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1. Some applications of optimization

I decision making, management, e.g., best strategy
I engineering design, e.g., minimal cost for maximal

reliability
I utilization of resources, e.g., energy (hydro-electricity,

windmills, nuclear, ...)
I minimal cost, maximal profit, minimal risk
I statistics



2. Optimization in Statistics/Machine learning

Data set 1: N = 5x20 measurements of speed of light
(Michelson, 1879)

0 20 40 60 80 100

2
9
9
7
0
0

2
9
9
8
0
0

2
9
9
9
0
0

3
0
0
0
0
0

Index

s
p
e
e
d
 (

k
m

/s
)

speed of light



To estimate the speed of light µ, we can think about finding a
value µ̂ the closest to the data:

I with the `2 metric

µ̂ = arg min
µ∈R

f (µ)

with f (µ) =
∑N

n=1(yn − µ)2 = ‖y− µ1‖22.
I with the `1 metric

µ̂ = arg min
µ∈R

f (µ)

with f (µ) =
∑N

n=1 |yn − µ| = ‖y− µ1‖1.



I if we assume

Y1, . . . ,YN
i.i.d.∼ N(µ, σ2),

then you know that (ȳ , s2) = (µ̂, σ̂2)(MLE).

This means that

(ȳ , s2) = argmax
µ∈R,σ>0

L(µ, σ2; y1, . . . , yN)

= argmin
µ∈R,σ>0

f (µ, σ),

where
f (µ, σ2) = − log L(µ, σ2; y1, . . . , yN)

is the negative log-likelihood.



Data set 2: Time series Yt = log(pt/pt−1) consists of
log-returns for the price pt of the stocks at time t .
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Contemporary finance seeks to control the risk/volatility.



The ARCH model (Engle, 1982) assumes

Yt = σtεt

σ2
t = α0 + α1Y 2

t−1, (1)

where εt
i.i.d.∼ (0,1), α0 > 0 and α1 ≥ 0.

The corresponding likelihood function

L(α0, α1; y) = ΠT
t=2

1√
2π(α0 + α1y2

t−1)
exp(−

y2
t

2(α0 + α1y2
t−1)

)

can be maximized to get the MLE

(α̂0, α̂1)(MLE) = arg max
α0>0,α1≥0

f (α0, α1),

where f (α0, α1) = L(α0, α1; y).



Data set 3: estimation of density function f from

Y1, . . . ,YN
i.i.d.∼ fY .

Example: SAT math score

I Histogram f̂Y ,λ: nonparametric estimator of fY .
Its smoothness is governed by a regularization
parameter λ, called binwidth.

I Gaussian parametric model with k = 2 modes:

fY = p1 N(µ1, σ
2
1) + p2 N(µ2, σ

2
2).

The five parameters can be estimated by

(p̂1, µ̂1, µ̂2, σ̂1, σ̂2) = arg max
p1∈[0,1], µ1∈R, µ2∈R, σ1>0, σ2>0

f (p1, µ1, µ2, σ1, σ2),

where f (p1, µ1, µ2, σ1, σ2) = L(p1, µ1, µ2, σ1, σ2; y).

http://www.shodor.org/interactivate/activities/Histogram/


Data set 4: Regression for a medical prognostic.

N = 97 men are about to receive a prostatectomy.
One response and P = 8 covariates measured on each patient:

I Y = lpsa: log(prostate specific antigen) is the response variable

I X1 = lcavol: log(cancer volume)

I X2 = lweight: log(prostate weight)

I X3 = age: age of patient

I X4 = lbph: log(benign prostatic hyperplasia amount)

I X5 = svi: seminal vesicle invasion

I X6 = lcp: log(capsular penetration)

I X7 = gleason: Gleason score

I X8 = pgg45: percentage Gleason scores 4 or 5.

Goal 1: predict Y based on knowledge contained in X1, . . . ,X8.
Goal 2: disregard unimportant covariates.



A standard approach assumes a linear model:

Yn = α0 +
P∑

p=1

αpXnp + εn

and estimate the coefficients α = (α0, . . . , αP) for a good fit
based on the `2 metric:

α̂(LS) = arg min
α∈RP+1

f (α)

where f (α) = ‖y− Xα‖2
2 =

∑N
n=1(yn − α0 −

∑P
p=1 αpXnp)2.

The cost function f is differentiable, ie, ∇αf (α) exists everywhere.
We will see the first order optimality conditions play a key role:

∇αf (α) ≡ 0⇔ X TX α̂(LS) := X Ty.



In many modern applications, e.g.,
I chemometrics
I genetics
I cancer research

we have more information/covariates than subjects, aka, the
P > N situation.

Consequently, the normal equations have an infinite number of
solutions.
LS estimation does not lead to a unique estimate,
and the bias–variance tradeoff is poor!



Improved estimators have been proposed, including:
I Ridge regression (Hoerl and Kennard, 1970) regularizes

least squares by solving

min
α∈RP+1

f (α)

with f (α) = ‖y− Xα‖22 + λ‖α‖22 for some λ ≥ 0.



I Lasso (Tibshirani, 1996) instead solves

min
α

1
2
‖y− Xα‖22 + λ‖α‖1

for some λ ≥ 0.

Note: the intercept α0 is often not penalized.

The cost function f is not differentiable, leading to the notion of
subdifferential ∂f (set of subgradients).

We will see the first order optimality conditions for α̂λ to be a
solution are

0 ∈ X TX α̂λ − X Ty + λs =: ∂f (α̂λ),

where s ∈ ∂‖α‖1 with sp =


{1} if αp > 0
{−1} if αp < 0
[-1,1] if αp = 0.



Note: sparsity property for λ ≥ ‖X Ty‖∞.

Typical lasso path:
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Data set 5: N = 173 crabs. We have the following
measurements:

I the response Y = Number of males attached to the female,
I P = 1 covariate: X1 = Width of female crab
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Poisson generalized linear model assumes

Yn | xn ∼ Poisson(ηn) with ηn = exp(α0 + α1xn),

where exp is the canonical inverse link function, and
estimates α by MLE

α = arg min
α∈R2

f (α)

with
f (α) = − log L(α; y) =

∑N
n=1 exp(α0 + α1xn)− yn(α0 + α1xn).



Another possible GLM model is

Yn | xn ∼ Poisson(ηn) with ηn = α0 + α1xn,

and estimates α by MLE

α = arg min
α∈Ω⊂R2

f (α), where Ω = {α ∈ R2 : α0+α1xn > 0 for all n}

with f (α) = − log L(α; y) =
∑N

n=1 α0 +α1xn− yn log(α0 +α1xn).



For the P > N situation in GLM, Park and Hastie
(L1-Regularization Path Algorithm for GLM, 2007) solve

min
α
− log L(α; y) + λ‖α‖1.

with the glmnet library in R that solves

Comment: if not all entries of α are penalized, the optimization
may not have a solution.



Data set 6: Observations Yt over time t = 1, . . . ,2000.
We believe they come from a succession of regimes.

Model:
Yt ∼ F(µt ,η) for t = 1, . . . ,2000,

where µt = E(Yt ) is a piecewise constant function and
η a nuisance parameter.
Each constant piece is a regime.

Goal: detect the times t1, t2, . . . , tK of regime switch,
where K is also unknown.

This is a segmentation problem.



Bernoulli example: F(µt ,η) is Bernoulli(µt = pt ).
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The reconstruction p̂ = (p̂1, . . . , p̂2000) is obtained by solving
the total variation optimization problem

min
p∈R2000

f (p),

with f (p) = − log L(p; Y) + λ
∑1999

t=1 |pt+1 − pt |.

(L. Rudin , S. Osher and E. Fatemi (1992), Nonlinear total
variation based noise removal algorithms).



Total variation is also employed in image processing

Chess256-16 noisy Chess256-16

Universal TV Adaptive universal TV

Gaussian image data Yi,j ∼ N(µi,j , η).



Total variation is also employed in image processing

Chess256-16 noisy Chess256-16

Universal TV Adaptive universal TV

Gaussian image data Yi,j ∼ N(µi,j , η).



Total variation can also be employed to non-piecewise constant
images to denoise the noisy image.

boat noisy boat

Universal TV Adaptive universal TV

Gaussian image data Yi,j ∼ N(µi,j , η).



Denoising Energetic Gamma Ray Experiment Telescope data.
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Data set 7: compressed sensing
[Candes, Donoho, Tao, Tanner (2006)]

Positron emission tomography scanner



Positron emission tomography integration lines



Mathematical model (noiseless case):

y = Xµ,

where X is an n × N matrix with n < N.
Goal: retrieve µ from a linear system of less equations than
unknowns!

Additional assumption: µ is sparse with k out of n non-zero
entries.

By solving

min
µ
‖µ‖1 subject to (s.t.) y = Xµ,

one may be able to retrieve µ exactly!
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Data set 8: Netflix price.

Movie 1 2 3 4 . . . P
User 1 ? ? 1 ? . . .
User 2 ? ? ? 3 . . .
User 3 1 ? ? 5 . . .

...
User N ? 2 ? ? . . .

where N = 500′000, P = 20′000, 99% ratings missing,
rating∈ {1,2,3,4,5}.

Goal: $1 M prize for 10% improvement in filling ’?’ correctly.



Proposal to recover the entire matrix X from partial
observations Ynp:

min
X∈MN×P

∑
observed (n,p)

(Ynp − Xnp)2 s.t. rank(X ) = r .

Combinatorially very hard.

Instead, convexify the problem by solving

min
X∈MN×P

∑
observed (n,p)

(Ynp − Xnp)2 s.t. ‖X‖∗ ≤ λ,

where ‖X‖∗ =
∑

j λj(X ) is the nuclear norm of X (sum of
singular values of X ).



3. Summary

Many statistical estimators x̂ are defined as minimizer of a
function

f : X → IR

x → f (x)

where:
I f is the cost function
I X is the feasible set.

Notation: f ∗ = minx∈X f (x) and x̂ = arg minx∈X f (x) =: x∗.



Many statistical estimators are based on f of the form

f (x) = `(x; Y ) + λ pen(x)

inspired by Tikhonov (1963) regularization.
They can be seen as a maximum a posteriori estimator where
λ pen(x) is the negative log-prior distribution.

Most Bayesian estimators are rather based on posterior mean
calculated by MCMC methods.



4. What you will learn and not learn in this course

I expect you to be proactive, ask questions and have ideas.

Will learn:
I mathematical optimization issues, e.g., existence,

uniqueness, convexity, optimality conditions
I descent algorithms
I non-differentiable convex optimization

Will not learn:
I discrete optimization
I non-descent algorithms (simulated annealing, genetic

algorithms)
I how to prove convergence of algorithms


