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1. Some applications of optimization

» decision making, management, e.g., best strategy

» engineering design, e.g., minimal cost for maximal
reliability

» utilization of resources, e.g., energy (hydro-electricity,
windmills, nuclear, ...)

» minimal cost, maximal profit, minimal risk

» statistics



2. Optimization in Statistics/Machine learning

Data set 1: N = 5x20 measurements of speed of light

(Michelson, 1879)
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To estimate the speed of light 1, we can think about finding a
value i the closest to the data:

» with the /> metric

uzam%@mo

with f(11) = SN (yn — )2 = |ly — p12-
» with the ¢4 metric

uzam%@mn

with f(u) = ZL Yo — u| = [ly — p]f.



» if we assume

then you know that (y, s?) = (f, 52)MLE),
This means that

(v,8%) = argmaxL(u, % y1,...,¥N)
HER,0>0

= argmin f(u, o),
LER,0>0

where
f(:u70—2) == Iog L(M70—2;y17' Qg0 7yN)
is the negative log-likelihood.



Data set 2: Time series Y; = log(p:/p:—1) consists of
log-returns for the price p; of the stocks at time .
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Contemporary finance seeks to control the risk/volatility.



The ARCH model (Engle, 1982) assumes

Yi = oter

2 2
of = «ap+ oy Yt—17

where et ik "(0,1), ap > 0and oy > 0.
The corresponding likelihood function

1

L(ag,a1;y) =N exp

\/271'(040 + oz1yt271)
can be maximized to get the MLE

(&, &1)(MLE) = arg max

ap>0,a1>0

where f(ag, a1) = L(ag, a1;Y).

y2
(_ t

f(ag, o),

2(a0 + a1y? )



Data set 3: estimation of density function f from

i.i.d.
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Example: SAT math score

» Histogram ?Y,A: nonparametric estimator of fy.
Its smoothness is governed by a regularization
parameter A, called binwidth.

» Gaussian parametric model with kK = 2 modes:
fy = p1 N(u1,0%) + po N(u2, 03).
The five parameters can be estimated by

(p17ﬁ’17ﬁ2u6—17a—2) :arg max f(p17N17/1«2>U1702)7
P1€[0,1], p1€R, u2€R, 01>0, 02>0

where f(p17.u1hu2’0'1702) = L(p17M17u2301702;y)'


http://www.shodor.org/interactivate/activities/Histogram/

Data set 4: Regression for a medical prognostic.

N = 97 men are about to receive a prostatectomy.

One response and P = 8 covariates measured on each patient:
P Y — 1psa: log(prostate specific antigen) is the response variable

Xy = lcavol: log(cancer volume)

Xp = lweight: log(prostate weight)

X3 = age: age of patient

X4 = 1bph: log(benign prostatic hyperplasia amount)

X5 = svi: seminal vesicle invasion

Xg = 1cp: log(capsular penetration)

X7 = gleason: Gleason score
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Xg = pgg45: percentage Gleason scores 4 or 5.

Goal 1: predict Y based on knowledge contained in Xi, ...

Goal 2: disregard unimportant covariates.



A standard approach assumes a linear model:

P
Yn =g + Zaanp + €n
p=1

and estimate the coefficients a = (ay, . . ., ap) for a good fit
based on the /> metric:

A(LS) — '
&' = arg arGTIlR]p+1 f(a)

where f(a) = [ly — Xall3 = S0 (Vn — a0 — X5 pXnp)?-

The cost function f is differentiable, ie, Vf(a) exists everywhere.
We will see the first order optimality conditions play a key role:

Vaf(a) =0 < XTxal = xTy.



In many modern applications, e.g.,
» chemometrics
» genetics
» cancer research

we have more information/covariates than subjects, aka, the
P > N situation.

Consequently, the normal equations have an infinite number of
solutions.

LS estimation does not lead to a unique estimate,

and the bias—variance tradeoff is poor!



Improved estimators have been proposed, including:

» Ridge regression (Hoerl and Kennard, 1970) regularizes
least squares by solving

mip, f(@)

with f(cr) = [ly — X[ + Al|c||3 for some A > 0.



» Lasso (Tibshirani, 1996) instead solves
.1 2
min 7 [ly — Xelz + Allex]]s
for some A > 0.
Note: the intercept ag is often not penalized.

The cost function f is not differentiable, leading to the notion of
subdifferential Of (set of subgradients).

We will see the first order optimality conditions for &, to be a
solution are

0 € X"Xé, — XUy + \s =: Of(&»),

{1} ifap>0
where s € 9||a|s with sp = { {-1} ifap <0
[1,1] ifap=0.



Note: sparsity property for A > || X1y -

Typical lasso path:
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Data set 5: N = 173 crabs. We have the following
measurements:

» the response Y = Number of males attached to the female,
» P =1 covariate: X; = Width of female crab

Crab data
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Poisson generalized linear model assumes
Yn | Xn ~ Poisson(nn) with 1y = exp(ag + a1Xn),

where exp is the canonical inverse link function, and
estimates o by MLE

a = arg min f(a)
acR?
with
fla) = —log L(;y) = E,’L exp(ag + a1Xn) — Yn(ag + a1 Xn).



Another possible GLM model is
Yn | Xn ~ Poisson(n,) with 7, = ag + a1 Xp,
and estimates o« by MLE

a=arg min f(a), where Q= {aeR?:ap+aix, >0 forall n}
acQCR?

with f(a) = —log L(a; y) = SN ag + a4 X — ynlog (g + o1 Xn).



For the P > N situation in GLM, Park and Hastie
(L1-Regularization Path Algorithm for GLM, 2007) solve

moin —log L(a; y) + Aljex]|1-
with the glmnet library in R that solves

Comment: if not all entries of a are penalized, the optimization
may not have a solution.



Data set 6: Observations Y; over time t = 1,...,2000.
We believe they come from a succession of regimes.

Model:
Yi ~ Fp for t=1,...,2000,

where u; = E(Y;) is a piecewise constant function and
7 a nuisance parameter.
Each constant piece is a regime.

Goal: detect the times t, b, . . ., tx of regime switch,
where K is also unknown.

This is a segmentation problem.



Bernoulli example: F,, ) is Bernoulli(u = py).
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The reconstruction p = (py, . . ., Peooo) is obtained by solving
the total variation optimization problem

min_1(p).

pER2000

with f(p) = —log L(p; Y) + A Y% |pest — .

(L. Rudin , S. Osher and E. Fatemi (1992), Nonlinear total
variation based noise removal algorithms).



Total variation is also employed in image processing

Chess256-16 noisy Chess256-16

Universal TV Adaptive universal TV

Gaussian image data Y;; ~ N(u;j,n).



Total variation is also employed in image processing

Chess256-16 noisy Chess256-16

Universal TV Adaptive universal TV

Gaussian image data Y;; ~ N(u;j,n).



Total variation can also be employed to non-piecewise constant
images to denoise the noisy image.

noisy boat

Gaussian image data Y;; ~ N(u;j, 7).
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Denoising Energetic Gamma Ray Experiment Telescope data.
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Poisson image data Y;; ~ Poisson(; ;).



Data set 7: compressed sensing
[Candes, Donoho, Tao, Tanner (2006)]
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Mathematical model (noiseless case):

y = Xu,

where X is an n x N matrix with n < N.
Goal: retrieve u from a linear system of less equations than
unknowns!



Mathematical model (noiseless case):

y = Xu,

where X is an n x N matrix with n < N.
Goal: retrieve u from a linear system of less equations than
unknowns!

Additional assumption: p is sparse with k out of n non-zero
entries.

By solving

min |||y subject to (s.t.) Yy = Xpu,
©w

one may be able to retrieve u exactly!



Data set 8: Netflix price.

Movie |1 2 3 4 P
User1|? 7 1 7
User2 |? ? 7 3

1?2 72 5

User 3

UserN|? 2 7 7

where N = 500’000, P = 20’000, 99% ratings missing,
ratinge {1,2,3,4,5}.

Goal: $1 M prize for 10% improvement in filling *?’ correctly.



Proposal to recover the entire matrix X from partial
observations Ypp:

min Yoo — Xnp)?  s.t. rank(X) = r.
LY (Y X st rank(X)
observed (n,p)

Combinatorially very hard.
Instead, convexify the problem by solving

min Y (Yoo = Xup)? st [ X[l < A,
XeMnxp
observed (n,p)

where [ X[l = >_; Aj(X) is the nuclear norm of X' (sum of
singular values of X).



3. Summary

Many statistical estimators X are defined as minimizer of a
function

f: X - R

X — f(x)

where:
» fis the cost function
» X is the feasible set.

Notation: f* = minycx f(X) and X = arg minycx f(X) =: x*.



Many statistical estimators are based on f of the form
f(x) = ¢(X; Y) + X pen(x)

inspired by Tikhonov (1963) regularization.
They can be seen as a maximum a posteriori estimator where
A pen(X) is the negative log-prior distribution.

Most Bayesian estimators are rather based on posterior mean
calculated by MCMC methods.



4. What you will learn and not learn in this course

| expect you to be proactive, ask questions and have ideas.

Will learn:

» mathematical optimization issues, e.g., existence,
unigueness, convexity, optimality conditions

» descent algorithms
» non-differentiable convex optimization

Will not learn:
» discrete optimization

» non-descent algorithms (simulated annealing, genetic
algorithms)

» how to prove convergence of algorithms



