Quasiconformal maps and harmonic measure Stanislav Smirnov

In part based on joint work with
Kari Astala \& István Prause

quasiconformal maps

$\varphi: \Omega \rightarrow \Omega^{\prime} W_{l o c}^{1,2}$-homeomorphism

Def 1

 $\bar{\partial} \varphi(z)=\mu(z) \partial \varphi(z)$ a.e. $z \in \Omega$$$
\|\mu\|_{\infty} \leq k<1
$$

Def 2

eccentricity \leq

$$
K=\frac{1+k}{1-k}
$$

measurable Riemann mapping theorem:

- (unique up to Möbius) solution exists
- depends analytically on μ

distortion of dimension

Theorem [Astala 1994] for k - quasiconformal φ

$$
\frac{1}{K}\left(\frac{1}{\operatorname{dim} \mathrm{E}}-\frac{1}{2}\right) \leq \frac{1}{\operatorname{dim} \varphi(\mathrm{E})}-\frac{1}{2} \leq K\left(\frac{1}{\operatorname{dim} \mathrm{E}}-\frac{1}{2}\right)
$$

Rem result is sharp (easy from the proof)
In particular, $\operatorname{dim} \mathrm{E}=1 \Rightarrow 1-k \leq \operatorname{dim} \varphi(\mathrm{E}) \leq 1+k$ [Becker-Pommerenke 1987] $\operatorname{dim} \varphi(\mathbb{R}) \leq 1+37 k^{2}$

Conjecture [Astala] $\operatorname{dim} \varphi(\mathbb{R}) \leq 1+k^{2}$

dimension of quasicircles

Thm [S] $\quad \operatorname{dim} \varphi(\mathbb{R}) \leqslant 1+k^{2}$

Dual statement:

 φ symmetric wrt \mathbb{R}, spt $v \subset \mathbb{R}$ $\operatorname{dim} v=1\} \Rightarrow$ $\operatorname{dim} \varphi(v) \geqslant 1-k^{2}$

Sharpness???

a nonrectifiable quasicircle

Proof: holomorphic motion

Any k - qc map φ_{k} can be embedded into a holomorphic motion of qc maps $\varphi_{\lambda}, \lambda \in \mathbb{D}$:

Define Beltrami coefficient $\mu=\mu_{\varphi} /\left\|\mu_{\varphi}\right\|,\|\mu\|=1$

$$
\lambda \in \mathbb{D} \longrightarrow \lambda \mu \longrightarrow \varphi_{\lambda} \text { which is }|\lambda|-q c
$$

Mañé-Sad-Sullivan, Slodkowski :

A holomorphic motion of a set can be
extended to a holomorpic motion of qc maps

Proof: fractal approximation

a packing of disks evolves in the motion
$\left\{B_{\lambda}\right\}$
"complex radii" $\left\{\mathrm{r}_{\lambda}\right\}$
Cantor sets $\quad \mathrm{C}_{\lambda} \approx \varphi\left(\mathrm{E}_{\lambda}\right)$

Proof: "thermodynamics"

Pressure [Ruelle, Bowen]
$\mathbf{P}_{\lambda}(\mathrm{t}):=\log \left(\Sigma\left|\mathrm{r}_{\mathrm{j}}(\lambda)\right|^{\mathrm{t}}\right)$
"Entropy" $I_{p}:=\Sigma p_{j} \log \left(1 / p_{j}\right)$

"Lyapunov exponent" $\Lambda_{\mathrm{p}}(\lambda):=\Sigma \mathrm{p}_{\mathrm{j}} \log \left(1 /\left|\mathrm{r}_{\mathrm{j}}(\lambda)\right|\right)$
(harmonic in $\lambda!$)
Variational principle (Jensen's inequality)

$$
\mathbf{P}_{\lambda}(\mathrm{t})=\sup _{\mathrm{p} \in \operatorname{Prob}} \Sigma \mathrm{p}_{\mathrm{j}} \log \left(\left|\mathrm{r}_{\mathrm{j}}(\lambda)\right|^{\mathrm{t}} / \mathbf{p}_{\mathrm{j}}\right)=\sup _{\mathrm{p} \in \operatorname{Prob}}\left(\mathrm{I}_{\mathrm{p}}-\mathrm{t} \Lambda_{\mathrm{p}}(\lambda)\right)
$$

Bowen's formula: $\operatorname{dim} C_{\lambda}=\operatorname{root}$ of $P_{\lambda}=\sup _{p \in \operatorname{Prob}} I_{p} / \Lambda_{p}(\lambda)$

Proof: Harnack's inequality

- $\operatorname{dim} \mathrm{C}_{0}=1 \Longrightarrow \mathrm{I}_{\mathrm{p}} / \Lambda_{\mathrm{p}}(0) \leqslant 1 \Longrightarrow \Lambda_{\mathrm{p}}(0)-\mathrm{I}_{\mathrm{p}} / 2 \geqslant \mathrm{I}_{\mathrm{p}} / 2$
- $\operatorname{dim} C_{\lambda} \leqslant 2 \Longrightarrow I_{p} / \Lambda_{p}(\lambda) \leqslant 2 \Longrightarrow \Lambda_{p}(\lambda)-I_{p} / 2 \geqslant 0$
- Harnack $\Rightarrow \Lambda_{\mathrm{p}}(\lambda)-\frac{\mathrm{I}_{\mathrm{p}}}{2} \geqslant \frac{1-|\lambda|}{1+|\lambda|} \frac{\mathrm{p}_{\mathrm{p}}}{2}$

$$
\begin{aligned}
& \Rightarrow \Lambda_{\mathrm{p}}(\lambda) \geqslant \frac{1}{1+|\lambda|} \mathrm{I}_{\mathrm{p}} \\
& \Rightarrow \operatorname{dim} \mathrm{C}_{\lambda}=\sup _{\mathrm{p}} \mathrm{I}_{\mathrm{p}} / \Lambda_{\mathrm{p}}(\lambda) \leqslant 1+|\lambda|
\end{aligned}
$$

- Quasicircle \Rightarrow (anti)symmetric motion \Rightarrow even Λ \Longrightarrow "quadratic" Harnack $\Rightarrow \operatorname{dim} \mathrm{C}_{\lambda} \leqslant 1+|\lambda|^{2} \square$

Proof: symmetrization

Thm [S] the following are equivalent:
a. $\quad \Gamma=\varphi(\mathbb{R})$ and φ is k-qc
b. $\Gamma=\varphi(\mathbb{R})$ and φ is $\frac{2 k}{1+k^{2}}$ qc in \mathbb{C}_{+}and conformal in \mathbb{C}_{-}
c. $\quad \Gamma=\varphi(\mathbb{R})$ and φ is k-qc and antisymmetric
symmetric:

antisymmetric:

harmonic measure ω

- Brownian motion

exit probability

- conformal map image of the length
- potential theory
equilibrium measure
- Dirichlet problem for Δ

\uparrow

$$
u\left(z_{0}\right)=\int_{\partial \Omega} u(z) d \omega(z)
$$

multifractality of ω "fjords and spikes"

$\mathcal{F}_{\alpha} \quad$ scaling: $\quad \omega B(z, r) \approx r^{\alpha}$ geometric Meaning :

Beurling's theorem: $\alpha \geq 1 / 2$
spectrum: $f(\alpha)=\operatorname{dim} \mathcal{F}_{\alpha}$

Courtesy of D. Marshall

Makarov's theorem: Borel $\operatorname{dim} \omega=1, f(1)=1$

Many open problems reduce to estimating the

universal spectrum

$f(\alpha)=\sup _{\Omega} f_{\Omega}(\alpha)$
over all simply connected domains

Conjecture : $f(\alpha) \stackrel{?}{=} 2-\frac{1}{\alpha}$
[Brennan-Carleson-Jones-Krätzer-Makarov]

Legendre transform \& pressure

Restrict pressure to conformal maps $\varphi: \mathbb{C}_{+} \rightarrow \Omega$

$$
\pi_{\Omega}(\mathrm{t}):=\log \left(\Sigma\left|\mathrm{r}_{\mathrm{j}}(\lambda)\right|^{t}\right)
$$

Universal pressure $\pi(\mathrm{t}):=\sup _{\Omega} \pi_{\Omega}(\mathrm{t})$
Chm [Makarov 1998] Legendre transforms: $f(\alpha)=\inf _{\mathrm{t}}\{\alpha \pi(\mathrm{t})+\mathrm{t}\} \quad \pi(\mathrm{t})=\sup _{\alpha}\{(f(\alpha)-\mathrm{t}) / \alpha\}$ Conjecture: $\pi(\mathrm{t})=(2-\mathrm{t})^{2} / 4$

finding the universal spectrum

- no real intuition
- some numerical evidence
- only weak estimates

Example: $\pi(1)$ gives optimal

- coefficient decay rate for bounded conformal maps
- growth rate for the length of Green's lines

Conjecturally $\pi(1)=\mathbf{0 . 2 5}$, best known estimates:

$$
0.23 \leqslant \pi(1) \leqslant 0.46
$$

[Beliaev, Smirnov] [Hedenmalm, Shimorin]

fine structure of

 harmonic measure via the holomorphic motionsl. qc deformations of conformal structure and harmonic measure
II. motions in bi-disk
III. welding conformal structures and Laplacian on 3-manifolds

joint work with Kari Astala and István Prause

I. deforming conf structure

Recall: $\operatorname{spt} v \subset \mathbb{R} \& \operatorname{dim} v=1 \Longrightarrow \operatorname{dim} \varphi(v) \geqslant 1-k^{2}$
Thm assume that the statement above is sharp:

$$
\left.\begin{array}{l}
\operatorname{spt} \sigma \subset \mathbb{R} \\
\operatorname{dim} \sigma=1-k^{2}
\end{array}\right\} \Rightarrow \exists k-q c \varphi \text { s.t. } \varphi(\mathrm{dx})=\sigma
$$ then the universal spectrum conjecture holds

Rem in general no sharpness (e.g. any porous σ), but we need it only for relevant "Gibbs" measures

Question: how to deform? (use φ ?)

I. proof: deforming to ω

For "Gibbs" measures the blue line is tangent to $\pi(\mathrm{t})$

Set $1-k^{2}:=\operatorname{dim} \sigma$ and take holomorphic motion ψ such that $\psi_{k}(\mathrm{dx})=\sigma$
By Makarov's theorem $\operatorname{dim} \varphi\left(\psi_{k}^{-1}(\sigma)\right)=\operatorname{dim} \varphi(\mathrm{dx})=1$

By Astala's theorem $\operatorname{dim} \varphi(\sigma) \leqslant 1+k$
$\Rightarrow \pi(\mathrm{t}) \leqslant(2-\mathrm{t})^{2} / 4$

II. two-sided spectrum

rotation [Binder]

$$
f(\alpha, \gamma)=\operatorname{dim} \mathcal{F}_{\alpha, \gamma} \quad \omega \approx r^{\alpha} \& \gamma \text {-spiraling }
$$

two-sided spectrum

$$
f\left(\alpha_{-}, \alpha_{+}, \gamma\right)=\operatorname{dim} \mathcal{F}_{\alpha_{-}, \alpha_{+}, \gamma} \quad \omega_{-} \approx r^{\alpha_{-}} \omega_{+} \approx r^{\alpha_{+}}
$$

Beurling's estimate $\quad \frac{1}{\alpha_{-}}+\frac{1}{\alpha_{+}} \leq \frac{2}{1+\gamma^{2}}$

II. bidisk motion

Take Beltrami μ in \mathbb{C}_{+}of norm 1 , symmetrize it
$\mu_{\lambda, \eta}=\left\{\begin{array}{l}\lambda \mu(z) \text { in } \mathbb{C}_{+} \\ \eta \overline{\mu(z)} \text { in } \mathbb{C}\end{array} \longrightarrow \varphi_{\lambda, \eta}(z) \quad(\lambda, \eta) \in \mathbb{D}^{2}\right.$

symmetric for $\lambda=\bar{\eta}$, antisymmetric for $\lambda=-\bar{\eta}$

II. thermodynamics

$$
\begin{aligned}
& \quad P_{\lambda, \eta}(t)=\log \left(\sum\left|r\left(B_{\lambda, \eta}\right)\right|^{t}\right)=\sup _{p}\left(\mathrm{I}-t \operatorname{Re} \Lambda_{\lambda, \eta}\right) \\
& \mathrm{I}=\sum p_{i} \log \frac{1}{p_{i}} \quad \quad \Lambda_{\lambda, \eta}=\sum p_{i} \log \frac{1}{r_{i}(\lambda, \eta)} \\
& \text { entropy } \quad \text { (complex) Lyapunov exponent }
\end{aligned}
$$

$$
\operatorname{dim}\left(C_{\lambda, \eta}\right)=\sup _{p} \operatorname{dim} p=\sup _{p} \frac{\mathrm{I}}{\operatorname{Re} \Lambda_{\lambda, \eta}}
$$

II. "easy" estimates

- reflection symmetry $\varphi_{\lambda, \eta}(z)=\overline{\varphi_{\bar{\eta}, \bar{\lambda}}(\bar{z})}$
- diagonal
- projections $(\lambda, \eta)_{+}=(\lambda, \bar{\lambda}),(\lambda, \eta)_{-}=(\bar{\eta}, \eta)$

$$
\Phi(\lambda, \eta)=1-\frac{\mathrm{I}}{\Lambda_{\lambda, \eta}}
$$

$\Phi: \mathbb{D}^{2} \rightarrow \mathbb{D} \quad \operatorname{dim} C_{\lambda, \eta} \leq 2$
$\Phi(\lambda, \bar{\lambda}) \geq 0 \quad \operatorname{dim} C_{\lambda, \bar{\lambda}} \leq 1$ $\Phi(\lambda, \eta)=\overline{\Phi(\bar{\eta}, \bar{\lambda})}$

\mathbb{D}

D

II. scaling relations

$$
\omega_{ \pm} B_{\lambda, \eta} \approx r_{ \pm}
$$

$$
\begin{gathered}
\log \frac{1}{r}=\frac{1+i \gamma}{\alpha_{ \pm}} \log \frac{1}{r_{ \pm}} \\
\frac{\mathrm{I}}{\Lambda}=\frac{f}{1+i \gamma}, \quad \frac{\mathrm{I}}{\Lambda_{-}}=\frac{f}{\alpha_{-}}, \quad \frac{\mathrm{I}}{\Lambda_{+}}=\frac{f}{\alpha_{+}}
\end{gathered}
$$

II. Beurling and Brennan

Beurling $\Rightarrow \frac{1}{\alpha_{-}}+\frac{1}{\alpha_{+}} \leq \frac{2}{1+\gamma^{2}} \Rightarrow 2 \operatorname{Re} \Phi(\lambda, \eta) \leq \Phi(\bar{\eta}, \eta)+\Phi(\lambda, \bar{\lambda})$
Corollary: $\lambda \mapsto \Phi(\lambda, \bar{\lambda})$ is subharmonic

Brennan's conjecture: $\quad F: \Omega \rightarrow \mathbb{D}, \quad F^{\prime} \in L^{4-\epsilon}$
Equivalent question: $f(\alpha) \leq 4\left(\alpha-\frac{1}{2}\right)$?
Two-sided:

$$
2 \operatorname{Re} \frac{1-\Phi}{1+\Phi} \geq \frac{1-\Phi_{-}}{1+\Phi_{-}}+\frac{1-\Phi_{+}}{1+\Phi_{+}}
$$

?

II. two-sided spectrum

Conjecture: $|\Phi|^{2} \leq \Phi_{-} \Phi_{+}$or $\left(\begin{array}{ll}\Phi(\lambda, \bar{\lambda}) & \Phi(\lambda, \bar{\eta}) \\ \Phi(\eta, \bar{\lambda}) & \Phi(\eta, \bar{\eta})\end{array}\right) \geq 0$

Rem it is equivalent to

$$
f\left(\alpha_{-}, \alpha_{+}, \gamma\right) \leq \frac{2-\left(1+\gamma^{2}\right)\left(\frac{1}{\alpha_{-}}+\frac{1}{\alpha_{+}}\right)}{1-\frac{1+\gamma^{2}}{\alpha_{-} \alpha_{+}}}
$$

$$
\alpha_{+} \rightarrow \infty, \quad \gamma=0
$$

$$
f\left(\alpha_{-}\right) \leq 2-\frac{1}{\alpha_{-}}
$$

II. the question

We know that
$\Phi: \mathbb{D}^{2} \rightarrow \mathbb{D}$
$\Phi(\lambda, \bar{\lambda}) \geq 0$ and subharmonic $\Phi(\lambda, \eta)=\overline{\Phi(\bar{\eta}, \bar{\lambda})}$
plus more...
What do we need to deduce the conjecture?

$$
\left(\begin{array}{ll}
\Phi(\lambda, \bar{\lambda}) & \Phi(\lambda, \bar{\eta}) \\
\Phi(\eta, \bar{\lambda}) & \Phi(\eta, \bar{\eta})
\end{array}\right) \geq 0
$$

III. conformal welding

two perturbations of conformal structure

quasisymmetric welding \longleftrightarrow quasicircle

III. welding and dimensions

Take three images of the linear measure $d x$:

Then the conjectures before are equivalent to

$$
(1-\mathrm{D})^{2} \leq\left(1-\mathrm{D}_{-}\right)\left(1-\mathrm{D}_{+}\right)
$$

III. Questions about (1-D) ${ }^{2} \leq\left(1-D_{-}\right)\left(1-D_{+}\right)$

Rem1 The inequality holds if $\mathbf{D}_{-}=\mathbf{1}$.
Q1 Can one interpolate to prove it in general?
Rem2 For quasicirles arising in quasi-Fuchsian groups the base eigenvalue λ_{0} of the Laplacian on the associated 3-manifold has $1-\lambda_{0}=(1-D)^{2}$ for Patterson-Sullivan measure
Q2 Can one use 3D geometry?

