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Magnetism

Natural magnetism in lodestone
(magnetite) known for millennia

6th century BC: first “scientific”
discussions by Thales of Miletus
and Shushruta of Varansi.

Name derived from Mayvnoia — a
Greek province rich in iron ore

Several practical uses, but poor
understanding of its nature




Relation with electricity

1820 Hans Christian @rsted ,,,. }
discovers by accident that electric . /A’
current induces magnetic field

1820-30 André-Marie Ampere; ’,
Carl Friedrich Gauss; Jean-Baptiste | e

Biot & Feélix Savart — a formula curient  fpop current

1831 Michael Faraday — varying magnetic flux
induces an electric current

1855-1873 James Clerk Maxwell synthesizes
theory of electricity, magnetism and light,
writes down Maxwell's equations

_



Ferromagnetism

1895 Pierre Curie in his doctoral thesis
studies types of magnetism, discovers

* the effect of temperature

* a phase transition at the Curie point




1920 Wilhelm Lenz
introduces a lattice model
for ferromagnetism

Lenz argued that “atoms are dipoles

which turn over between two positions”:

* their free rotatability was incompatible

with Born’s theory of crystal structure;
* but they can perform turnovers as

suggested by experiments on

ferromagnetic materials;

* in a guantum-theoretical treatment

they would by and large occupy two

distinct positions.
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Quantum mechanics

There is a good reason why no explanation for
magnetism was found before 20" century:

the Bohr—van Leeuwen theorem shows that
magnetism cannot occur in purely classical solids

The Lenz argument is flawed, but the model is
basically correct — the property of ferromagnetism
is due to two quantum effects:
 the spin of an electron

(hence it has a magnetic dipole moment)
* the Pauli exclusion principle

(nearby electrons tend to have parallel spins)



1920-24: The Lenz-Ising model

Lenz suggested the model to his student Ernst Ising,
who proposed a specific

form of interaction

Squares of two colors,
representing spins s=x1

Nearby spins want to be the
same, parameter x :

Prob xx#{+-neighbors}

= exP('Bz neighbors S(u)s(v))
(in magnetic field multiply

by exp(-p2 ,s(u)))
_




1924: Ernst Ising thesis
“no phase transition in dimension 1”

[ = [ [ H [ || = = [ | [ [+]? |

Length n+1 chain, the leftmost spin is +
=7 X#{( +)(-)neighbors} — (1 +X) n

conf.
The rightmost spin is + for even powers of x

Z,={(1+x)" + (1-x)"}/ 2
So the probability

P(o(w)=+) =Z,/Z=1+1 (22,
which tends exponentially to 1%
P Y072



Ising wrongly concluded that there is
no phase transition in all dimensions.

Never returned to research, teaching physics at a college

The paper was widely discussed
(Pauli, Heisenberg, Dirac, ...) with
consensus that it is oversimplified
Heisenberg introduced an XY model
after writing “Other difficulties are
discussed in detail by Lenz, and Ising
succeeded in showing that also the
assumption of aligning sufficiently
great forces between each of two
neighboring atoms of a chain is not
sufficient to create ferromagnetism”
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1936 Rudolf Peierls

Unexpectedly proves that in dimension 2
the Lenz-Ising model undergoes a phase
transition, which reignites the interest

His perhaps more influential work:
1940 memorandum with Otto Frisch often
credited with starting the Manhattan project




Peierls’ argument
2n+1)x(2n+1) boundary“+”, P[c(0)="+"]=?

P ‘J_;,\:I <x!/(1+x") < x| l=length of o]

Plo (0)="-"] < 2y » Ziszjs2 3!

< (3x)*/(1-(3x)?)(1-3x) < 1/6, if x<1/6.
(3x)*/(1-(39%)(1-3x) < 1/6, it x<1/



Ising model: the phase transition

X<X

A= crit

crit

Prob = x*{+-neighbors}




AUGUST 1, 1941

PHYSICAL

1941 Kramers-Wannier
Derive the critical temperature X, =1/(1+ \/E)

REVIEW VOLUME 60

Statistics of the Two-Dimensional Ferromagnet. Part 1

H. A. Kramers, University of Leiden, Leiden, Holland

AND

G. H. WaNNIER, University of Texas, Austin, Texast
(Received April 7, 1941)

In an effort to make statistical methods available for
the treatment of cooperational phenomena, the [sing
model of ferromagnetism is treated by rigorous Boltzmann
statistics. A method is developed which yields the partition
function as the largest eigenvalue of some finite matrix, as
long as the manifold i1s only one dimensionally infinite.
The method is carried out fully for the linear chain of
spins which has no ferromagnetic properties. Then a
sequence of finite matrices is found whose largest eigen-
value approaches the partition function of the two-
dimensional square net as the matrix order gets large.

' Owin
authors ?
text.

to communication difficulties,
(. H. W.) is entirely responsible for the printed

It is shown that these matrices possess a symmetry prop-
erty which permits location of the Curie temperature if it

~exists and is unique. It lies at

J/RT.=0.8814

if we denote by J the coupling energv between neighboring
spins. The symmetry relation also excludes certain forms
of singularities at T, as, e.g., a jump in the specific heat.
However, the information thus gathered by rigorous
analytic methods remains incomplete.

one of the



1941 Kramers-Wannier

High-low temperature duality +—+—+—+—+

: : : 1y +—+"T+%
X-Ising € dual lattice p~Ising, a

8 y-sng, 3 14y 4+ 4 + - 4
=2 .

spit conf x?{(+)(-)neighbors} | | A4 b4
= spin conf. 17 edge<ij> ( 1 +_V S (l) S 0))

spin conf.

2, edge conf. 17 <ij>in conft. JS (1) S 0)

— “edge conft.
Zspin conf. 17 <ij>in conft. JS (1) S 0) = |*+]|=|+

= “gyen edge cont. _V# {edges} | =] =
Self-dual if x=y, i.e. =] -]+

Xcrit — 1/(1+ \/E)




1944 Lars Onsager ’

A series of papers 1944-1950, some
with Bruria Kaufman. Partition
function, magnetization and other
guantities derived. It took a chemist! |

PHYSICAL REVIEW VOLUME 65, NUMBERS 3 AND 4 FEBEUARY 1 AND 15, 19044

Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition

Lars ONSAGER
Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut

(Received October 4, 1943)

PHYSICAL REVIEW VOLUME 764, WUMBER & OQCTOBER 15, 1949

Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis

Brumia Kavrman®
Columbia Universily, New Fork City, New Vork

(Received May 11, 1949)



144

2D Ising is “exactly solvable

From 1944 widely studied in mathematical
physics, with many results by different methods:

Kaufman, Onsager, Yang, Kac, Ward, Potts,
Montroll, Hurst, Green, Kasteleyn, McCoy, Wu,
Tracy, Widom, Vdovichenko, Fisher, Baxter, ...

* Only some results rigorous

* Limited applicability to other models, but still
motivated much research

Eventually regained prominence in physics, used
in biology, economics, computer science...



1951Renormalization Group

Petermann-Stueckelberg 1951, ...
Kadanoff, Fisher, Wilson, 1963-1966, ...

Block-spin S RERIRNT) CAR S ErS LU
renormalization . .|, . . .|. . ... ~ ......
~rescaling+  t: ool i

changeofx [ [ e
Conclusion: I N RS
At criticality T T e = em

the scaling limit

is described by a “massless field theory”

The Curie critical point is universal and hence
translation, scale and rotation invariant



Renormalization Group

From [Michael Fisher,1983] A depiction of the space of
Hamiltonians H showing initial

physical manifold . .

O Tt or physical manifolds and the

flows induced by repeated

application of a discrete RG

transformation Rb with a

. renormalized  SPAtial rescaling factor b (or

\ manifold

physical
critical
point

renormalized
critical
point

y 7 ! v N induced by a corresponding
J eritical \\& N continuous or differential RG).
¥ Iralectories \ R[] Critical trajectories are shown
bold: they all terminate, in the

region of H shown here, at a
fixed point H*. The full space
contains, in general, other

nontrivial (and trivial) critical

fixed points,... _




1985 Conformal Field Theory

Belavin, Polyakov,
Zamolodchikov 1985
Conformal transformations
= those preserving angles

= analytic maps

Locally translation +

+ rotation + rescaling

So it is logical to suppose
conformal invariance bin the
scaling limit.

Allows to derive many
guantities (unrigorously)




bottom crossing of white

hexagons are coloured white or yellow
independently with probability 7.

Is there a top
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and geometric parts missing
Spectacular predictions, e.g.
by Den Nijs and Cardy:

Percolation (Ising at infinite T or x=1):

or nonrigorous
hexagons? Difficult to see! Why?

=?

HDim (percolation cluster)




2D CFT

Beautiful algebra, but analytic
and geometric parts missing
or nonrigorous

Spectacular predictions, e.g.
by Den Nijs and Cardy:

Percolation (Ising at infinite T or x=1):
hexagons are coloured white or yellow
independently with probability 7.
Connected white cluster touching the
upper side is coloured in blue, it has

HDim (percolation cluster)=91/48

i) t 1/3
P (crossing) = rr@ ™ o F (



Last decade

Two analytic and geometric approaches

1) Schramm-Loewner Evolution: a
geometric description of the scaling
limits at criticality

2) Discrete analyticity: a way to rigorously
establish existence and conformal
invariance of the scaling limit

* New physical approaches and results

* Rigorous proofs

* Cross-fertilization with CFT




Schramm-Loewner Evolution

A way to construct

random conformally
invariant fractal curves,
introduced in 1999 by

Oded Schramm (1961-2008)

E% P j
S

Percolation—>SLE(6) Uniform Spanning Tree ->SLE(8)

[Smirnov, 2001] [Lawler-Schramm-Werner, 2001] _
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Schramm-Loewner Evolution
m e Draw the slit

7




NORES

Schramm-Loewner Evolution

 Draw the slit
* Stop at € capacity increments




Schramm-Loewner Evolution

 Draw the slit
* Stop at € capacity increments
 Open it up by a conformal

2
map G, =z + w,+ = +_




Schramm-Loewner Evolution

 Draw the slit
* Stop at € capacity increments
 Open it up by a conformal

2
map G, =z + w,+ = +_

e Composition of iid maps

2Nn&
GH£:Z+ Whe | -

=G (G(G(-.)) =
2ne
=Z+ (We+...+ W£)+7+...




Schramm-Loewner Evolution

Draw the slit
Stop at € capacity increments
Open it up by a conformal

2E
map G.=z+ w_+ — .

Composition of iid maps

2NE
Gm::Z_l_ Whe | |

= G(G.(G(..))) =

2NE
=Z+ (W£+...+ W£)+7+...

w,Is a Brownian motion!
“A random walk on the

moduli space” I




Schramm-Loewner Evolution

Differentiate the slit map

2
G,=z+ w,+ _t"...

Z

here 2t is the slit capacity
0,(G,— wp) =

- lim‘_lﬁ' ((G.—1d) G, = (Wpy. — W)
= lim , ((W£+ 2t )e G- (Wg))
. 1 (2& 2

— llm‘—g‘ (7 o Gt + )Zzﬁt
Loewner Equation 0,(G,— w)) = z

r

Schramm LE: w, =/KkB,, a Brownian motion
Leads to a random fractal curve I



Schramm-Loewner Evolution

SLE=BM on the moduli space. Calculations reduce
to Ito6 calculus, interesting fractal properties
Lemma [Schramm)] If an interface has a
conformally invariant scaling limit, it is SLE(k)
Theorem [Schramm-Rohde] SLE phases:

) . < L L S \,' oo -,4
. f<

e "\-\.\_I jf’

L L) ()

Theorem [Beffara]
HDim(SLE(k)) = 1+

Theorem [Zhan, Dubedat]
SLE(k) = 0(SLE(16/x)), k<4

K
8;




Discrete holomorphic functions

New approach to 2D integrable models

* Find an observable F (edge density, spin
correlation, exit probability,. . . ) which is
discrete analytic (holomorphic) or harmonic
and solves some BVP.

* Then in the scaling limit F converges to a
holomorphic solution f of the same BVP.

We conclude that

* F has a conformally invariant scaling limit

* Interfaces converge to Schramm’s SLEs

* (Calculate dimensions and exponents

with or without SLE
_



Discrete holomorphic functions

Preholomorphic or discrete holomorphic functions appeared
implicitly already in the work of Kirchhoff in 1847.

e A graph models an electric network.
e Assume all edges have unit resistance.
e Let F (uv) = —F (vu) be the current flowing from u to v

Then the first and the second Kirchhoff laws state that
the sum of currents flowing from a vertex is zero:

> F (uv) = 0, (1)

uw: neighbor of v

the sum of the currents around any oriented closed contour « is zero:

Y F(ub) = 0. (2)

UVE~Y
Rem For planar graphs contours around faces are sufficient 2



Discrete holomorphic functions

The second and the first Kirchhoff laws are equivalent to

F' being given by the gradient of a potential function H:
F(iv) = H(v) — H(u) , (2)
and the latter being preharmonic:

0 = AH(u) := > (H(v) — H(u)) . (1"

v: neighbor of w

e Different resistances amount to putting weights into (1’).

® Preharmonic functions can be defined on any graph,
and have been very well studied.

e On planar graphs preharmonic gradients are preholomorphic,
similarly to harmonic gradients being holomorphic.



Discrete holomorphic functions

Besides the original work of Kirchhoff, the first notable application
was perhaps the famous article [Brooks, Smith, Stone & Tutte,
1940] “The dissection of rectangles into squares” which used
preholomorphic functions to construct tilings of rectangles by squares.

tilings by squares — preholomorphic functions on planar graphs



Discrete holomorphic functions

Preholomorphic functions were explicitly studied in [Isaacs, 1941]
under the name “monodiffric” . Isaacs proposed two ways to
discretize the Cauchy-Riemann equations 9;, F = 10, F

on the square lattice:

~ o W z L w

...... .. - S
A z
e’ e
(Xa’ :
...... ® - >. T YT
u ; 'U Uu : :’U
F(z)—F(u) __ F(v)—F(u) (15%) F(z)-F(v) _ F(w)—F(u) (2nd)

F(z) — F(u) =1 (F(v) — F(u)) F(z) — F(v) = 1(F(w) — F(u))



Preholomorphicity in Ising

[Chelkak, Smirnov 2008-10] Partition function of the
critical Ising model with a disorder operator is discrete
holomorphic solution of the Riemann-Hilbert boundary
value problem. Interface weakly converges to Schramm’s
SLE(3) curve. Strong convergence follows with some work
[ Chelkak DumlmI-Copm Hongler, Kemppamen S ]

HDim =11/8 pea




fused gives the energy corell

Theorem [Hongler — Smirnov, 2013]
At x_the correlation of neighboring
spins satisfies (€ is the lattice mesh; p
is the hyperbolic metric element;

the sign * depends on BC: + or free):

E s(u) s(v) = =

Energy field in the Ising model

Combination of 2 disorder operators is .
a discrete analytic Green’s function
solving a Riemann-Hilbert BVP, when

ation:

- L po(u) e + O(e2)

Generalizations to multi spin and energy corellations:

[Chelkak, Hongler, Izyurov]



2D statistical physics:
macroscopic effects of microscopic interactions

erosion simulation © J.-F. Colonna

DNA by atomic
force microscopy
© Lawrence
Livermore
National
Laboratory




The Lenz-Ising model

Proposed as a model for a long ,
unexplained phenomenon

Deemed physically inaccurate
and mathematically trivial

Breakthrough by Onsager leads
to much theoretical study

Eventually retook its place in
physics, biology, computer science.

Much fascinating mathematics, expect more:

 [Zamolodchikov, JETP 1987]: E8 symmetry in 2D Ising.
[Coldea et al., Science 2011]: experimental evidence.
Time for a proof?

* [Aizenman Duminil-Copin Sidoravicius 2013] In 3D no
magnetization at criticality. Other results?_




Thank you for
your attention!






