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1. Subgradients and subdifferential

Remember that a differentiable function f is convex on a convex
set C c RN iff

f(z) > f(x) + (z — x)"Vi(x) vx,z€ C.
Definition: a subgradient of a convex function f at x is
any g € RN such that
fz) > f(x)+(z—x)'g vzeC.
Definition: the subdifferential of a convex function f at x is the
set of all subgradients
df(x) := {g € RV : gis a subgradient of f at x}.

Geometric interpretation: g indexes hyperplanes tangent to the
graph of f at x.



Examples:
» f(x) = |x|. The subdifferential of f at x is

_ {sign(x)} ifx#0
af(x)':{ [—g1,1] ifx=0 "

» f(X) =||x]|1 = Z,’L fa(X) with f,(X) = |xp|. The
subdifferential of f at x is

N

B ) [ {sign(xn)} ifxp#0
1= sven witn = { (GO} 07T

n=1

where e, is the nth canonical vector.



» f(x) = ||x||2. The subdifferential of f at x is

i itx#0
o) "{ @zl <1} ifx=0



2. Calculus of subdifferential

Properties:

» fis differentiable at x iff 0f(x) = {Vf(x)}.
0f(x) is closed and convex, and honempty.
J (Mf(x)) = Nof(x) if A > 0.

9 (fi(x) + f(x)) = 0f1(x) + Of(X).
Of(Ax + b) = ATOf(Ax + b).
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Optimality condition
For any convex function f : RN — R, a point x* € RN is a global
minimum of f iff the condition 0 € 9f(x*) holds:

X* € arg xrgg}v < 0 € of(x™).



3. Some simple applications in Statistics

» Example 1: min, 5(y — w)? + Aw|.
A minimum exists and is unique, and

{w—y—-2X} if w<0,
ofw)=< [w—y—-Aw—-y+) ifw=0,

{w—y+2} ifw>0.
So
Wi =y+X ify<-»A
0cof(w") < w* =0 ifye[—)\,)\]
wi=y—X ify> A\
& W*:max[(1—i),0]y.
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The function 7" (y) = max[(1 — m) Oly
is the soft-thresholding function
(Donoho and Johnstone, 1994).



» Example 2: solve
min1|| xa||3 + Ale
= - (6
a€R 2 y @2 ’

where y and x are in RV,
» Example 3: solve

’
min =y — a3 + A||e|1,
gi; L 12 + Allee]l4

where y € RN and ¢ is is an orthonormal matrix.
y

This estimation problem occurs for denoising a signal
using wavelets.



What is a signal denoising problem?
A univariate function u(x) observed with noise

Yn:M(Xn)+€n n:1,,N
The goal is to recover p from noisy observations Y.

One approach assumes
p() =D djx(X)ajk,
j Kk

where ¢; x are known orthonormal basis functions indexed by
level j and translation k.



Haar wavelets (1910):
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lllustration of sparse wavelet representation:

dée

ds

da

d3

d2

di

s1

Qa1




A noisy signal and its wavelet representation:

dée

ds

d4a

d3

dz2

di

s1




Once discretized and vectorized the wavelet-based model
becomes
Y=o +e.

To achieve sparse estimation of a, Donoho and Johnstone
(1994) define the soft-waveshrink estimator which

soft-thresholds
soft ( &LS)

G\ = 1y
the least squares wavelet coefficients

&M = oY ~ N(a, o2 Iy).

Interestingly

n 1
(&%) = arg min S|y — Pa|5 + Al
acRN 2



Introduction to duality problem

Given the (primal) general problem
minf(x) with C={xeRV: {
xeC

define the Lagrangian as

L(x,u,v) = +Zu,h(x +ZVJ

with u > 0 and L(x,u,v) = —oco for u < 0.

Clearly f(x) > L(x,u,v) forallx € C.

so f* > minycc L(X,u,v) > miny L(X,u,Vv) =: g(u,Vv).

h,(X)§0 i=1,...
(x)=0 j=1,...



Definition: g(u, v) is the Lagrange dual function and (u, v) are
the dual variables.

Clearly the best lower bound of f* based on the dual function is

g" = max g(u,v) (Dual problem).
u>0,v

Consequently f* > g*, called weak duality.

Strong duality f* = g* holds assuming Slater’s condition: f and
h; are convex (convex program) and if there exists x strictly
satisfying the non-affine inequality contraints.



What is the use of duality?

» maximizing the dual problem (which may be easier to
solve) leads to a solution to the primal problem.

» the duality gap
0="Ff(x)—g(u,v)>0

should be zero at (x,u, v) = (x*,u*,v*) when strong
duality holds (can be used to check convergence of
algorithm).



Karush-Kuhn-Tucker conditions

Given the (primal) general problem

xeC
the first order KKT optimality conditions are

0 € 9f(x) + >_; uiohi(x) + >, vjoli(X)
U,'h,'(X) =0Vi
hi(x) <0, f(x) = 0 Vi,j
u>0Vi
Assuming strong duality holds,

(x*,u*, v*) are primal and dual solutions

)

(x*,u*, v*) satisfy the KKT conditions.

: c _ N . h,(X)SO i:1,...
min f(x) with C_{XG]R '{/j(x):O j=1....



