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Archetypical example of a phase transition: 2D Ising model

Configurations of + and − spins (red and blue squares)

Prob(config) � e− # {+− neighbor pairs} / T = xlength of loops

[Kramers-Wannier, 1941]: on the square lattice xc = 1/(1 +
√

2)

x ≈ 1, T ≈ ∞ x = xc x ≈ 0, T ≈ 0
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2D Ising model:

• Physically “realistic” model of

order–disorder phase transitions

• “ Exactly solvable” – many parameters

computed exactly, but usually non-rigorously

[Onsager, Kaufman, Yang, Kac, Ward, Potts,

Montroll, Hurst, Green, Kasteleyn, Vdovichenko, Fisher, Baxter, . . .]

• Connections to Conformal Field Theory – allow to compute more

things in a more general setting [den Nijs, Nienhuis, Belavin,

Polyakov, Zamolodchikov, Cardy, Duplantier, . . . ]

• Much progress in physics, but for a long time

poor mathematical understanding.
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Structure of CFT arguments: at critical temperature

(A) the model has a continuum scaling limit (as mesh→ 0),

the limit is universal (independent of the lattice)

and conformally invariant (preserved by conformal maps)

(B) conformal invariance allows to describe the limit.

Recently mathematical progress with new, rigorous approaches. Oded

Schramm described possible conformally invariant scaling limits

of cluster interfaces: one-parameter family of SLE(κ) curves.

Subsequently Lawler-Schramm-Werner, Rohde-Schramm, Beffara

and others used SLE to prove or explain many predictions.

We will discuss the mathematical approaches to (A) and (B),

using the Ising model as an example.
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“Everybody knows that the 2D Ising model is a free fermion”

2D Ising model at criticality is considered

↓ φ

a classical example of conformal invariance in

statistical mechanics, which is used in deriving

many of its properties. However,

• No mathematical proof has ever been given.

• Most of the physics arguments concern nice

domains only or do not take boundary conditions

into account, and thus only give evidence of the

(weaker!) Möbius invariance of the scaling limit.

• Only conformal invariance of correlations is

usually discussed, we discuss underlying geometric

objects and distributions as well.

• We construct new objects of physical interest.
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Classical example of conformal invariance:

Random Walk → Brownian Motion

↓ φ

As lattice mesh goes to zero, RW → BM:

probability measure on broken lines

converges weakly to Wiener probability

measure on continuous curves.

BM is conformally invariant [P. Lévy] and

universal.

Conjecturally: in most 2-dim models at

critical temperatures, universal conformally

invariant SLE curves arise as scaling limits

of the interfaces (cluster boundaries).
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Modern example: critical percolation

to color every hexagon we toss a coin:

tails ⇒ blue, heads ⇒ yellow

Blue hexagons are “holes” in a yellow rock.

Can the water sip through? Hard to see!

The reason: clusters (connected blue holes) are

complicated fractals of dimension 91/48

(a cluster of diam D on average has ≈ D91/48 hexagons),

blue/yellow interfaces of dim 7/4

Cardy’s prediction: in the scaling limit

P (crossing) =
Γ(2

3)
Γ(1

3)Γ(4
3)

m1/3
2F1

(
1
3,

2
3,

4
3; m

)

Proved on hexagonal lattice [Smirnov 2001],

cluster boundaries converge to Schramm’s SLE(6) curves
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Conformally invariant scaling limits of critical interfaces:

↓ φ

• [2001, Smirnov] critical percolation

on hexagonal lattice

• [2003, Lawler-Schramm-Werner]

Uniform Spanning Tree / LERW

([2000, Kenyon] – many observables)

• [2003/6, Schramm-Sheffield]

Harmonic Explorer / Discrete GFF

• [2006, Smirnov] FK Ising model

• [2008, Smirnov] Ising model

Conjectured for: self-avoiding polymers,
percolation on other lattices, Potts and
random cluster models, . . .
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Theorem [Chelkak–Smirnov]. Ising model on isoradial graphs

at Tc has a conformally invariant scaling limit as mesh ε → 0.

Interfaces in spin and random cluster representations converge

to Schramm’s curves SLE(3) and SLE(16/3).

• Square lattice case is easier [Smirnov].

• At T < TC interface → an interval [Pfister-Velenik].

• Conj At T > TC interface → SLE(6), same as percolation.

Known only for triangular lattice and T = ∞ [Smirnov].

An isoradial graph with its dual

give a tiling by rhombi Ising → SLE(3), Dim = 11/8 8



Using Ising model as an example we will discuss how to

(A) find an observable with a conformally invariant scaling limit

(Tools: discrete complex analysis, conformal invariants)

(B) using one observable, construct (conformally invariant) scaling

limits of the interfaces (Tools: Schramm–Loewner Evolution)

Related topics:

• universality — discrete complex analysis is more interesting [Chelkak - S]

• deriving (some) exponents directly from observables [Hongler - S]

• interfaces on Riemann surfaces, general boundary conditions

— interesting conformal invariants, spin structures

• full scaling limit — SLE loop soups [Kemppainen - S]

• perturbation p ≈ pc — no conformal invariance [Makarov - S]
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(A) How to find a conformally invariant observable?

We need a discrete conformal invariant

Discrete harmonic or dicrete analytic (=preholomorphic) function

solving prescribed boundary value problem

• more accessible in the discrete case than other invariants

• most other invariants can be reduced to it

Boundary value problems

• Dirichlet or Neumann: clear discretization, scaling limit.

• Riemann-Hilbert: wider choice! discretization? scaling limit?

Leads to conformally covariant functions, “spinors:” F (z) (dz)α(dz̄)β
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Discrete analytic (preholomorphic): some discrete version of the

Cauchy-Riemann equations ∂iαF = i∂αF . On square lattice, e.g.
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F (z) − F (v) = i (F (w)− F (u))

Discrete complex analysis starts like the usual one.
Easy to prove: if F, G ∈ Hol, then
• F ± G ∈ Hol
• F ′ ∈ Hol (defined on the dual lattice)
•

∮
F = 0

•
∫ z

F is well-defined and
∫ z

F ∈ Hol
• maximum principle
• F = H + iH̃ ⇒ H discrete harmonic (mean-value property)
• H discrete harmonic ⇒ ∃ H̃ such that H + iH̃ ∈ Hol

Problem: F, G ∈ Hol 6⇒ F · G ∈ Hol. For general lattices F ′ /∈ Hol.

11



Ising preholomorphic observable: F (z) :=
∑

ω x#edgesW

x x
a z

• represent a configuration by a collection

of interfaces between + and − spins.

• consider configurations ω which have

loops plus an interface between a and z.

• introduce Fermionic complex weight:

W := exp
(
−i 1

2 winding(γ, a → z)
)

= λ# signed turns of γ, λ := e−πi/4
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Rem Removing complex weight W one obtains correlation of spins

at a and z on the dual lattice at the dual temperature x̃
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Rem One can obtain such configurations

u u

a z

c© C. Hongler

by creating a disorder operator, i.e. a

monodromy at z: when one goes around,

+ spins become −and vice versa.

Rem F (z)
√

dz is a fermion

Theorem. For Ising model at Tc,

F is a preholomorphic solution of

a Riemann boundary value problem.

When mesh ε → 0,

F (z) /
√

ε ⇒
√

P ′(z) inside Ω,

where P is the complex Poisson kernel at a:

a conformal map Ω → C+ such that a 7→ ∞.

Rem Both sides should be normalised in the same chart

Rem Off criticality massive holomorphic: ∂̄ F = im(x− xc)F̄ 13



Proof: discrete CR relation
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αConsider function F on the centers of edges.

Let u and v be the centers of

two neighboring edges from the vertex w.

Let α be the unit bisector of the angle uwv.

“Strong” Cauchy-Riemann relation:

Proj(F (v), 1/
√

α) = Proj(F (u), 1/
√

α), or equivalently

F (v) + ᾱ F (v) = F (u) + ᾱ F (u)

• Implies the classical one for the square lattice

• Same formula works on any rhombic lattice

• Proved by constructing a bijection between

configurations included into F (v) and F (u)
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Proof: discrete CR by local rearrangement

Let λ = exp(−πi/4) be the complex weight of a π/2 turn.

Erasing/drawing half-edges wu and wv gives a bijection:

contributes λ to F (v)
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contributes λ2 to F (u)

There are more pairs, but relative contributions are always easy 15



Proof: discrete CR by local rearrangement

It remains to check that discrete CR is satisfied by every pair.

In our picture α = exp(πi/4) = λ̄, so the discrete CR takes form

F (v) + λ F (v) = F (u) + λ F (u)

Plugging in 2 configurations above, we must check that:

λ + λλ̄ = 1 + λ1̄ ⇔ λ + 1 = 1 + λ

λx + λλx = λ2 + λλ̄2 ⇔ x = λ + λ̄− 1

Other pairs lead to the same 2 possibilities.

The first identity always holds, the second one holds for x = xc:

indeed, on the square lattice λ = exp(−πi/4) and xc =
√

2− 1.

Rem For x 6= xc one gets massive CR: ∂̄ F = im(x− xc)F̄

⇒ new derivation of criticality at xc

16



Proof: Riemann-Hilbert boundary value problem
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a

zWhen z is on the boundary, winding of the

interface a → z is uniquely determined, and

coincides with the winding of ∂Ω, a → z.

So we know Arg(F ) on ∂Ω.

F solves the discrete version of the covariant Riemann BVP

Im
(

F (z) · (tangent to ∂Ω)
1/2

)

= 0 with σ = 1/2.

F ‖ τ−1/2 ⇒ F 2 ‖ τ−1 ⇒ F 2dz ‖ 1 on ∂Ω

Continuum case: F = (P ′)1/2, where P : Ω → C+, a 7→ ∞.

Proof: convergence Consider
∫ z

z0
F 2(u)du – solves Dirichlet BVP.

Big problem: in the discrete case F 2 is no longer analytic!!!
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Proof of convergence: set H := 1
2εIm

∫ z
F (z)2dz

• well-defined

• approximately discrete harmonic: ∆H = ± |∂F |2
• H = 0 on the boundary, blows up at a

⇒ H ⇒ Im P where P is the complex Poisson kernel at a

⇒ ∇H ⇒ P ′ ⇒ 1√
ε

F ⇒
√

P ′ �

Problems: we must do all sorts of estimates (Harnack inequality,

normal familes, harmonic measure estimates, . . . ) for approximately

discrete harmonic or holomorphic functions in the absence of the usual

tools. For more general graphs even worse, moreover there are no

known Ising estimates to use [Chelkak - S].

Question: what is the most general discrete setup when one can get

the usual complex analysis estimates? (without using multiplication)
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Possible generalization:

a

b

x

x

O(n) loop gas. Configurations of

disjoint simple loops on hexagonal lattice.

Loop-weight n ∈ [0, 2], edge-weight x > 0.

Z =
∑

configs n# loops x# edges

Dobrushin boundary conditions:

besides loops, an interface γ : a ↔ b.

Conjecture [Kager-Nienhuis,...]. ∃ conformally invariant scaling

limits for x = xc(n) := 1/
√

2 +
√

2 − n and x ∈ (xc(n), +∞).

Two different limits correspond to dilute / dense phases

(limiting loops are simple / non-simple)
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Hexagons of two colors (Ising spins ±1),

a

b

x

x

which change whenever a loop is crossed.

For n = 1 the partition function becomes

Z =
∑

x# edges

=
∑

x# pairs of neighbors of opposite spins

n = 1, x = 1/
√

3: Ising model at Tc

Note: critical value of x is known [Wannier]

n = 1, x = 1: critical percolation (on hexagons = sites of the dual

triangular lattice) All configs are equally likely (pc = 1/2 [Kesten, Wierman]).

n = 0, x = 1/
√

2 +
√

2: a version of self-avoiding random walk

(no loops, only a simple curve from a to b with weight xlength, cf. prediction

[Nienhuis] that number of length ` simple curves is ≈
√

2 +
√

2
`
`11/32)
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Preholomorphic parafermion for the O(n) model

a
x

zx

Set F (z) :=
∑

ω n#loopsx#edgesW
Interface runs from a to z. 2 cos(2πk) := n.

Replace power 1/2 in Ising complex weight

by spin σ = 1/4 + 3k/2 for x = xc,

σ = 1/4 − 3k/2 for x > xc.

Conjecture. For the O(n) model at xc and x > xc

ε−σF (z) ⇒ (P ′(z))
σ

inside Ω

as lattice mesh ε → 0. Here P is the complex Poisson kernel at a.

Same proof almost works, but one lemma is still missing. . .

Explains Nienhuis predictions of critical temperature xc!
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Why complex weights? [cf. Baxter]

n

exp(i2πk) + exp(−i2πk)
︸ ︷︷ ︸

Set 2 cos(2πk) = n. Orient loops

⇔ height function changing by ±1

whenever crossing a loop (think of a

geographic map with contour lines)

New C partition function (local!):

ZC =
∑ ∏

sites x#edgese(i winding·k)

Forgetting orientation projects onto

the original model: Proj
(
ZC

)
= Z

Oriented interface a → z ⇔ +1 monodromy at z

Can rewrite our observable as F (z) = ZC

+1 monodromy at z

Note: being attached to ∂Ω, γ is weighted differently from loops
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What can we deduce from one observable?

c© C. Hongler

Interfaces converge to Schramm’s SLE curves and

loop soups. Then one can use the machinery

of Itô calculus to calculate almost anything.

But even beforehand one can say many things.

Putting both points a and b inside, one

obtains a discrete version of the Green’s

function with Riemann boundary values.

One of corollaries:

Theorem [Hongler - Smirnov]. At Tc the correlation

of two neighboring spins σ1, σ2 near a vertex z ∈ Ω satisfies

E σ1σ2 = 1√
2
± 1

2π
ρΩ(z) ε + O(ε2),

here ρ is the element of the hyperbolic metric, and the sign ±
depends on the boundary conditions (“+” or free).
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(B) Schramm-Loewner Evolution.
C+

v
0

v v

C+ \ γ[0, t]

γ(t) v

0
v

−→
Gt

LE is a slit γ(t) obtained by solving an

ODE for the Riemann map Gt:

∂t (Gt(z) −w(t)) = 2/Gt(z)

Gt(z) = z − w(t) + 2t/z +O
(
1/z2

)
— normalization at ∞.

SLE(κ) is a random curve obtained by taking w(t) :=
√

κBt.

Schramm’s Principle: if an interface has a conformally invariant

scaling limit, it is SLE(κ) for some κ ∈ [0,∞).

Proof: Conformal invariance with Markov property (interface does not distinguish

its past from the domain boundary) translates into w(t) having i.i.d. increments.�
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To use the Principle one still has

(i) to show existence of the scaling limit

(ii) to prove its conformal invariance

(iii) calculate some observable to determine κ

For (i) in principle one needs infinitely many observables.

For percolation constructed from one observable using locality.

Fortunately SLE can be used to do (iii)⇒(i-ii), see [Lawler-

Schramm-Werner, Smirnov] for UST/LERW and percolation with

invariant observables. A generalization of Schramm’s Principle:

If a “martingale” observable has a conformally covariant limit, then

the interface converges to SLE(κ) with particular κ ∈ [0,∞), and the

full collection of interfaces – to the corresponding loop ensemble.
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Proof: convergence of interfaces. Assume ∃ observable

with a conformally invariant limit ⇒ [Kemppainen-Smirnov]

⇒ a priori estimates ⇒ {γ}mesh is precompact in a nice space.

Enough to show: limit of any converging subsequence = SLE.

Pick a subsequential limit, map to C+, describe by

Loewner Evolution with unknown random driving force w(t).

From the martingale property F (z, Ω) = Eγ′F (z, Ω \ γ′) of the

observable extract expectation of increments of w(t) and w(t)2,

conclude that w(t) and w(t)2 − 3t are martingales.

By Lévy characterization theorem w(t) =
√

3Bt.

So interface converges to SLE(3). �
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Suppose that (P ′(z))
σ

is an observable ( σ = 1
2 for Ising), then

F







t

tz






= Eγ[0,t] F







t
t

tz






| | | |
(−(1/z)′)σ EGt

(−(1/Gt)
′)σ

| | | |
1

z2σ use expansion of Gt at∞
||

EGt

1

z2σ

(

1 +
2σ

z
w(t) +

σ(2σ + 1)

z2

(

w(t)2 − 6t

2σ + 1

)

+O
(

1

z3

))

Rem A posteriori the method calculates all martingale observables for SLE!
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What do we know about other models?

Interface converges to conformally invariant SLE(κ) curve for

c κ n O(n) loop gas dense/dilute FK loops, n =
√

q

−2 8 0 . . . uniform spanning tree, lerw

[Lawler-Schramm-Werner 2003]

0 6 1
site percolation on the

triangular lattice [S 2001]

bond percolation on

the square lattice
1
2

16
3

√
2 . . . FK Ising [S 2006]

1 4 2 . . . FK 4-Potts
1
2 3 1 Ising [S 2008]

0 8
3 0 Self Avoiding Random Walk cos

(
4π
κ

)
= −n

2

Also: Discrete Gaussian Free Field, κ = 4 [Schramm-Sheffield, 2006]
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percolation κ = 6 FK Ising κ = 16/3

Square
bond
percolation?

ust κ = 8 c©O.Schramm Ising κ = 3

Self-avoiding
random
walk?

BESTIARY 29



CONCLUSION In several cases proof

of conformally invariant scaling limits

Ising → SLE(3), Dimension = 11/8

• Some universality

• Fair understanding in other cases

• Many things new for physicists

• Heavy use of complex analysis

Can we say something about

• Other models?

• Renormalization?

• Connection to Yang-Baxter?

To answer we must learn more about

• Discrete complex analysis

• Conformal geometry

• Integrable systems
30


