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1. Problem statement
We want to minimize a function

f : X ⊂ IRN → IR

x → f (x)

where:
I f is the cost function
I X is the feasible set.

Notation: we want to solve minx∈X f (x).

A solution is
x∗ ∈ arg min

x∈X
f (x).

If the solution is unique then

x∗ = arg min
x∈X

f (x)



Property: maximizing f is equivalent to minimizing −f .

Goal: find a
I global solution x∗ ∈ X : a point such that

f (x∗) ≤ f (x) ∀x ∈ X

I or at least a local solution x̃ ∈ X : a point such that

∃ε > 0 : f (x̃) ≤ f (x) ∀x ∈ X such that ‖x− x̃∗‖ < ε.



Optimization problems are classified in several groups:
I discrete (e.g., combinatorial route planning, matching, and

integer programming) versus continuous
I univariate versus multivariate
I unconstrained (X = IRN) versus

constrained (e.g., {x ∈ IRP : ‖x‖1 ≤ C}).

The constraints can be for instance:
I equality or inequality constraints. Note that:

I gi(x) = ci is equivalent to two inequality constraints.
I gi(x) ≤ ci is equivalent to gi(x) + si = ci and si ≥ 0; this last

variable is called a slack variable.
I linear or non-linear constraints.
I box constraints if X = I1 × . . .× IN , where In’s are closed

intervals



I linear programming: f is linear and X is specified by linear
inequality constraints.
The optimal solutions can be found by searching among
the finite set of extreme points of the polyhedron X , for
instance with the simplex method.

I convex programming: f is convex and X is defined by linear
equality constraints and convex inequality constraints of
the form hj(x) ≤ 0 with hj convex for j = 1, . . . , J.

I nonlinear programming
I differentiable versus nondifferentiable optimization



2. Existence

Proposition: (Weierstrass’ Theorem)
Let f : X ⊂ IRN → IR be lower semicontinuous in X .
If either one of the following conditions holds:

I X is compact
I X is closed and f is coercive
I there exists γ such that the level set

{x ∈ X : f (x) ≤ γ}

is nonempty and compact

then there exists x∗ ∈ X such that f (x∗) = minx∈X f (x).



Counter-example 2.1: f (x) = exp(x) on D = (0,1].
Counter-example 2.2: f (x) = − log(x) on D = R+∗.
Counter-example 2.3: f (x) = −x · 1(x < 0.5) on D = [0,1] (upper
semicontinuous)



3. Optimality conditions

Necessary optimality conditions
Let x? be an unconstrained local minimum of f : IRN → IR, and
assume that f is continuously differentiable in an open set S
containing x?. Then

∇f (x?) = 0. (First order necessary condition)

If moreover f is twice continuously differentiable within S, then

∇2f (x?) ≥ 0†. (Second order necessary condition)

[† positive semidefinite]

Proof.



Propositions for convex case
Let f : X → IR be convex over the convex set X .

I A local minimum of f over X is also a global minimum
over X .

I If the convexity is strict, then there exists at most one
global minimum of f over X .

I If f is continuously differentiable and X is open, then
∇f (x?) = 0 is a necessary and sufficient condition for
x? ∈ X to be a global minimum of f over X .

Proof: postponed.



4. Convex set and function

Definition of convex set: A set C ⊂ RN is convex if for every
x ∈ C and y ∈ C, the line segment joining x and y also lies in C,
i.e., for every λ ∈ [0,1], then λx + (1− λ)y ∈ C.

Example: a banana is not convex, an orange is.



Property: Let Ci be convex sets.
Then the intersection

⋂
Ci is also convex.

Recall: an hyperplane is a set of the form {x ∈ IRN : aTx = b}
for a 6= 0 and b ∈ IR.
An hyperplane divides IRN into two halfspaces, e.g., the closed
halfspace {x ∈ IRN : aTx ≥ b}.
Halfspaces are convex.

Applications in Statistics:
I Total variation density estimation:

min
f>0
−

N∑
n=1

log fn + λ

N−1∑
n=1

|fn+1 − fn| s.t. wT f = 1.

I Poisson GLM for a regression matrix XN×P .
The set {α ∈ IRP : µ = Xα > 0} is convex.



Definition
A convex combination of x1, . . . ,xN is a point of the form

λ1x1 + . . .+ λNxN

with λn ≥ 0 for all n ∈ {1,2, . . . ,N} and
∑N

n=1 λn = 1.

Definition
The convex hull of a set C is the set of all convex combinations
of points in C. Convex hulls are convex.

Example: Poisson GLM with log or identity link for extrapolation.

Property
The image of a convex set under an affine transformation is
convex. Same for the inverse image.



Definition of convex function
A function f (x) defined on a convex set C is:

I strictly convex on C if

f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

for all x, y in C with x 6= y and all 0 < λ < 1.



I convex on C if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

for all x, y in C and all 0 ≤ λ ≤ 1.

Equivalently, a function is convex iff its epigraph

epi(f ) = {(x, y) : x ∈ IRN, y ∈ IR, y ≥ f(x)} ⊆ IRN+1

is a convex set.



Convexity in Statistics: many statistical estimators solve

min
x

loss(x ;Y ) + λ pen(x)

Examples:
I Gaussian negative log-likelihood:

loss(x ;Y ) =
1
2
(x − Y )2

I `1 and `2 penalties:

pen(x) = |x | and pen(x) = x2

I Poisson negative log-likelihood:

−l(x ;Y ) = −Y log x + x

I Support vector machine regression loss:

loss(x ,Y ) =

{
0 |x − Y | ≤ τ
|x − Y | − τ else

I Support vector machine classification loss:

loss(x ,Y ) = (1− Yx)+



I Robust regression with Huber loss function

loss(x ,Y ) =

{
(x − Y )2/2 if |x − Y | ≤ τ
τ |x − Y | − τ2/2 else

I Total variation penalty for segmentation

pen(x) =
N−1∑
n=1

|xn+1 − xn|
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Properties:
I a linear function is convex.
I any vector norm is convex.
I the weighted sum of convex functions, with positive

weights, is convex. Moreover if at least one of the functions
is strictly convex, then the weighted sum is strictly convex.

I if f is convex, then f (Ax + b) is convex. If moreover
ker(A) = {0} and f is strictly convex, then f (Ax + b) is
strictly convex.

I a convex function on C open and convex is continuous.

Applications: ridge regression, lasso, total variation,
soft-waveshrink, support vector machine, etc...



Proposition: Let C ∈ IRN be a convex set and let f : IRN → IR
be differentiable on C.

I The function f is convex on C iff

f (z) ≥ f (x) + (z− x)T∇f (x), ∀x, z ∈ C (1)

I If the inequality (1) is strict whenever x 6= z, then f is strictly
convex over C.

Proof.



Propositions Let C ⊂ IRN be a convex set, let f : IRN → IR be
twice continuously differentiable on C, and let Q be a real
symmetric N × N matrix.

I If ∇2f (x) ≥ 0 on C, then f is convex on C.
Proof.

I If C = IRN, then the converse is true.
Consequence: the quadratic function f (x) = xTQx is
convex iff Q is positive semidefinite.

I If ∇2f (x) > 0 on C, then f is strictly convex on C.
Converse is false: take f (x) = x4.

I The quadratic function f (x) = xTQx is strictly convex iff Q
is positive definite.
Proof.



We can now prove the Propositions on page 9.



Use of optimality conditions

In the absence of convexity, we have the following sufficiency
conditions for local optimality.

Second order Sufficient optimality conditions
Let f : IRN → IR be twice continuously differentiable in an open
set S. Suppose that a vector x? ∈ S satisfies

∇f (x?) = 0 and ∇2f (x?) positive definite.

Then x? is a strict unconstrained local minimum of f .



In practice, to solve unconstrained optimization:
I 1. Check twice continuous differentiability of cost function.

2. Find all stationary points.
3. Check positive semidefiniteness at these points; disregard

those where it is not positive semidefinite.
4. Check positive definiteness at remaining points. Those are

strict local minima.
I 1. Check continuous differentiability of cost function.

2. Check existence of a solution.
3. Find all stationary points.
4. Declare as global minimum the one(s) with smallest cost.



Solving
∇f (x?) = 0

is often as difficult as finding x? such that

f (x?) ≤ f (x) ∀x ∈ IRn.

The condition ∇f (x?) = 0 is used to check optimality.

Iterative algorithms terminate when optimality conditions hold
up to an approximation level

Stop at k th iteration when ‖∇f (xk )‖/‖∇f (x0)‖ < ε,

for some small ε > 0.


