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1. Basis Pursuit denoising (Chen, Donoho and Saunders, 1999)

Instead of using an orthonormal set of wavelets (i.e., as many
wavelets as observations N) to write

µ = Φα,

they want to use an overcomplete (P > N) set of wavelets.

Since Φ is no longer orthonormal, solving

min
α∈RN

1
2
‖y− Φα‖22 + λ‖α‖1,

becomes difficult.



Example of overcomplete wavelets: Haar translation invariant.
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Example of overcomplete wavelets: Wavelet packets, cosine
packets, chirplets, ... (Meyer, Daubechies, ...)
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Many overcomplete sets of wavelets are orthonormal union
complete matrix:

W =
⋃

j

Wj ,

where Wj orthonormal.

In that case solving Basis pursuit denoising,

min
α

1
2
‖Y−

⋃
j

Wj

α‖22 + λ‖α‖1. (1)

with at least two algorithms:
1. Block coordinate relaxation [Sardy, Bruce and Tseng, 2000].
2. Primal-Dual log-barrier interior point algorithm [CDS, 1999].



1. BCR is easy to understand and implement.

I choose a block j
I fixed all entries of α constant except αj ∈ RN

I solve

min
αj∈RN

1
2
‖rj −Wjαj‖22 + λ‖α−i‖1 + λ‖αj‖1.

with rj = Y−W−jα−j

I change j and repeat

A general theorem proves convergence to the global minimum
[Tseng, 2001 “Convergence of block coordinate descent method for
nondifferentiable minimization”]



2. Primal-Dual log-barrier interior point algorithm

CDS make the substitution α = x+ − x− with x = (x+,x−) ≥ 0;
hence

‖α‖1 = 1Tx.

They transform (1) into a quadratic programming problem

min
x,z

1
2
‖z‖22 + λ1Tx s.t. z = Y− Ax, x ≥ 0

with A = [Φ,−Φ].



Then, a logarithmic-barrier penalty −
∑2P

p=1 log xp for the
nonnegativity constraints on x, multiplied by a barrier parameter
µ > 0, is added, yielding the penalized subproblem:

min
x,z

1
2
‖z‖22 + λ1Tx− µ

2P∑
p=1

log xp s.t. z = Y− Ax (2)

with implicit inequality constraints.

The KKT conditions are

0 = −ATz− u + λ1 =: rx

0 = Y− Ax− z =: ry

0 = µ1− XU1 =: rz ,

where X = diag(x) and U = diag(u), and x > 0 and u > 0.



CDS solve the corresponding non-linear equations
approximately with Newton’s method.
Conjugate gradient is employed to solve the corresponding
linear system:

rx = AT∆z + ∆u
ry = A∆x + ∆z
rz = X∆u + U∆x,

The Newton step in the Newton directions (∆x,∆u,∆z)
guarantees positivity of x and u at each step.

The parameter µ→ 0 is then updated and (2) approximately
solved repeatedly.



Implementing convex program in R with CVX.

library(CVXfromR) is using interior point methods.

http://cvxr.com/cvx/


Comparison between CDS’s and SBT’s algorithms:
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Application

Onboard Jamming
      Signals

Incoming Signals

Aircraft radar
warning receiver

Target Signal
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2. Subbotin waveshrink (Sardy, 2009)

Choosing W orthonormal and ν < 1,

min
α

1
2
‖y−Wα‖22 + λ‖α‖νν ,

is not a convex problem, but can be solved exactly.

One can show the corresponding thresholding function has a
closed form expression for threshold ϕ and jump κ:

ϕ(λ; ν) = (2− ν)[λ{2(1− ν)}ν−1]1/(2−ν)

κ(λ; ν) = ϕ(λ; ν)
2(1− ν)

(2− ν)
.
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3. Robust waveshrink (Sardy, Bruce and Tseng, 2001)
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Peter Huber is one of the main contributors to robust statistics.

min
α

1
2
‖y−Wα‖Huber + λ‖α‖1, (3)

where ‖r‖Huber =
∑P

p=1 ρ(rp) with:

ρ(r) =

{
r2/2 |r | ≤ τ
τ |r | − τ2/2 |r | > τ

.

Interestingly, one can show that

ρ(r) = min
β

1
2

(r − β)2 + τ |β|

leading to a BCR algorithm since (3) amounts to

min
α,β

1
2
‖y−Wα− Iβ‖22 + λ‖α‖1 + τ‖β‖1.



4. Lasso (Tibshirani, 1996)

For a given regularization parameter λ ≥ 0 (chosen by CV or
SURE among other methods), solve

min
α

1
2
‖Y− Xα‖22 + λ‖α‖1.

The first order necessary (and here sufficient) conditions also
known as Karush–Kuhn–Tucker (KKT) conditions are

xT
p(Y− X α̂) = λγp, p = 1, . . . ,P,

with

γp ∈


{+1} if α̂p > 0
{−1} if α̂p < 0
[−1,1] if α̂p = 0

.

which amounts to solving 0 ∈ ∂f (α) since there are no
constraints.



Property: αλ = 0 is the lasso solution iff λ ≥ ‖X TY‖∞ since the
KKT conditions tell us that it is necessary and sufficient to have
xT

pY ∈ λ[−1,1] for all p.

Ways to solve lasso:
I Relaxation: successively choose i and solve

min
αi

1
2
‖Y− X−iα−i − xiαi‖22 + λ‖α−i‖1 + λ|αi |

Theorem: Convergence to the global minimum [Tseng,
2001 “Convergence of block coordinate descent method for
nondifferentiable minimization”]

I LARS: [Efron, Hastie, Johnstone and Tibshirani, 2004]



Possibilities to accelerate convergence:
I Instead of cycling for i = 1,2, . . . ,P,1,2, . . . in a systematic

way, we could choose i in an adaptive way.
The optimal descent strategy chooses i as the index of the
maximum entry of the subdifferential∣∣∣∣∂{1

2
‖y− Xα‖22 + λ‖α‖1}

∣∣∣∣ .
[Sardy, Bruce, Tseng, 2000 ]

I Warm start!



Typical lasso path:
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4. Markov random field/total variation smoothing (Besag

1980’s, 90’s; Rudin, Osher, Fatemi, 1992)

We measure (Yn, xn)n=1,...,N according to the model

Yn = f (xn) + εn, εn
i.i.d.∼ (0,1),

where f is a univariate function we want to estimate.
Assuming f is a realization of a Markov random field (Bayesian
prior), e.g.,

π(fn | f) = π(fn | f∂n ) ∝ exp(−λ
∑
j∈∂n

φ(fn − fj)),

Hammersley-Clifford’s Theorem give the joint prior distribution
πλ(f).



Bayes Theorem then gives the posterior distribution.
The negative posterior log-likelihood can be minimized to
define the maximum a posteriori estimate (MAP)

min
f
‖Y− f‖22 + λ

N∑
n=1

∑
j∈∂n

φ(fn − fj) (4)

Besag (1986) “On the statistical analysis of dirty pictures"
Journal of the Royal Statistical Society proposed to solve the
optimization problem with ICM (Iterative Conditional Mode).

ICM is a coordinate descent algorithm. It converges for
differentiable φ, e.g., φ(δ) = δ2.



Instead of `2, we can try `1 loss with φ(δ) = |δ|, leading to total
variation smoothing

min
f∈RN

1
2
‖Y− f‖22 + λ

N−1∑
n=1

|fn+1 − fn|.

To calculate the MAP, we considered ICM, and it failed although
the paper claims:

"The cost function never increases at each stage and eventual
convergence is assured."

This is due to the fact that the non-differentiable penalty is not
separable.
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An algorithm that works it to transform

min
f

1
2
‖Y− f‖22 + λ‖Bf‖1,

where Bf =
∑N−1

n=1 |fn+1 − fn|, into

min
α
‖Y− Xα‖22 + λ‖α−1‖1,

where X is a lower triangular matrix of ones and α−1 is the
vector α but the first entry (corresponding to the intercept).

We are back to a lasso problem.



Alternative algorithm: Iterative dual mode algorithm (IDM,
Sardy, Tseng, 2004).

Consider the equivalent convex problem with linear constraints

min
f

1
2
‖Y− f‖22 + λ‖b‖1 s.t. b− Bf = 0.

and its Lagrange dual function

g(v) = min
f,b

1
2
‖Y− f‖22 + λ‖b‖1 + vT(b− Bf).

By convexity of the cost function, Slater’s conditions holds, so
one can instead maximize the dual problem

max
v

g(v)

to find the TV solution (no duality gap).



g∗ = max
v∈RN−1

min
f,b

1
2
‖Y− f‖22 + λ‖b‖1 + vT(b− Bf)

= max
v∈RN−1

min
f

1
2
‖Y− f‖22 − vTBf + min

b
λ‖b‖1 + vTb

= max
v∈RN−1

−1
2
‖BTv‖22 − YTBTv +

{
0 if ‖v‖∞ ≤ λ

−∞ otherwise

= max
v∈RN−1: ‖v‖∞≤λ

−1
2
‖BTv‖22 − YTBTv

The constraints are box-constraints on v and therefore
separable.

Consequently a relaxation algorithm solves the dual in v.

And
f∗ = Y + BTv∗ =: f̂λ,

the TV estimate for the given smoothing parameter λ.



5. Total variation density estimation (Sardy, Tseng 2010)

We have a sample x1, . . . , xN from an unknown density f .

Nonparametric MLE: letting l(f ; x) =
∑N

n=1 log f (xn), estimate f
as solution to

max
f

l(f ; x)

over the space of density functions. The solution

f̂ (x) =
1
N

N∑
i=1

δxi (x).

is degenerate (not in the space of bounded variation: its total
variation in unbounded).



Good and Gaskin (1971) defined the functional estimate f̂λ as
the solution to

max
f∈F

l(f ; x)− λΦ(f ) s.t.
∫

f (x)dx = 1, (5)

where F is a class of nonnegative-valued functions on Ω.

Various penalty functionals have been proposed including

Φ(f ) =


∫

f (x)′2/f (x)dx
4
∫
{∇
√

f}2 [GG 1971]∫
{∇3 log f}2 [Silverman 82]

.

We propose

ΦTV(f ) = sup
∑

j

|f (uj+1)− f (uj)|

where the supremum is taken over all possible partitions
[uj ,uj+1], j = 1, . . . ,M, of Ω.



Consider two spaces of functions:
I the space of zeroth-order splines on the u-partition,

F0
u = {f : [x1, xN ]→ < | f is constant on (ui−1,ui ), i = 1, . . . ,N} .

I the space of first-order splines on the x-partition,

F1
x =

{
f ∈ C0[x1, xN ] | f is linear on [xi−1, xi ], i = 2, . . . ,N

}
.

Property: TV of a monotone univariate function f on a closed
interval [α, β] is |f (β)− f (α)|.

The optimization problem on F becomes a finite-dimensional
optimization of the form:

min
f∈IRN
−

N∑
i=1

log fi + λ‖Bf‖1 s.t. aT f = 1,

This optimization problem has a unique solution.



6. Fused lasso (Tibshirani, Saunders, Rosset, Zhu, Knight, 2005)

min
α∈RP

1
2
‖Y− Xα‖22 + λ1

N−1∑
n=1

|αn+1 − αn|+ λ2‖α‖1.

Possible approaches:
1. TSRZK rewrite is as a quadratic program.
2. FISTA: fast iterative shrinkage-thresholding algorithms

(Beck and Teboulle 2009). For instance to solve

min
α

f (α) + g(α)

with f (α) = ‖Y− Xα‖22 and g(α) = λ‖Bα‖1.
Since αk+1 = αk − tk∇f (αk ) is solution to

min
α

f (αk ) + (α−αk )T∇f (αk ) +
1

2tk
‖α−αk‖2

2,

they solve, for tk ∈ (0,1/‖X TX‖),

min
α

f (αk ) + (α−αk )T∇f (αk ) +
1

2tk
‖α−αk‖2

2 + λ‖Bα‖1.



Take home message

Advices:
I Study EXISTENCE of a solution
I Study uniqueness
I Study the mathematical properties: dimension, constraints,

convexity, differentiability, etc.
I Do not use an algorithm as a black box, but read its

description, arguments
I TEST your algorithm

Other statistical issues:
I Selection of λ
I Study convex analysis: useful also for statistical properties.


