation between levels.

We can gain additional insight into the decorrelation properties of the DWT
by noting the frequency domain equivalent of (5.2), namely,

cov{Wj,n, Wj′,n′} =
∫ 1/2

−1/2
ei2πf(2j(n+1)−2j′ (n′+1))Hj(f)H∗

j′(f)SX(f) df, (5.3)

where Hj(·) is the transfer function for the jth level wavelet filter:

Hj(f) ≡
Lj−1∑
l=0

hj,le
−i2πfl.

When j = j′ and n′ = n + τ , we obtain the frequency domain equivalent of
(5.1):

cov{Wj,n, Wj,n+τ} =
∫ 1/2

−1/2
ei2j+1πfτHj(f)SX(f) df, (5.4)

where Hj(f) ≡ |Hj(f)|2. A jth level wavelet filter has a nominal pass-band
given by |f | ∈ [ 1

2j+1 , 1
2j ]. We can thus argue that the above should be ap-

proximately zero for τ 
= 0 when SX(·) is approximately constant over this
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Figure 5.1: SDFs for an FD process with δ = 0.45 (left-hand plot)
and for the corresponding nonboundary LA(8) wavelet coefficients
in Wj , j = 1, 2, 3, 4 (bottom to top curves in the right-hand plot).
The vertical dotted lines mark the beginning of the nominal pass-
bands [ 1

2j+1 , 1
2j ] for Wj .

pass-band. An alternative formulation is to note that

cov{Wj,n, Wj,n+τ} =
∫ 1/2

−1/2
ei2πfτSj(f) df,

where

Sj(f) ≡ 1
2j

2j−1∑
k=0

Hj(f+k
2j )SX(f+k

2j ); (5.5)

i.e., if we ignore boundary coefficients, then Wj,n can be regarded as a portion
of a stationary process with SDF Sj(·), so Wj,n will be approximately white
noise if Sj(·) is approximately constant. As an example, the left-hand panel of
Figure 5.1 shows the SDF SX(·) on a decibel (dB) scale for an FD process with
δ = 0.45. The right-hand panel shows, from bottom to top, Sj(f), j = 1, . . . , 4,
based upon an LA(8) wavelet. We see that, in contrast to SX(·), the SDFs
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for the wavelet coefficients have a quite limited range of variation (less than
3 dB, i.e., a factor of two). We can also see why the DWT is so well-suited
for SDFs for FD processes: as SX(f) diverges to infinity with decreasing f ,
the widths of the nominal pass-bands decrease commensurately so that SX(·)
does not vary much over any given pass-band.

Finally, let us consider the exact covariance matrix ΣW for all the DWT
coefficients W (this allows us to examine covariances involving the scaling and
boundary wavelet coefficients). Let ΣX be the covariance matrix for X (be-
cause of stationarity, its (j, k)th element is sX,j−k). Since W = WX, we have
ΣW = WΣXWT (note that the elements of W can be deduced from (4.1)).
The top row of Figure 5.2 depicts the corresponding correlation matrix for
level J0 = 6 Haar, D(4) and LA(8) DWTs when X consists of a portion of size
N = 256 from an FD process with δ = 0.45. These plots show a grey-scale
coding of the magnitudes of the elements of the correlation matrices after set-
ting the diagonal elements to zero (these elements are unity by definition and
dominate the off-diagonal elements). Let us focus first on the Haar case (up-
per left-hand corner). The dotted vertical and horizontal lines delineate the
portions of the correlation matrix involving the DWT coefficients of different
scales. As we go from the upper left-hand to lower right-hand corners, we pass
along the diagonals of square submatrices that involve correlations within a
given scale. The faint diagonal within each of these submatrices is primarily
due to the lag one autocorrelations (see the values in the second column of
Table 5.1, which can be used to gauge the magnitudes depicted in the plot).
The faint lines going between opposite corners of the off-diagonal (nonsquare)
submatrices are due to correlations between scales (Table 5.2 lists the largest
such magnitudes). If we compare this plot with the corresponding plots for
the D(4) and LA(8) DWTs, we see that the square submatrices are roughly
the same (indicating that the autocorrelations within a scale are similar for
the three wavelets), but that the lines going between opposite corners of the
nonsquare submatrices are fainter (indicating a decrease in correlations be-
tween scales as L increases). Additionally, there are some dark points in these
latter two plots that tend to line up horizontally and vertically. These are
attributable to the scaling and boundary wavelet coefficients and are seen to
be relatively few in number (the Haar DWT is free of boundary coefficients).
Finally the dark spot in the lower right-hand corner of all three plots is due to
the four scaling coefficients, which are highly autocorrelated for an FD process.
The overall impression that the top row of plots gives is that the three DWTs
do a credible job of decorrelating the highly autocorrelated FD process.

We can thus bootstrap a time series via its DWT using the following steps.

1. Given a time series X of length 2J , compute a level J0 = J − 2 DWT
to obtain the wavelet coefficient vectors W1, . . . ,WJ0 and the scaling
coefficient vector VJ0 . This recipe for setting J0 yields four coefficients
each in WJ0 and VJ0 — decreasing J0 has the effect of giving us more
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3. Apply the inverse DWT to W(b)
1 , . . . ,W(b)

J0
and V(b)

J0
to obtain the boot-

strapped time series X(b), for which we can then compute our statistic
of interest, i.e., the unit lag sample autocorrelation ρ̂

(b)
X,1 obtained from

(1.1) with Xt replaced by X
(b)
t .

By repeating the above over and over again, we can build up a sample distri-
bution of bootstrapped autocorrelations, which we use as a surrogate for the
distribution of the actual sample autocorrelation.

Let us comment on a variation of the above scheme. As noted before, the
DWT treats a time series as if it were circular. This aspect of the DWT
can be problematic for a long memory series, for which there can be a large
discrepancy between X0 and XN−1. Greenhall et al. (1999) provide evidence
that an effective way to get around this difficulty for long memory processes
is to replace X by a series of length 2N created by tacking on a time-reversed
version of X to itself:

X(c) ≡ [X0, X1, . . . , XN−2, XN−1, XN−1, XN−2, . . . , X1, X0]T .

We then use the DWT of this circularized series to form our bootstrapped
series X(b)

(c), from which we extract the first N elements to compute the sample
autocorrelation. We refer to using the DWT on X(c) rather than X as using
reflection — rather than periodic — boundary conditions.

To see how well DWT-based bootstrapping works, see Table 7.1, which
reports the results of a Monte Carlo study described in detail in §7. The
bottom quarter of this table shows how well the standard deviations of the
DWT-based bootstrapped ρ̂

(b)
X,1 (under the column labeled ‘DWT’) compare

with the actual standard deviation for ρ̂X,1 (under ‘True’). Here we looked at
time series of length N = 128 and 1024 that are realizations of an FD process
with δ = 0.45, and we used the LA(8) DWT with both periodic and reflection
boundary conditions. We also report results for the block bootstrap (under
the ‘Block’ column). We see that, while the DWT-based bootstrap tends
to underestimate the true standard deviation by about 15% and 10% using,
respectively, periodic and reflection boundary conditions, it is an improvement
on the block bootstrap, which underestimates by about 30%.

6 Wavestrapping time series

While DWT-based bootstrapping works reasonably well for long memory FD
processes, the question arises as to whether we can expect it to be useful for
other processes. As simple examples, let us consider realizations of the AR(1)
process Xt = 0.9Xt−1 + εt and the MA(1) process Xt = εt + 0.99εt−1. The
correlation matrices for the DWT coefficients W are shown in the middle and
bottom rows of Figure 5.2 for, respectively, AR(1) and MA(1) series of length
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Figure 6.1: As in Figure 5.1, but now for an MA(1) process with
θ = −0.99.

N = 256. When compared to the FD case in the first row, we see higher
levels of correlation, particularly within scale j = 1 for the MA(1) process.
Figure 6.1 shows the SDF for this process, along with the SDFs Sj(·) for the
nonboundary LA(8) wavelet coefficients in W1, . . . ,W4. The MA(1) SDF has
considerable variation within the nominal pass-band [14 , 1

2 ] for W1, which leads
to S1(·) being a poor approximation to white noise, thus explaining the high
levels of correlation within scale j = 1.

Let us attempt to correct the poor decorrelating properties of the DWT
in cases like the MA(1) process by considering a generalization of the DWT
based upon adaptively picking out a transform from a level J0 wavelet packet
(WP) table (details on how to compute WP tables can be found in, e.g.,
Wickerhauser, 1994, Bruce and Gao, 1996, and Percival and Walden, 2000).
Figure 6.2 shows an example of such a table. The jth row of the table is
composed of 2j vectors Wj,n n = 0, . . . , 2j − 1. Each vector has Nj = N/2j

elements, and collectively all 2j vectors form the coefficients for a jth level
discrete wavelet packet transform (DWPT). Like the DWT, a DWPT is an
orthonormal transform from which we can recover X; moreover, the transform
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W0,0 ≡ X

W1,0 W1,1

W2,0 W2,1 W2,2 W2,3

j=0

j=1

j=2

j=3 W3,0 W3,1 W3,2 W3,3 W3,4 W3,5 W3,6 W3,7

0 1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2

f

Figure 6.2: Wavelet packet table of order J0 = 3 and associated
pass-bands. The jth row of the table contains the subvectors Wj,n

of a jth level DWPT.

can be formulated as filtering operations involving a wavelet and a scaling
filter. The filter that yields the nth subvector has a nominal pass-band given
by [ n

2j+1 , n+1
2j+1 ]. When taken together, the 2j pass-bands partition the interval

[0, 1
2 ] into 2j intervals of equal length. Figure 6.2 shows the subvectors Wj,n

for levels j = 1, 2 and 3 enclosed by rectangles spanning the nominal pass-
bands. For convenience, we define W0,0 = X so that the time series itself is
associated with a ‘zeroth level’ DWPT (i.e., the identity transform) covering
the entire frequency band.

The collection of DWPT coefficients for levels j = 0, . . . , J0 forms a level
J0 WP table. The vertical stacking of coefficients in the figure tells us how
coefficients from DWPTs of different levels are related: given a subvector Wj,n

of level j, we obtain the subvectors Wj+1,2n and Wj+1,2n+1 of level j + 1 via
an orthonormal transform (one subvector is formed using the wavelet filter,
and the other, the scaling filter, but the order in which these get used depends
upon n). Thus, as depicted in the table, we can obtain W3,4 and W3,5 via an
orthonormal transform of W2,2. We can extract a large number of different
orthonormal transforms from a WP table. For example, if we start with a jth
level DWPT, we can obtain 22j

different transforms by choosing either to keep
each Wj,n or to transform it into the two subvectors Wj+1,2n and Wj+1,2n+1.
We can obtain even more transforms by keeping or splitting across more than
two levels. In fact a DWT of level J0 is one such transform, consisting of
W1 = W1,1, W2 = W2,1, . . . , WJ0 = WJ0,1 and VJ0 = WJ0,0.

With so many different transforms at our disposal, a careful selection of
coefficients from the WP table can lead to an orthonormal transform that
partitions the frequency interval [0, 1

2 ] into subintervals such that, within each
subinterval, the SDF for X does not vary much. Given knowledge of the SDF
SX(·) and a stopping level J0, we can adaptively select a transform by starting
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Figure 6.3: Transform selected from an LA(8) WP table of level
J0 = 4 that converts the MA(1) process with θ = −0.99 into ap-
proximately uncorrelated coefficients. The transform consists of
the eight subvectors W1,0, W3,4, W4,10, . . . ,W4,15, which parti-
tion [0, 1

2 ] into the nominal pass-bands shown by the vertical lines
in the left-hand plot (the solid curve is the SDF for the MA(1)
process). The corresponding SDFs for the subvectors are shown
from top to bottom in the right-hand plot. The first five of these
SDFs have variations less than 3 dB, while the SDFs for W4,13,
W4,14 and W4,15 vary by, respectively, 3.9, 5.3 and 7.2 dB. If we
were to increase the level to J0 = 6, these three subvectors would
be replaced by three j = 5 level subvectors W5,26,W5,27,W5,28

and six j = 6 level subvectors W6,58, . . . ,W6,63, all of whose SDFs
vary by less than 3 dB.

with W0,0 = X and recursively applying the following simple rule. If the level
of Wj,n is J0, we retain it; otherwise, we consider the SDF associated with the
nonboundary coefficients in Wj,n (this SDF can be computed via an equation
analogous to (5.5)). If the SDF varies no more than, say, 3 dB, then we retain
Wj,n; otherwise, we replace Wj,n by Wj+1,2n and Wj+1,2n+1, and then apply
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the simple rule to both of these vectors. Figure 6.3 shows a transform from a
fourth level WP table that is adapted to the MA(1) process.

In practice, of course, we do not know SX(·), so we propose to replace the
3 dB criterion with a statistical test for the null hypothesis that the values in
Wj,n are a sample from a white noise process (there are a number of appro-
priate test statistics in the literature, two of which we describe briefly in §6.1
below). We can now outline the steps needed to create ‘wavestrap’ samples of
a time series.

1. Given a time series X of length 2J , compute a level J0 = J − 2 WP
table. Enter step 2 with starting values j = n = 0 and W0,0 ≡ X.

2. If j = J0, retain Wj,n; if j < J0, perform a white noise test on Wj,n

using one of the test statistics given in §6.1. If we fail to reject the
null hypothesis, then retain Wj,n; if we reject, then discard Wj,n (after
transforming it into Wj+1,2n and Wj+1,2n+1), and repeat this step twice
again, once on Wj+1,2n, and once on Wj+1,2n+1.

3. The desired adaptively chosen transform consists of all the subvectors
that are retained after step 2 has been applied as many times as needed.
Randomly sample (with replacement) from each of the subvectors in the
transform to create the similarly dimensioned wavestrapped subvectors.

4. Apply the inverse of the adaptively chosen transform to the wavestrap-
ped subvectors to obtain the wavestrapped time series, for which we can
then compute, e.g., a unit lag sample autocorrelation.

As was the case for the DWT-based bootstrap, we repeat the last two steps
above over and over again to build up a sample distribution of wavestrapped
autocorrelations.

Figure 6.4 shows the correlation matrices for the wavestrap transforms
picked out for a single realization of the same three processes considered in
Figure 5.2 for DWT-based bootstrapping. A comparison of the largest cor-
relations in the corresponding plots of these two figures shows that, by this
measure, wavestrapping does better than the DWT-based procedure for the
MA(1) process, is about the same for the AR(1) process, and, not unexpect-
edly, is worse for the FD process, which is well-matched to the DWT. The
dark squares in the lower right-hand corners in the top row are due to Wj,0,
which are highly correlated for an FD process.

6.1 White Noise Tests

Here we briefly describe two well-known test statistics that can be used to
assess the null hypothesis that the WP coefficients Wj,n are a sample from a
white noise process.
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the literature). For 0 < τ < Nj , we define the sample autocorrelation to be

ρ̂j,n,τ =
∑Nj−1−τ

t=0 Wj,n,tWj,n,t+τ∑Nj−1
t=0 W 2

j,n,t

.

There are three variations on the portmanteau test in the literature. The
Box–Pierce test statistic and Ljung–Box–Pierce test statistic are respectively

Qj,n = Nj

K∑
τ=1

ρ̂2
j,n,τ and Q̃j,n = Nj(Nj + 2)

K∑
τ=1

ρ̂2
j,n,τ

Nj − τ

(Box and Pierce, 1970; Ljung and Box, 1978). For either test statistic, we re-
ject the null hypothesis of white noise at significance level α when the statistic
exceeds the (1 − α) × 100% percentage point QK(1 − α) for the chi-square
distribution with K degrees of freedom. The third variation (McLeod and Li,
1983; Brockwell and Davis, 1991, §9.4) is to use the Ljung–Box–Pierce test on
the sample autocorrelations for the squares of Wj,n,t, namely,

ρ̂
[2]
j,n,τ =

∑Nj−1−τ
t=0 (W 2

j,n,t − W 2
j,n)(W 2

j,n,t+τ − W 2
j,n)∑Nj−1

t=0 (W 2
j,n,t − W 2

j,n)2
,

where W 2
j,n is the sample mean of the squares of the elements of Wj,n.

6.1.2 Cumulative Periodogram Test

Let |W̃j,n,k|2 be the squared modulus of the DFT of Wj,n at the Fourier
frequency fk ≡ k/Nj . Based upon the Mj ≡ Nj

2 − 1 frequencies satisfying
0 < fk < 1/2, we form the normalized cumulative periodogram

Pl ≡
∑l

k=1 |W̃j,n,k|2∑Mj

k=1 |W̃j,n,k|2
, l = 1, . . . , Mj .

We then compute the test statistic D ≡ max {D+, D−}, where

D+ ≡ max
1≤l≤Mj−1

(
l

Mj − 1
− Pl

)
and D− ≡ max

1≤l≤Mj−1

(
Pl −

l − 1
Mj − 1

)
.

We reject the null hypothesis of white noise at the α level of significance if
D exceeds the upper α × 100% percentage point D(α) for D under the null
hypothesis. A simple approximation for D(α) is given by

D̃(α) ≡ C(α)
(Mj − 1)1/2 + 0.12 + 0.11

(Mj−1)1/2

,

where C(0.05) = 1.358 (Stephens, 1974).
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7 Simulation study

Here we report on a Monte Carlo experiment that we conducted to see how
well the DWT-based bootstrap, wavestrapping and the block bootstrap do
at assessing the standard deviation of the unit lag sample autocorrelation
ρ̂X,1 for Gaussian white noise and the three nonwhite processes considered in
previous sections, namely, an FD process with δ = 0.45, an AR(1) process with
φ = 0.9 and an MA(1) process with θ = −0.99. We used a pseudo-random
number generator of uncorrelated Gaussian deviates εt with mean zero and
unit variance to simulate the white noise process. Using the same generator,
we can simulate

• AR(1) time series by setting X0 = ( 1
1−0.92 )1/2ε0 and Xt = 0.9Xt−1 + εt,

t = 1, . . . , N − 1 (Kay, 1981);

• MA(1) series by using the process definition Xt = εt + 0.99εt
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Wavestrap
Process Boundary DWT Port Pgrm Block True
WN
N = 128 periodic 8.2 8.7 8.8 8.1 8.7

reflection 8.3 8.6 8.7
N = 1024 periodic 3.1 3.1 3.1 3.0 3.1

reflection 3.2 3.2 3.1
AR(1)
N = 128 periodic 5.7 5.2 5.1 5.4 4.8

reflection 5.5 5.1 5.4
N = 1024 periodic 1.6 1.5 1.5 1.5 1.4

reflection 1.6 1.5 1.5
MA(1)
N = 128 periodic 7.1 6.8 6.8 6.5 6.3

reflection 7.0 6.8 6.6
N = 1024 periodic 2.6 2.4 2.3 2.2 2.2

reflection 2.6 2.4 2.4
FD
N = 128 periodic 9.4 8.3 8.5 7.7 10.7

reflection 9.9 8.8 9.6
N = 1024 periodic 4.4 4.2 4.2 3.4 5.3

reflection 4.7 4.5 4.7

Table 7.1: Standard deviations (×100) of unit lag sample autocor-
relations as assessed by DWT-based bootstrapping, wavestrapping
with the Ljung–Box–Pierce portmanteau test statistic, wavestrap-
ping with the cumulative periodogram test statistic, and the block
bootstrap, along with the ‘true’ standard deviation as determined
by 10,000 simulated series. Independent replications indicate that
the standard error for all numbers reported above is roughly 0.1.

is quite close to the true value. On other hand, block bootstrapping is inferior
to the other techniques for the FD process. Reflection boundary conditions
work better with both DWT-based bootstrapping and wavestrapping, and
the cumulative periodogram test statistic is better with the latter than the
portmanteau statistic. While DWT-based bootstrapping and wavestrapping
yield similar results, they both underestimate the true standard deviation by
about 10%.

When we decrease the sample size to N = 128, there is more disparity among
the four methods. Wavestrapping outperforms the DWT-based bootstrap for
the three short memory processes, but the converse is true for the FD process.
With the exception of the MA(1) process, wavestrapping also does better than
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Figure 8.1: Log of daily returns on BMW share prices (1973–96).

the block bootstrap. Finally, we note that the cumulative periodogram test
and reflection boundary conditions generally do better with wavestrapping
than the portmanteau test and periodic boundary conditions.

8 Applications

We now apply our methodology to a series Xt of N = 6016 daily log returns on
BMW share prices between 1973 and 1996; see Figure 8.1. This time series is
actually irregularly sampled because no trading takes place on weekends and
holidays, but we ignore these gaps and treat the data as a regularly sampled
series. The unit lag sample autocorrelation is small, ρ̂X,1

.= 0.081. If we apply
the standard large sample theory appropriate for Gaussian white noise, we
would attach to this estimate a standard error of 1/

√
N

.= 0.013. In fact
the Gaussian assumption is suspect, and the data are better modeled by a t
distribution with 3.9 degrees of freedom. Taken at face value, however, the
standard error tells us that although small, ρ̂X,1 is significantly different from
zero; this could presumably be exploited by traders. When we apply the block
bootstrap with blocks of length 30, 50, 100, 200 and 500, the standard errors
are 0.012, 0.012, 0.014, 0.016 and 0.015, while the DWT-based bootstrap and
the wavestrap give 0.023 and 0.020. Though all are larger than the value
0.013 for Gaussian white noise, these confirm the presence of autocorrelation.
Simulation using blocks of t4 innovations with variances 1, 4, 9 and 16, to give
the type of stochastic volatility seen in Figure 8.1, gives values of ρ̂X,1 whose
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Figure 8.2: Pacific decadal oscillation (PDO) index Xt (thick
curve, right-hand axis) and March 15 snow depth at Paradise
Ranger Station (1600 meters above sea level) on Mt. Rainer Yt

(thin curve, left-hand axis). Both time series have one value per
year from 1916 to 1995.

standard error is 0.02. It seems that the DWT and the wavestrap are able to
reproduce this, but that the block bootstrap is not.

As a second example, let us show how wavestrapping can help assess the
significance of the sample cross-correlation between two time series. This
statistic is often used in the physical sciences as a first step in investigating
possible relationships between two series. Figure 8.2 shows two annual time
series of interest in atmospheric science, namely, the Pacific decadal oscillation
(PDO) index Xt (thick curve) and springtime snow depth Yt at a location in
the Washington Cascade Mountains (thin). The PDO index (Mantua et al.,
1997) is the leading principal component of sea-surface temperature over the
extratropical north Pacific ocean and has been implicated as a major source
of interannual variability in temperature and precipitation in western North
America. When the PDO index is positive (corresponding to cold sea-surface
temperatures in the central Pacific Ocean and warm temperatures off the west
coast of North America), an observational record of nearly a century suggests
that the mean winter time temperature tends to be high, while precipitation
tends to be low. The data shown in Figure 8.2 support this statement, as does
the fact that the sample correlation coefficient between Xt and Yt is negative:

ρ̂XY ≡
∑N−1

t=0 (Xt − X)(Yt − Y )[∑N−1
t=0 (Xt − X)2

∑N−1
t=0 (Yt − Y )2

]1/2

.= −0.27.

Were we to assume that all 80 observations were independent and normally
distributed, confidence limits based upon large sample statistical theory would
declare ρ̂XY to be significantly different from zero at more than the 95% level.
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Figure 8.3: Histogram of wavestrapped cross-correlations to as-
sess significance of ρ̂XY computed for the two time series in Fig-
ure 8.2.

However, since both the PDO index and (to a lesser extent) snowpack have
considerable year-to-year correlation and since both time series are short, we
need another way of ascertaining if the sample cross-correlation is significantly
different from zero.

We can address the question of the significance of ρ̂XY by wavestrapping Xt

and Yt separately. The resulting wavestrapped series should be approximately
pairwise uncorrelated because any relationship between the two series will be
destroyed by resampling separately. The values of ρ̂XY over many wavestrap-
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ory processes and offers an improvement for long memory processes. While
these results are promising, there is considerable work to be done to be put
wavestrapping on a sound theoretical foundation. Questions that need to be
addressed include the following.

1. For what kinds of statistics and processes can we expect wavestrapping
to yield either a reasonable approximate distribution or a reasonable
approximation to certain aspects of that distribution? For example,
Monte Carlo experiments indicate that, whereas the standard deviation
of the wavestrap distribution for ρ̂X,1 is a good approximation to the
actual standard deviation, the same cannot be said for the bias.

2. What are the asymptotic properties of wavestrapping? Although we
are really interested in small to moderate sample sizes, it would be of
interest to know what conditions are needed for wavestrapping to be a
consistent estimator.

3. Can wavestrapping handle non-Gaussian and/or nonlinear processes?
The Gaussian assumption is a convenient starting point, but real-world
applications dictate that we move beyond it.

4. Can we offer better guidance on the subjective aspects of wavestrap,
namely, choice of wavelet and level J0? The LA(8) wavelet and picking
J0 = J − 2 gave good results in our Monte Carlo study, but it is not
clear if these would be good choices for other statistics and processes.

Even for statistics such as the sample ACS, there is room for improving
the performance of wavestrap, particularly for long memory processes, where
it tends to underestimate the variability in the sample autocorrelation. Two
possible improvements to our work would be to combine wavestrapping with
a parametric approach and to use a different procedure for picking out a
decorrelating transform from a WP table. Let us close by briefly commenting
on why we feel these to be worth studying.

If we compare the wavestrapping results in Table 7.1 for the AR and FD
processes when N = 1024, we see somewhat better estimation of the true
standard deviation for the AR case (a 7% overestimate as compared to an
11% underestimate in the FD case). If we focus on the DWT, we find that the
between/across scale correlations of the wavelet coefficients for the AR and
FD processes are quite similar to each other (in fact the correlations in the
AR case are a little larger in magnitude). There is a big difference, however,
in the properties of their scaling coefficients: for the AR process, the scaling
coefficients are reasonably close to white noise (because the SDF flattens out as
f → 0), whereas they have a long memory structure for the FD process. This
suggests that the underestimation of variability in the FD case is attributable
to the scaling coefficients (note that any orthonormal transform we pick from a
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WP table must include one subvector corresponding to the scaling coefficients
from a DWT of some level J ′ ≤ J0). One way to account for the correlation
in the scaling coefficients would be to use a parametric bootstrap. If we set
J0 to, say, J − 4 rather than our standard choice of J − 2, we would have at
least sixteen scaling coefficients, which would be enough to entertain an AR(1)
model. Although an AR(1) model is not a perfect match to the correlation
properties of the scaling coefficients for an FD process, this simple model is
capable of approximating the correlation structure over limited number of
lags, which is really all we require. In addition, a study of the SDFs on the
right-hand sides of Figures 5.1 and 6.3 suggests that the remaining correlation
structure in wavelet and WP coefficients might be well-modeled by fitting an
AR(1) process to each set of coefficients and then bootstrapping with respect
to the fitted models. Limited tests suggest that this is a promising idea.

Finally, with regard to picking a decorrelating transform from a WP table,
wavestrapping does its search through the table in a ‘top-down’ manner, so
the obvious alternative to consider is a ‘bottom-up’ approach. A well-known
example of such an approach is the ‘best basis’ algorithm (Coifman and Wick-
erhauser, 1992), which selects between a ‘parent’ node Wj,n and its ‘children’
Wj+1,2n and Wj+1,2n+1 based upon a cost functional. To see why this algo-
rithm leads to a decorrelating transform, let j = 1 and n = 0 for simplicity,
and suppose that the nonboundary WP coefficients in the parent node have
the following SDF:

S1,0(f) =

{
σ2

2,0, 0 ≤ |f | ≤ 1/4;
σ2

2,1, 1/4 ≤ |f | ≤ 1/2.

The variance for a process with this SDF is σ2
1,0 = 1

2(σ2
2,0 +σ2

2,1). If we assume
for simplicity that the scaling and wavelet filters are perfect high- and low-pass
filters, the SDFs of the nonboundary WP coefficients in W2,0 and W2,1 are
given by, respectively, S2,0(f) = σ2

2,0 and S2,1(f) = σ2
2,1 for −1/2 ≤ f ≤ 1/2;

i.e., both are white noise processes with variances given by, respectively, σ2
2,0

and σ2
2,1 (note that S1,0(·) is not a white noise SDF unless σ2

2,0 = σ2
2,1). If

we assume Gaussianity and, e.g., the L1 cost functional, then the costs of
each coefficient W1,0,t in W1,0 and of each coefficient W2,m,t in W2,m are,
respectively,

E{|W1,0,t|} =

(
σ2

2,0 + σ2
2,1

2π

)1/2

and E{|W2,m,t|} =

(
2σ2

2,m

π

)1/2

.

Since there are N1 coefficients in W1,0 and N2 coefficients in each of W2,0 and
W2,1, the total expected costs of the parent node and its children are thus,
respectively,

C1 ≡ N1

(
σ2

2,0 + σ2
2,1

2π

)1/2

versus C2 ≡ N2

⎡⎣(
2σ2

2,0

π

)1/2

+

(
2σ2

2,1

π

)1/2
⎤⎦ .
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It is an easy exercise to verify that C2 ≤ C1 always, with equality occurring
if and only if σ2

2,0 = σ2
2,1 (i.e., the nonboundary coefficients in W1,0 are white

noise). Since the best basis algorithm works by making a comparison such as
the above on each node, we can argue that this algorithm will tend to pick
out a decorrelating transform. Tests to date, however, indicate that best basis
picks out too many small groups of coefficients (not ideal for bootstrapping),
so we are currently exploring ways of ‘pruning’ back the best basis transform.
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