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1. Problem statement

We want to minimize a function

f : X ⊂ IR → IR

x → f (x)

Solving univariate problems is the corner stone of many
multivariate optimization algorithms.



Motivation 1: many algorithms seek a minimum to

f : X ⊂ IRN → IR

by solving successions of line search/univariate optimization
problems.

Given a current feasible point x(i) at iteration i and given a
descent direction d(i), they search for a solution α∗ to

min
α>0

f (x + αd)

to get to the next point x(i+1) = x(i) + α∗d(i).

The term "line search" was coined because we search along
the line in direction d.



Motivation 2: many estimators require the selection of a
regularization/smoothing parameter λ.

λ controls the bias/variance trade-off. Selection of λ is difficult.

Existing methods:
I Cross validation for essentially any estimator and noise,

and generalized cross validation [Golub, Heath and Wahba
1979] for linear estimators and Gaussian noise:

min
λ≥0

GCV(λ)

where:

GCV(λ) =
1
N
‖y− H(λ)y‖2

2/[
1
N

tr{IN − H(λ)}]2.

E.g., H(λ) = X (X TX + λIN)−1X T for ridge regression.



I Stein unbiased risk estimation (SURE) [Stein, 1981] for
weakly differentiable estimators (e.g., lasso) and Gaussian
noise:

min
λ≥0

SURE(λ)

where:

SURE(λ) = −Nσ2 + ‖y− µ̂(λ)‖2
2 + 2σ2

N∑
n=1

∂µ̂n

∂yn
(λ).

The goal of CV, GCV, SURE, etc. is to estimate a
goodness-of-fit measure between the estimate µ̂ and the
unknown estimand µ.



For Gaussian noise, the `2-loss and corresponding risk/mean
squared error are often the goodness-of-fit measures:

Loss(µ̂λ,µ) = ‖µ̂λ − µ‖2
2 and Risk(µ̂λ,µ) = E (Loss(µ̂λ,µ))

and
E(SURE(λ)) = Risk(λ).
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Goal: find a λ that minimizes the blue line.



2. Closed form expression

Before employing an iterative algorithm, analyze the
mathematical properties of your function. For instance check
existence, uniqueness, or closed form expression of a solution.

The following univariate problems have a closed form solution:
I minx

1
2(y − x)2 + λx2

I minx
1
2(y − x)2 + λ|x |

The following multivariate problems have a closed form
solution:

I minα
1
2‖y− Xα‖22 + λαTQα, where Q is a symmetric

positive definite matrix
I minα

1
2‖y− Xα‖22 + λ‖α‖1, where X has orthogonal

columns.
for all λ ≥ 0.



3. Iterative methods

Many univariate or one-dimensional methods exist:
I Golden section (requires f )
I Pure Newton method (requires f , f ′ and f ′′)



3.1 Golden section (Kiefer, 1953)
This method does not require knowledge of f ′.
It is based on bracketing a minimum:
Algorithm (from Bertsekas):

1. Calculate

xk = ak + τ(bk − ak ), g(xk )

yk = bk − τ(bk − ak ), g(yk )

2. Three cases:
I If g(xk ) < g(yk ), set

ak+1 = ak , bk+1 = xk if g(ak ) ≤ g(xk )

ak+1 = ak , bk+1 = yk if g(ak ) > g(xk )

I If g(xk ) > g(yk ), set

ak+1 = yk , bk+1 = bk if g(yk ) ≥ g(bk )

ak+1 = xk , bk+1 = bk if g(yk ) < g(bk )

I If g(xk ) = g(yk ), set
ak+1 = xk , bk+1 = yk

3. If |bk − ak | > ε, then k = k + 1, goto 1;
Else stop and return (ak + bk )/2, or [ak , bk ], or both.

Choose τ = (3−
√

5)/2.



3.4 Pure Newton method
The idea of Newton’s method is to minimize at each iteration
the quadratic approximation of f around the current point x (k)

f (x) ≈ f (k)(x) = f (x (k)) + f ′(x (k))(x − x (k)) +
1
2
(x − x (k))2f ′′(x (k))

By setting the derivative of f k to zero

f ′(x (k)) + f ′′(x (k))(x − x (k)) = 0,

we obtain the next iterate x (k+1) as the minimum of f (k):

x (k+1) = x (k) − f ′(x (k))/f ′′(x (k)),

assuming f ′′(x (k)) 6= 0.
Newton’s method typically converges very fast.
But convergence to a global minimum is not guaranteed.

Property: Let α∗ ∈ Df be a local minimum of a function f . If f ∈ C2

and if f ′′(α) > 0, then there exists a neighborhood of α∗ such that for
all initial value x0 in the neighborhood, the sequence {xn} of Newton
iterates converges to α.



4. Black boxes

Many softwares (R, MatLab) offer functions to do line search:
I R: optim, nlminb, optimize, ...
I MatLab: srchgol, fminbnd, fminunc, fmincon,
fminsearch, ...

Do NOT apply them blindly. Read a description of the function
to understand what method it uses.

There is no universal method that works uniformly best.
The method you use depends on the optimization problem you
have to solve.


