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Natural magnetism in lodestone 
(magnetite) known for millennia 

6th century BC: first “scientific” 
discussions by Thales of Miletus
and Shushruta of Varansi.

Magnetism

Name derived from Μαγνησία – a  
Greek province rich in iron ore

Several practical uses, but poor 
understanding of its nature



1820 Hans Christian Ørsted
discovers by accident that electric 
current induces magnetic field

1820-30 André-Marie Ampère;
Carl Friedrich Gauss; Jean-Baptiste 
Biot & Félix Savart – a formula

1831 Michael Faraday – varying magnetic flux 
induces an electric current

1855-1873  James Clerk Maxwell synthesizes 
theory of electricity, magnetism and light, 
writes down Maxwell's equations

Relation with electricity



1895 Pierre Curie in his doctoral thesis
studies types of magnetism, discovers 

• the effect of temperature 

• a phase transition at the Curie point

The phenomenon occurs at the atomic scale

Ferromagnetism



1920 Wilhelm Lenz 
introduces a lattice model 

for ferromagnetism
Lenz argued that “atoms are dipoles 
which turn over between two positions”:
• their free rotatability was incompatible 

with Born’s theory of crystal structure; 
• but they can perform turnovers as 

suggested by experiments on 
ferromagnetic materials;

• in a quantum-theoretical treatment 
they would by and large occupy two 
distinct positions.
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There is a good reason why no explanation for 
magnetism was found before 20th century: 
the Bohr–van Leeuwen theorem shows that 
magnetism cannot occur in purely classical solids

The Lenz argument is flawed, but the model is 
basically correct – the property of ferromagnetism 
is due to two quantum effects:
• the spin of an electron

(hence it has a magnetic dipole moment)
• the Pauli exclusion principle 

(nearby electrons tend to have parallel spins)

Quantum mechanics



who proposed a specific 
form of interaction

Squares of two colors, 
representing spins s=±1

Nearby spins want to be the 
same, parameter x :

Prob ≍x#{+-neighbors}

≍ exp(-β∑ neighbors s(u)s(v))

(in magnetic field multiply 

by exp(-µ∑ us(u)))

1920-24: The Lenz-Ising model

Lenz suggested  the model to his student Ernst Ising, 



1924: Ernst Ising thesis 
“no phase transition in dimension 1”
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Length n+1 chain, the leftmost spin is +
Z = Σconf. x

#{(+)(-)neighbors} = (1+x) n

The rightmost spin is + for even powers of x
Z+ = { (1+x) n + (1- x) n } / 2

So the probability
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which tends exponentially to ½ 



Ising wrongly concluded that there is 
no phase transition in all dimensions. and 
Never returned to research, teaching physics at a college
The paper was widely discussed 
(Pauli, Heisenberg, Dirac, …) with 
consensus that it is oversimplified
Heisenberg introduced an XY model 
after writing “Other difficulties are 
discussed in detail by Lenz, and Ising
succeeded in showing that also the 
assumption of aligning sufficiently 
great forces between each of two 
neighboring atoms of a chain is not 
sufficient to create ferromagnetism”



Unexpectedly proves that in dimension 2 
the Lenz-Ising model undergoes a phase 
transition, which reignites the interest

1936 Rudolf Peierls

His perhaps more influential work:
1940 memorandum with Otto Frisch  often 
credited with starting the Manhattan project



Peierls’ argument

(2n+1)×(2n+1), boundary“+”,   P[σ(0)=“+”]=?

P[        ]≤ xl/(1+xl) ≤ xl,  l=length of

P[σ (0)=“–”] ≤ Σj=1,..,n Σl≥2j+2 3lxl 

≤ (3x)4/(1-(3x)2)(1-3x) ≤ 1/6,  if x≤1/6.



Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob ≍ x#{+-neighbors}



1941 Kramers-Wannier

Derive the critical temperature )21/(1 critx



1941 Kramers-Wannier

)21/(1 critx
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High-low temperature duality

x-Ising ↔ dual lattice y-Ising,   
𝒙

𝟏
=

𝟏−𝒚

𝟏+𝒚

Z = Σspin conf. x
#{(+)(-)neighbors}

≍ Σspin conf. Π edge<ij> (1+ys(i)s(j))
= Σspin conf. 

Σedge conf.  Π <ij> in conf.  ys(i)s(j)
= Σedge conf. 

Σspin conf. Π <ij> in conf.  ys(i)s(j)
= Σeven  edge conf. y#{edges}

Self-dual if x=y, i.e. 



1944 Lars Onsager

A series of papers 1944-1950, some 
with Bruria Kaufman. Partition 
function, magnetization and other 
quantities derived. It took a chemist! 



2D Ising is “exactly solvable”

From 1944 widely studied in mathematical 
physics, with many results by different methods:

Kaufman, Onsager, Yang, Kac, Ward, Potts, 
Montroll, Hurst, Green, Kasteleyn, McCoy, Wu, 
Tracy, Widom, Vdovichenko, Fisher, Baxter, …

• Only some results rigorous

• Limited applicability to other models, but still 
motivated much research

Eventually regained prominence in physics, used 
in biology, economics, computer science…



1951Renormalization Group

Petermann-Stueckelberg 1951, …
Kadanoff, Fisher, Wilson, 1963-1966, …
Block-spin 
renormalization 
≈ rescaling +

change of x
Conclusion: 
At criticality 
the scaling limit 
is  described by a “massless field theory” 
The Curie critical point is universal and hence
translation, scale and rotation invariant



Renormalization Group
A depiction of the space of 
Hamiltonians H showing initial 
or physical manifolds and the 
flows induced by repeated 
application of a discrete RG 
transformation Rb with a 
spatial rescaling factor b (or 
induced by a corresponding 
continuous or differential RG). 
Critical trajectories are shown 
bold: they all terminate, in the 
region of H shown here, at a 
fixed point H*. The full space 
contains, in general, other 
nontrivial (and trivial) critical 
fixed points,…

From [Michael Fisher,1983]



1985 Conformal Field Theory
Belavin, Polyakov, 
Zamolodchikov 1985
Conformal transformations
= those preserving angles
= analytic maps
Locally translation +
+ rotation + rescaling
So it is logical to suppose 
conformal invariance bin the 
scaling limit. 
Allows to derive many 
quantities (unrigorously)



Beautiful algebra, but analytic 
and geometric parts missing 
or nonrigorous
Spectacular predictions, e.g.
by Den Nijs and Cardy:

2D CFT

Percolation (Ising at infinite T or x=1): 
hexagons are coloured white or yellow 
independently with probability ½. 
Is there a top-bottom crossing of white 
hexagons? Difficult to see! Why?

HDim (percolation cluster)= ?



Beautiful algebra, but analytic 
and geometric parts missing 
or nonrigorous
Spectacular predictions, e.g.
by Den Nijs and Cardy:

2D CFT

Percolation (Ising at infinite T or x=1): 
hexagons are coloured white or yellow 
independently with probability ½. 
Connected white cluster touching the 
upper side is coloured in blue, it has

HDim (percolation cluster)= 91/48



Last decade

Two analytic and geometric approaches
1) Schramm-Loewner Evolution: a 

geometric description of the scaling 
limits at criticality

2) Discrete analyticity: a way to rigorously 
establish existence and conformal 
invariance of the scaling limit

• New physical approaches and results
• Rigorous proofs
• Cross-fertilization with CFT



Schramm-Loewner Evolution

A way to construct     
random conformally 
invariant fractal curves, 
introduced in 1999 by 
Oded Schramm (1961-2008)

Percolation→SLE(6)         Uniform Spanning Tree →SLE(8)

[Smirnov, 2001] [Lawler-Schramm-Werner, 2001]



from Oded Schramm’s talk 1999



• Draw the slit 

Schramm-Loewner Evolution



• Draw the slit 
• Stop at ε capacity increments

Schramm-Loewner Evolution



• Draw the slit 
• Stop at ε capacity increments
• Open it up by a conformal 

map Gε = 𝒛 + wε +
𝟐ε
𝒛

+…

Schramm-Loewner Evolution

Gε

Gε

Gε



• Draw the slit 
• Stop at ε capacity increments
• Open it up by a conformal 

map Gε = 𝒛 + wε +
𝟐ε
𝒛

+…

• Composition of iid maps 

Gnε = 𝒛 + wnε +
𝟐nε

𝒛
+ … =

= Gε(Gε(Gε( … ))) =

= 𝒛 + (wε + … + wε ) +
𝟐nε

𝒛
+ …

Schramm-Loewner Evolution

Gε

Gε

Gε



• Draw the slit 
• Stop at ε capacity increments
• Open it up by a conformal 

map Gε = 𝒛 + wε +
𝟐ε
𝒛

+…

• Composition of iid maps 

Gnε = 𝒛 + wnε +
𝟐nε

𝒛
+ … =

= Gε(Gε(Gε( … ))) =

= 𝒛 + (wε + … + wε ) +
𝟐nε

𝒛
+ …

• wt is a Brownian motion!

• “A random walk on the 

moduli space”

Schramm-Loewner Evolution

Gε

Gε

Gε



Differentiate the slit map

Gt = 𝒛 + wt +
𝟐t
𝒛

+…

here 𝟐t is the slit capacity
𝜕t Gt − wt =
= 𝐥𝐢𝐦

𝟏

ε Gt+ε − wt+ε − Gt + wt

= 𝐥𝐢𝐦
𝟏

ε Gε − 𝐈𝐝 ∘ Gt − wt+ε − wt

= 𝐥𝐢𝐦
𝟏

ε wε +
𝟐ε
𝒛

+ … ∘ Gt − wε

= 𝐥𝐢𝐦
𝟏

ε
𝟐ε
𝒛

∘ Gt + … = 
𝟐

Gt

Schramm-Loewner Evolution

Gε

Gt+ ε

Gt+𝜀

Loewner Equation 𝜕t Gt − wt =
𝟐

Gt
Schramm LE: wt = 𝜿Bt ,  a Brownian motion
Leads to a random fractal curve



SLE=BM on the moduli space. Calculations reduce 
to Itô calculus, interesting fractal properties 
Lemma [Schramm] If an interface has a 
conformally invariant scaling limit, it is SLE(κ)

Schramm-Loewner Evolution

Theorem [Schramm-Rohde]  SLE phases:

Theorem [Beffara] 

𝐇𝐃𝐢𝐦 𝑺𝑳𝑬 𝜿 = 1 +
𝜿

8
, 𝜿 < 𝟖

Theorem [Zhan, Dubedat] 

𝑺𝑳𝑬 𝜿 = 𝛛 𝑺𝑳𝑬 𝟏𝟔/𝜿 , 𝜿 < 𝟒



New approach to 2D integrable models 
• Find an observable F (edge density, spin 

correlation, exit probability,. . . ) which is 
discrete analytic (holomorphic) or harmonic 
and solves some BVP.

• Then in the scaling limit F converges to a 
holomorphic solution f of the same BVP.

We conclude that
• F has a conformally invariant scaling limit
• Interfaces converge to Schramm’s SLEs
• Calculate dimensions and exponents 

with or without SLE

Discrete holomorphic functions



Discrete holomorphic functions



Discrete holomorphic functions



Discrete holomorphic functions



Discrete holomorphic functions



[Chelkak, Smirnov 2008-10] Partition function of the 
critical Ising model with a disorder operator is discrete 
holomorphic solution of the Riemann-Hilbert boundary 
value problem. Interface weakly converges to Schramm’s 
SLE(3) curve. Strong convergence follows with some work
[Chelkak, Duminil-Copin, Hongler, Kemppainen, S]

Preholomorphicity in Ising

HDim = 11/8



Energy field in the Ising model

Combination of 2 disorder operators is 
a discrete analytic Green’s function 
solving a Riemann-Hilbert BVP, when 
fused gives the energy corellation:
Theorem [Hongler – Smirnov, 2013] 
At xc the correlation of neighboring 
spins satisfies (ε is the lattice mesh; ρ
is the hyperbolic metric element; 
the sign ± depends on BC: + or free):

Generalizations to multi spin and energy corellations: 
[Chelkak, Hongler, Izyurov]



2D statistical physics:
macroscopic effects of microscopic interactions

erosion simulation © J.-F. Colonna

DNA by atomic 
force microscopy
© Lawrence 
Livermore 
National 
Laboratory



Proposed as a model for a long 
unexplained phenomenon
Deemed physically inaccurate 
and mathematically trivial
Breakthrough by Onsager leads 
to much theoretical study
Eventually retook its place in 
physics, biology, computer science. 
Much fascinating mathematics, expect more:
• [Zamolodchikov, JETP 1987]: E8 symmetry in 2D Ising.

[Coldea et al., Science 2011]: experimental evidence. 
Time for a proof?

• [Aizenman Duminil-Copin Sidoravicius 2013] In 3D no 
magnetization at criticality. Other results?

The Lenz-Ising model



Thank you for
your attention!




