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1. Iterative descent algorithms

Consider unconstrained optimization of

f : IRN → IR,

a continuously differentiable function.

Iterative descent algorithms
Start with x0 ∈ IRN (a good guess may reveal crucial), then
generate a sequence x1,x2, . . . , such that

f (xk+1) < f (xk ), (1)

so as to decrease the cost at each iteration and aim to
converge to a local minimum.



Motivation for descent-based algorithm
Let us consider xα be a point near xk .
From Taylor first order expansion near xk we have

f (xα) = f (xk ) +∇f (xk )T(xα − xk ) + o(‖xα − xk‖)

Hence if dk = −∇f (xk ) and xα = xk + αdk , then

f (xα) = f (xk )− α‖dk‖22 + o(α)

Hence for α > 0 small enough, (1) is guaranteed with
xk+1 = xα, provided we are not already at a stationary point.



Note that we can be less restrictive to guarantee a descent
sequence.
Indeed if xα = xk + αd with dT∇f (xk ) < 0, then

f (xα) = f (xk ) + α∇f (xk )Td + o(α),

which would also lead to a descent sequence for α > 0 small
enough.

So if a descent direction d makes an angle greater than 90
degree with the gradient, then xk+1 = xk + αd leads to a
descent sequence for α > 0 small enough.



Iterative gradient-based algorithms
Start with x0 ∈ IRN, then generate a sequence x1,x2, . . . ,
according to

xk+1 = xk + αkdk with ∇f (xk )Tdk < 0, αk > 0,

Note that if dk = −Dk∇f (xk ) with Dk > 0, then ∇f (xk )Tdk < 0 since

∇f (xk )Tdk = −∇f (xk )TDk∇f (xk ) < 0

provided ∇f (xk ) 6= 0.

Most gradient-based algorithms select the stepsize αk > 0 such that
the algorithm is also a descent one.



2. Selecting the stepsize αk

Minimization rule (line search)
Minimize the cost function in direction dk

min
α≥0

f (xk + αdk ).

The univariate problem can be solved approximately and
expensively with a golden section search, Newton, etc., or may
have a closed form expression.

Note: at the solution α? we have ∇f (xk + α?dk )Tdk = 0, or

∇f (xk+1)Tdk = 0. (2)



Example: Consider the ridge regression estimator of regression
coefficients x solution to

min
x∈IRP

1
2
‖y− Ax‖22 + λ‖x‖22,

where y ∈ IRN, A is an N × P regression matrix and λ ≥ 0 is the
regularization parameter. A descent algorithm with the
minimization rule will iteratively search the scalar αk solution to

min
α≥0

1
2
‖y− A(xk + αdk )‖22 + λ‖xk + αdk‖22.

Here the univariate problem has a closed form expression.



Armijo rule

Fix scalars s, β, σ, with 0 < β < 1 and 0 < σ < 1.

Then choose α(k) = βm, where m is the first integer for which

f (x(k))− f (x(k) + βmsd(k)) ≥ −σβms∇f (x(k))Td(k).

Typically σ ∈ [10−5,10−1], β ∈ [1/10,1/2], s = 1.

Armijo is the most accepted method.



3. Selecting the descent direction dk

Consider iterates of the form

xk+1 = xk − αkDk∇f (xk ),

where Dk a symmetric positive definite matrix.

Various methods exist depending on the choice of the
matrix Dk .



Steepest descent: Dk = I
Simple, no overhead calculations, but often slow.

Analysis of convergence rate for quadratic functions: suppose

f (x) =
1
2

xTQx,

where Q is a symmetric positive definite matrix with smallest
eigenvalue λ1 and largest eigenvalue λN .
The solution is x? = 0 and f (x?) = 0.

The steepest descent iterates are

xk+1 = xk − αk∇f (xk ) = (I − αkQ)xk .



Stepwise rule:

I constant: If α = 2
λN+λ1

, then ‖x
k+1−x?‖
‖xk−x?‖ ≤

λN−λ1
λN+λ1

.
This is the best convergence rate bound for steepest
descent with constant step size α.

Proof:



I optimal: If αk is chosen to minimize the line search at each

iteration, then f (xk+1)−f (x?)
f (xk )−f (x?)

≤
(
λN−λ1
λN+λ1

)2
.

Proof:



Newton’s method: Dk = (∇2f (xk ))−1, k = 0,1, . . .
As explained on page 5, it requires ∇2f (xk ) > 0.
Quadratic approximation of f around current iterate xk based
on Taylor expansion:

f (x) ≈ f k (x) = f (xk )+∇f (xk )T(x−xk )+
1
2
(x−xk )T∇2f (xk )(x−xk ).

Recall: if f : IRN → IR is twice continuously differentiable on an open
ball X centered at x, then

I for all y such that x + y ∈ X , then

f (x + y) = f (x) +∇f (x)T y +
1
2

yT∇2f (x)y + o(‖y‖2).

I Moreover there exists α ∈ [0,1] such that

f (x + y) = f (x) +∇f (x)T y +
1
2

yT∇2f (x + αy)y.



Hence, to find the next iterate, solve first order optimality
conditions for the approximation: ∇f k (x) = 0, i.e.,

∇f (xk ) +∇2f (xk )(x− xk ) = 0

or
xk+1 = xk − αk [∇2f (xk )]−1∇f (xk ) with αk = 1.

This is the pure Newton method.



Example: Generalized linear model for independent Poisson
data with canonical log-link

Yn ∼ Poisson(µn) with

{
µn = exp(ηn)

ηn = α0 +
∑P

p=1 αpxnp
.

The maximum likelihood estimate solves

min
α∈IRP

∑
n

−ynα
Txn + exp(αTxn),

which is a strictly convex cost (provided Ker(X ) = {0}) defined
on an open and convex domain.



To apply Newton’s method, the gradient and Hessian are

∇αf (αk ) =
∑

n

−ynxn + exp(xT
nα

k )xn

= X T(exp(Xαk )− y)
= X T(µk − y)

∇2f (αk ) =
∑

n

exp(xT
nα

k )xnxT
n

= X TW kX , with W k = diag(exp(xT
nα

k )) > 0.

So the pure Newton’s iterates are

αk+1 = αk − (XW kX T)−1(X T(µk − y)).

This is the so-called Iterated Reweighted Least Squares.



Some properties of Newton’s method:

I Finds the global minimum of a positive definite quadratic
function in a single iteration.

I The pure Newton method is not a descent method in
general, and may be attracted to local maxima as well
since it just tries to solve the system of equations

∇f (x) = 0.

I The cost function must be twice differentiable.



I Typically converges very fast and does not exhibit the
zig-zagging behavior of steepest descent:

Superlinear convergence of Newton-like methods: Let f be twice
continuously differentiable. Consider xk+1 = xk − αk dk and
suppose that

xk → x?, ∇f (x?) = 0, ∇2f (x?) is positive definite.

Assume further that ∇f (xk ) 6= 0 for all k and

lim
k→∞

‖dk − (−∇2f (xk ))−1∇f (xk ))‖
‖∇f (xk )‖

= 0.

Then if αk is chosen with the Armijo rule with s = 1 and σ < 1/2,
we have

lim
k→∞

‖xk+1 − x?‖
‖xk − x?‖

= 0.



I Let f be a function with a stationary point x?. Suppose
there is a ball Bδ̃(x

?) of radius δ̃ around x? where f is twice
continuously differentiable.
Suppose also that ∇2f (x?) > 0.

Then there exists δ > 0 such that if x0 ∈ Bδ(x?), then the
pure Newton iterates

xk+1 = xk − [∇2f (xk )]−1∇f (xk )

are defined, belong to Bδ(x?), and converge to x?.



The difficulty is in the choice of x0 and in the calculation of
(∇2f (xk ))−1 and guaranteeing its positive definiteness at each
iteration (e.g., f may be linear in some regions).
Here are some cheap alternatives:

I Diagonally scaled steepest descent. Take

Dk = [diag(∇2f (xk ))]−1.

It is often surprisingly effective in practice.
I Modified Newton’s method. Update [∇2f (xk )]−1 regularly

every K iterations.
I Discretized Newton method. Take Dk = [H(xk )]−1, where

H approximates ∇2f (xk ) based on finite difference of the
gradient or values of f .

I Replace Newton iteration by steepest descent when
Newton direction is not defined or not a descent direction.



Quasi-Newton’s method:{
xk+1 = xk + αkdk ,

dk = −Dk∇f (xk ),

where Dk is a positive definite matrix such that dk tends to the
Newton direction.

Idea: Successive iterates {xk ,xk+1,∇f (xk ),∇f (xk+1)} contain
information about the curvature since

qk ≈ ∇2f (xk+1)pk with
{

pk = xk+1 − xk

qk = ∇f (xk+1)−∇f (xk )
.

Hence after n (linearly independent) iteration increments
p0, . . . ,pn−1, we have that

∇2f (xn) ≈ [q0 . . .qn−1][p0 . . .pn−1]−1

or
[∇2f (xn)]−1 ≈ [p0 . . .pn−1][q0 . . .qn−1]−1,

a relation that is exact if the cost is quadratic.



Davidon-Fletcher-Powell (ξk = 0) and
Broyden-Fletcher-Goldfarb-Shanno (ξk = 1)
algorithms

Initiate D0 as a positive definite matrix, e.g., D0 = [diag(∇2f (x0))]−1.
Then approximate [∇2f (xk+1)]−1 at each iteration by

Dk+1 = Dk +
pk pk T

pk Tqk
− Dk qk qk TDk

qk TDk qk
+ ξkτ k vk vk T

,

where

vk =
pk

pk Tqk
− Dk qk

τ k ,

τ k = qk T
Dk qk ,

ξk ∈ [0,1].



Property 1: If Dk > 0 and the stepsize αk is chosen so that
xk+1 satisfies

∇f (xk )Tdk < ∇f (xk+1)Tdk ,

then Dk+1 > 0.
Proof:

Property 2: If the cost function f : IRn → IR is quadratic

f (x) =
1
2

xTQx + bTx

and the stepsize is chosen optimally, then:
I Dn = Q−1

I d0,d1, . . . ,dn−1 are Q-conjugate.



In R:
> optim(..., method="BFGS"):

I option "BFGS" in optim.
Property: best general purpose quasi-Newton method
known, but requires storage of Dk .
Provide an approximate to the inverse of the Hessian: can
be used to calculate the covariance matrix of the MLE.

I option "Nelder-Mead" in optim.
Property: not a gradient method, weak theoretical
convergence, works reasonable well in small dimension.

I option "CG" (conjugate gradient) in optim.
Property: no storage of Dk , but fragile (conjugacy
progressively lost).



Conjugate gradient originally developed to solve a quadratic
cost

min
x∈IRN

1
2

xT Qx− bTx,

where Q > 0, or equivalently, to solve the linear system

Qx = b.

Idea: choose dk to be the closest vector to the steepest
descent direction −∇f (xk ) that is Q-conjugate to the previous
directions d1, . . . ,dk−1, i.e.,

dk T
Qdi = 0, i = 1, . . . , k − 1.

This can be achieved by a Gram-Schmidt operation:

dk = −∇f (xk )−
k−1∑
j=0

(−∇f (xk ))TQdj

(dj)TQdj dj .



CG algorithm
Set x0, g0 = ∇f (x0) and d0 = −g0.
Then xk+1 = xk + αk+1dk with

I αk+1 = gk Tgk

dk TAdk

I if ‖gk‖ < ε stop; otherwise k = k + 1 and calculate

gk = ∇f (xk ) = Qxk − b, βk = gk Tgk

gk−1Tgk−1 and

dk = −gk + βkdk−1.

Properties:
In theory, the maximum number of iterations is equal to the
number of different eigenvalues of Q.
In practice, to get the solution to machine precision urequires
more than N iterations.
Good approximation is often reached much earlier.

Useful when Q is large and sparse, or a fast operator like FFT
or DWT.





5. Non gradient-based iterative algorithm

Coordinate descent (Relaxation)
At each iteration solve a univariate problem

min
ξ∈Xi

f (xk
1 , . . . , x

k
i−1, ξ, x

k
i+1, . . . , x

k
N), (3)

and iterate in a cyclic manner i = 1, . . . ,N,1, . . . ,N, . . .

Proposition: Suppose f is continuously differentiable over
X = X1 × . . .× XN , where each Xn is closed and convex, and
suppose that (3) has a unique solution, then coordinate
descent converges to a stationary point.



Properties
I easy to implement
I fast if closed form solution at each iteration
I can sometimes use parallel computing
I similar convergence properties as steepest descent
I can iterate in blocks as well (BCR)
I various rules to select next i , cyclic or not
I can handle certain constraints and non-differentiability

Paul Tseng worked on relaxion of these assumptions.



5. Stopping criterion

Many rules: fix ε > 0, then stop iterations when
I ‖∇f (xk )‖ ≤ ε.
I ‖∇f (xk )/N‖ ≤ ε.
I ‖∇f (xk )‖/‖∇f (x0)‖ ≤ ε.
I ‖dk‖ ≤ ε, assuming the directions dk captures the relative

rescaling of the variables.

The difficulty remains in the choice of ε, and is quite problem
dependent.



Table : Simulation results to compare two estimators

Waveshrink MRF-`1
ε large ε small ε
blocks
N = 1024 0.22 0.13 0.07
bumps
N = 1024 0.52 0.62 0.41
heavisine
N = 1024 0.31 0.13 0.13
Doppler
N = 1024 0.56 0.63 0.41

Illustration of the danger of not solving the optimization problem
“well enough".



6. Convergence

The most we can expect from a gradient-based method is that it
converges to a stationary point, including a local maximum.

Such a point is a global minimum if the cost function is convex
and differentiable.
Otherwise, without knowing much about uniqueness of
stationary point, we can run a gradient-based algorithm from
multiple starting points.



7. Conclusions

Algorithms have their specificities and should be carefully
chosen and employed based on the specificity of your
optimization problem (differentiability, convexity, ...)

Black box tools are convenient but dangerous.

Initial point x0 and convergence threshold ε are also important
quantities to choose.


