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1. Subgradients and subdifferential
Remember that a differentiable function f is convex on a convex
set C ⊂ RN iff

f (z) ≥ f (x) + (z− x)T∇f (x) ∀x, z ∈ C.

Definition: a subgradient of a convex function f at x is
any g ∈ RN such that

f (z) ≥ f (x) + (z− x)Tg ∀z ∈ C.

Definition: the subdifferential of a convex function f at x is the
set of all subgradients

∂f (x) := {g ∈ RN : g is a subgradient of f at x}.

Geometric interpretation: g indexes hyperplanes tangent to the
graph of f at x.



Examples:
I f (x) = |x |. The subdifferential of f at x is

∂f (x) :=

{
{sign(x)} if x 6= 0[
− 1,1

]
if x = 0

.

I f (x) = ‖x‖1 =
∑N

n=1 fn(x) with fn(x) = |xn|. The
subdifferential of f at x is

∂f (x) :=
N∑

n=1

snen with sn =

{
{sign(xn)} if xn 6= 0[
− 1,1

]
if xn = 0

,

where en is the nth canonical vector.



I f (x) = ‖x‖2. The subdifferential of f at x is

∂f (x) :=

{
{ x
‖x‖2
} if x 6= 0

{z : ‖z‖2 ≤ 1} if x = 0
.



2. Calculus of subdifferential

Properties:
I f is differentiable at x iff ∂f (x) = {∇f (x)}.
I ∂f (x) is closed and convex, and nonempty.
I ∂ (λf (x)) = λ∂f (x) if λ ≥ 0.
I ∂ (f1(x) + f2(x)) = ∂f1(x) + ∂f2(x).
I ∂f (Ax + b) = AT∂f (Ax + b).

Optimality condition
For any convex function f : RN → R, a point x∗ ∈ RN is a global
minimum of f iff the condition 0 ∈ ∂f (x∗) holds:

x∗ ∈ arg min
x∈RN

⇔ 0 ∈ ∂f (x∗).



3. Some simple applications in Statistics
I Example 1: minw

1
2(y − w)2 + λ|w |.

A minimum exists and is unique, and

∂f (w) =


{w − y − λ} if w < 0,
[w − y − λ,w − y + λ] if w = 0,
{w − y + λ} if w > 0.

So

0 ∈ ∂f (w∗) ⇔


w∗ = y + λ if y < −λ
w∗ = 0 if y ∈ [− λ, λ]
w∗ = y − λ if y > λ

⇔ w∗ = max[(1− λ

|y |
),0]y .

The function ηsoft
λ (y) = max[(1− λ

|y |),0]y
is the soft-thresholding function
(Donoho and Johnstone, 1994).



I Example 2: solve

min
α∈R

1
2
‖y− xα‖22 + λ|α|,

where y and x are in RN .
I Example 3: solve

min
α∈RN

1
2
‖y− Φα‖22 + λ‖α‖1,

where y ∈ RN and Φ is is an orthonormal matrix.

This estimation problem occurs for denoising a signal
using wavelets.



What is a signal denoising problem?
A univariate function µ(x) observed with noise

Yn = µ(xn) + εn n = 1, . . . ,N.

The goal is to recover µ from noisy observations Y.

One approach assumes

µ(x) =
∑

j

∑
k

φj,k (x)αj,k ,

where φj,k are known orthonormal basis functions indexed by
level j and translation k .



Haar wavelets (1910):
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Illustration of sparse wavelet representation:
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A noisy signal and its wavelet representation:
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Once discretized and vectorized the wavelet-based model
becomes

Y = Φα + ε.

To achieve sparse estimation of α, Donoho and Johnstone
(1994) define the soft-waveshrink estimator which
soft-thresholds

α̂λ = ηsoft
λ (α̂LS)

the least squares wavelet coefficients

α̂LS = ΦTY ∼ N(α, σ2IN).

Interestingly

ηsoft
λ (α̂LS) = arg min

α∈RN

1
2
‖y− Φα‖22 + λ‖α‖1.



Introduction to duality problem

Given the (primal) general problem

min
x∈C

f (x) with C = {x ∈ RN :

{
hi(x) ≤ 0 i = 1, . . . ,m
lj(x) = 0 j = 1, . . . , r

},

define the Lagrangian as

L(x,u,v) = f (x) +
∑

i

uihi(x) +
∑

j

vj lj(x)

with u ≥ 0 and L(x,u,v) = −∞ for u < 0.

Clearly f (x) ≥ L(x,u,v) for all x ∈ C.
so f ∗ ≥ minx∈C L(x,u,v) ≥ minx L(x,u,v) =: g(u,v).



Definition: g(u,v) is the Lagrange dual function and (u,v) are
the dual variables.

Clearly the best lower bound of f ∗ based on the dual function is

g∗ = max
u≥0,v

g(u,v) (Dual problem).

Consequently f ∗ ≥ g∗, called weak duality.

Strong duality f ∗ = g∗ holds assuming Slater’s condition: f and
hi are convex (convex program) and if there exists x strictly
satisfying the non-affine inequality contraints.



What is the use of duality?
I maximizing the dual problem (which may be easier to

solve) leads to a solution to the primal problem.
I the duality gap

δ = f (x)− g(u,v) ≥ 0

should be zero at (x,u,v) = (x∗,u∗,v∗) when strong
duality holds (can be used to check convergence of
algorithm).



Karush-Kuhn-Tucker conditions
Given the (primal) general problem

min
x∈C

f (x) with C =

{
x ∈ RN :

{
hi(x) ≤ 0 i = 1, . . . ,m
lj(x) = 0 j = 1, . . . , r

}
,

the first order KKT optimality conditions are
0 ∈ ∂f (x) +

∑
i ui∂hi(x) +

∑
j vj∂lj(x)

uihi(x) = 0 ∀i
hi(x) ≤ 0, lj(x) = 0 ∀i , j
ui ≥ 0 ∀i

.

Assuming strong duality holds,

(x∗,u∗,v∗) are primal and dual solutions
m

(x∗,u∗,v∗) satisfy the KKT conditions.


