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1.1 Least squares

The least squares estimator α̂LS of a linear model solves

min
α

1
2
‖y− Xα‖22,

where X is an N × P matrix.

The cost function is convex (strictly if ker X = {0}) and
continuously differentiable over RP convex, so a necessary and
sufficient condition for α to be solution is

X TXα = X Ty .



Simple case: X has P orthogonal columns.

Suppose rank(X ) = P:
I Cholesky factorisation of

X TX = GGT,

where G is P × P is a unique lower triangular matrix with
positive diagonal entries.

Requires (N + P/3)P2 flops (FLoating-point Operations
Per Second).



I QR factorisation of

X = QR = [Q1Q2]

[
R1
0

]
= Q1R1,

where:
I Q is N × N and orthonormal
I Q1 is N × P and range(X ) = range(Q1)
I Q2 is N × (N − P) and range(X )⊥ = range(Q2)
I R1 is upper triangular with positive diagonal entries.

Moreover R1 = GT.

Requires 2(N − P/3)P2 flops.
I Block coordinate relaxation converges to the solution.



I Eigen-decomposition of X TX :

X TX = UD2UT

= [URUk ]

[
diag(d2) 0

0 diag(0)

]
[URUk ]T

= URD2
RUT

R,

where:
I UR is an orthonormal basis for the range of X T,
I Uk is an orthonormal basis for the kernel of X .
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1.2 Least squares with constaints
General formulation: consider the problem

min
α

f (α) s.t. h(α) = 0, (1)

where f : Θ ⊂ RP → R and h : Θ ⊂ RP → RM are continuously
differentiable and Θ is an open set containing a local
minimum α∗.

Definition: the Lagrangian function L : Θ ⊂ RP+M → R is
defined by

L(α,λ) = f (α) + λTh(α).

Proposition (Lagrange multiplier theorem – Necessary
condition): Suppose the M columns of ∇h(α∗) are linearly
independent at a local minimum α∗ of (1). Then there exists a
unique vector λ∗

∇αL(α∗,λ∗) = 0 and ∇λL(α∗,λ∗) = 0.



Consider the linear model

y = Xα + ε.

Application: Let y ∈ RN and X ∈ RN×P of rank N. Then

X T(XX T)−1y = arg min
α∈RP : Xα=y

‖α‖2

(it is unique!) whether P = N or P > N.

Application: Consider testing H0 : Aα = c with A full row rank.
Fisher F -test requires

α̂H0 = arg min
α

1
2
‖y− Xα‖22 s.t. Aα = c.

Solution through Lagrange function
L(α,λ) = 1

2‖y− Xα‖22 + λT(Aα− c).



2. Ridge regression (Hoerl, 1962; Hoerl and Kennard, 1970)

For a given regularization parameter λ ≥ 0, RR solves

min
α

1
2
‖Y− Xα‖22 + λ‖α‖22.

Ways to calculate the RR estimate:
I Matrix inversion
I SD, CG
I SVD has an overhead cost, but efficient if several λ’s have

to be used.



3. Splines-based smoothing (Wahba, 1980’s; Duchon, 1976)

Motivation: regression problem

yn = µ(xn) + εn, where εn
i.i.d.∼ N(0, σ2).

Goal: estimate univariate function µ.
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Existing estimator: running me(di)an, kernel, local polynomials



Thin plate splines come from approximation theory: Let W2,2 be
the Sobolev space of function that has squared integrable
derivatives up to second derivative. Then

min
µ∈W2,2

‖y− µ(x)‖22 + λ

∫
(µ′′(x))2dx ,

where µ(x) = (µ(x1), . . . , µ(xN)) has a solution of the form

µ(x) =
N∑

n=1

αnφn(x),

where φn are known thin plate splines.
In other words, an infinite dimensional problem becomes a
finite dimensional problem.



Letting Φ be the N × N regression matric such that

Φij = φj(xi), i , j = 1, . . . ,N,

the problem becomes

min
α∈IRN

‖y− Φα‖22 + λαTQα,

where αTQα =
∫

(µ′′(x))2dx . Because
∫

(µ′′(x))2dx = 0 for
polynomials of degree 1, then Q has rank N − 2.


