

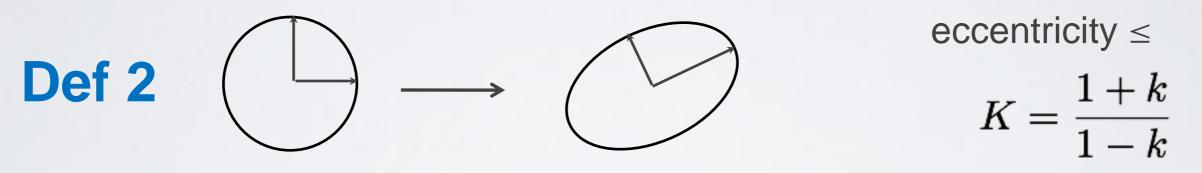
Quasiconformal maps and harmonic measure Stanislav Smirnov

In part based on joint work with Kari Astala & István Prause

quasiconformal maps

 $\varphi \colon \Omega \to \Omega' \ W^{1,2}_{loc}$ -homeomorphism

Def 1 $\overline{\partial}\varphi(z) = \mu(z)\partial\varphi(z)$ a.e. $z \in \Omega$ $\|\mu\|_{\infty} \le k < 1$



measurable Riemann mapping theorem:

- (unique up to Möbius) solution exists
- depends analytically on μ

distortion of dimension

Theorem [Astala 1994] for k – quasiconformal φ

$$\frac{1}{K} \left(\frac{1}{\dim E} - \frac{1}{2} \right) \le \frac{1}{\dim \varphi(E)} - \frac{1}{2} \le K \left(\frac{1}{\dim E} - \frac{1}{2} \right)$$

Rem result is sharp (easy from the proof)

In particular, dim E=1 \Rightarrow 1- $k \leq \dim \varphi(E) \leq 1+k$ [Becker-Pommerenke 1987] dim $\varphi(\mathbb{R}) \leq 1+37k^2$

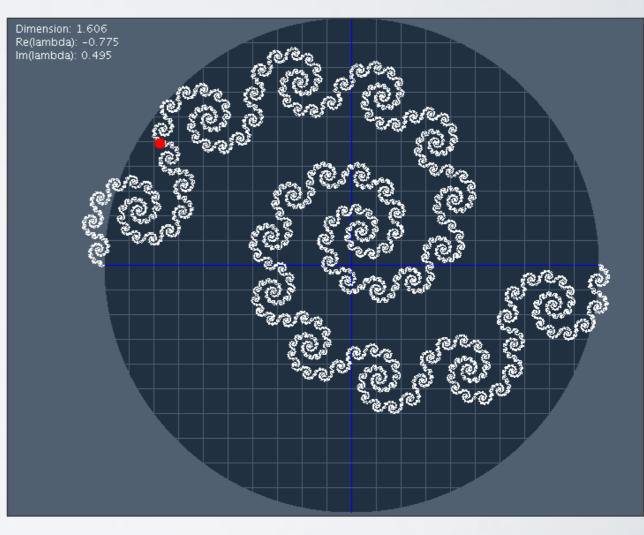
Conjecture [Astala] dim $\varphi(\mathbb{R}) \leq 1+k^2$

dimension of quasicircles

Thm [S] dim $\varphi(\mathbb{R}) \leq 1+k^2$

Dual statement: φ symmetric wrt \mathbb{R} , $\operatorname{spt} v \subset \mathbb{R}$ $\dim v = 1$ $\dim \varphi(v) \ge 1-k^2$

Sharpness???



a nonrectifiable quasicircle

Proof: holomorphic motion

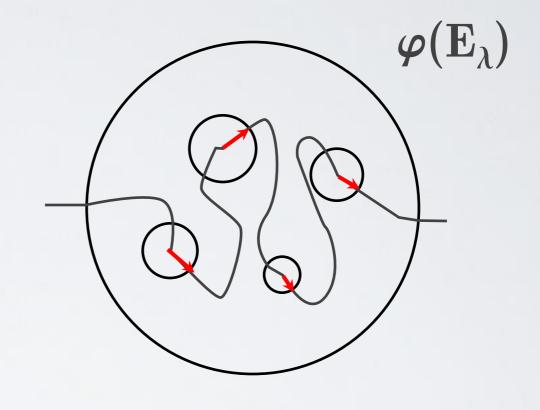
Any k - qc map φ_k can be embedded into a holomorphic motion of qc maps φ_λ , $\lambda \in \mathbb{D}$:

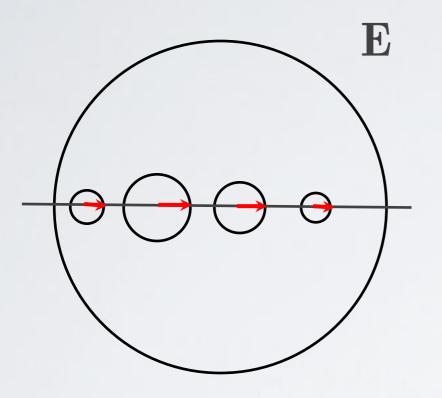
Define Beltrami coefficient $\mu = \mu_{\varphi} / ||\mu_{\varphi}||, ||\mu||=1$

 $\lambda \in \mathbb{D} \longrightarrow \lambda \mu \longrightarrow \varphi_{\lambda}$ which is $|\lambda|$ -qc

Mañé-Sad-Sullivan, Slodkowski : A holomorphic motion of a set can be extended to a holomorpic motion of qc maps

Proof: fractal approximation

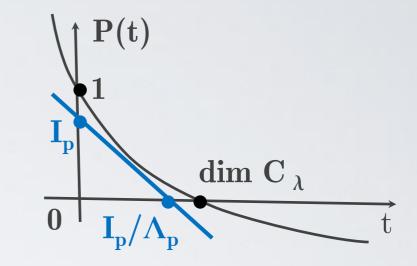




a packing of disks evolves in the motion $\{B_{\lambda}\}$ "complex radii" $\{r_{\lambda}\}$ Cantor sets $C_{\lambda} \approx \varphi(E_{\lambda})$

Proof: "thermodynamics"

Pressure [Ruelle, Bowen] $P_{\lambda}(t) := \log(\Sigma |r_{j}(\lambda)|^{t})$



"Entropy" $I_p := \Sigma p_j \log (1/p_j)$

"Lyapunov exponent" $\Lambda_p(\lambda) := \Sigma p_j \log (1/|r_j(\lambda)|)$ (harmonic in λ !)

 $\begin{array}{l} \mbox{Variational principle} \ (\mbox{Jensen's inequality}) \\ P_{\lambda} \ (t) = \sup_{p \in Prob} \ \Sigma \ p_{j} \ \log \ (|r_{j}(\lambda)|^{t}/p_{j}) = \sup_{p \in Prob} \ (\mathbf{I}_{p} - t \ \Lambda_{p}(\lambda)) \\ & p \in Prob \end{array}$

Bowen's formula: dim C_{λ} = root of P_{λ} = sup I_p / $\Lambda_p(\lambda)$

Proof: Harnack's inequality

- $\cdot \operatorname{dim} \operatorname{C}_{0} = 1 \Longrightarrow \operatorname{I}_{\operatorname{p}} / \Lambda_{\operatorname{p}}(0) \leq 1 \Longrightarrow \Lambda_{\operatorname{p}}(0) \operatorname{I}_{\operatorname{p}} / 2 \geq \operatorname{I}_{\operatorname{p}} / 2$
- $\cdot \operatorname{dim} C_{\lambda} \leq 2 \Longrightarrow I_{p} / \Lambda_{p}(\lambda) \leq 2 \Longrightarrow \Lambda_{p}(\lambda) I_{p} / 2 \geq 0$
- Harnack $\Rightarrow \Lambda_{p}(\lambda) \frac{I_{p}}{2} \ge \frac{1 |\lambda|}{1 + |\lambda|} \frac{I_{p}}{2}$ $\Rightarrow \Lambda_{p}(\lambda) \ge \frac{1}{1 + |\lambda|} I_{p}$ $\Rightarrow \dim C_{\lambda} = \sup_{p} I_{p} / \Lambda_{p}(\lambda) \le 1 + |\lambda|$
- Quasicircle \Rightarrow (anti)symmetric motion \Rightarrow even Λ \Rightarrow "quadratic" Harnack \Rightarrow dim C $_{\lambda} \leq 1+|\lambda|^2$

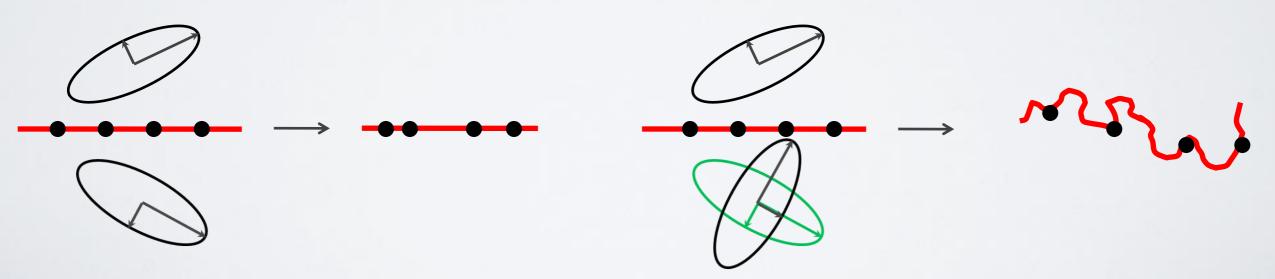
Proof: symmetrization

Thm [S] the following are equivalent:

- a. $\Gamma = \varphi(\mathbb{R})$ and φ is *k*-qc
- b. $\Gamma = \varphi(\mathbb{R})$ and φ is $\frac{2k}{1+k^2}$ qc in \mathbb{C}_+ and conformal in \mathbb{C}_-
- c. $\Gamma = \varphi(\mathbb{R})$ and φ is *k*-qc and antisymmetric

symmetric:

antisymmetric:

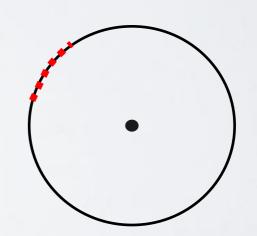


harmonic measure ω

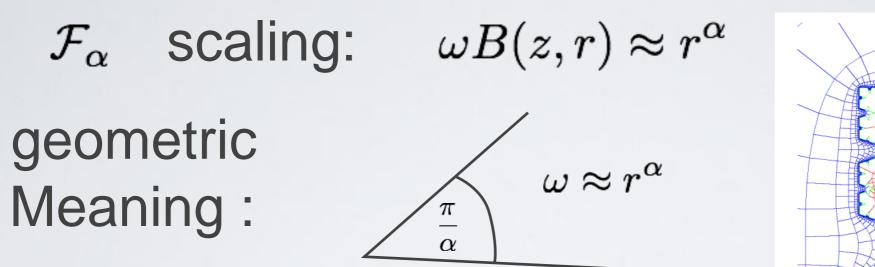
Brownian motion

exit probability

- conformal map image of the length
- potential theory equilibrium measure
- Dirichlet problem for Δ $u(z_0) = \int_{\partial\Omega} u(z) d\omega(z)$

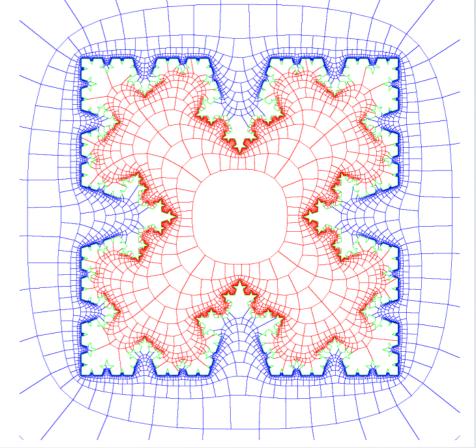


multifractality of ω "fjords and spikes"



Beurling's theorem: $\alpha \ge 1/2$

spectrum: $f(\alpha) = \dim \mathcal{F}_{\alpha}$



Courtesy of D. Marshall

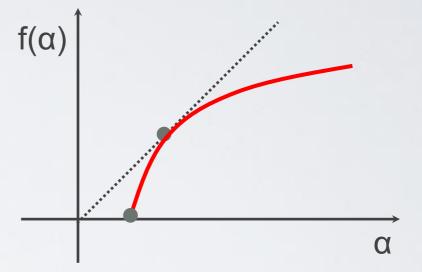
Makarov's theorem: Borel dim $\omega = 1$, f(1) = 1

Many open problems reduce to estimating the

universal spectrum

$$f(\alpha) = \sup_{\Omega} f_{\Omega}(\alpha)$$

over all simply connected domains



Conjecture :
$$f(\alpha) \stackrel{?}{=} 2 - \frac{1}{\alpha}$$

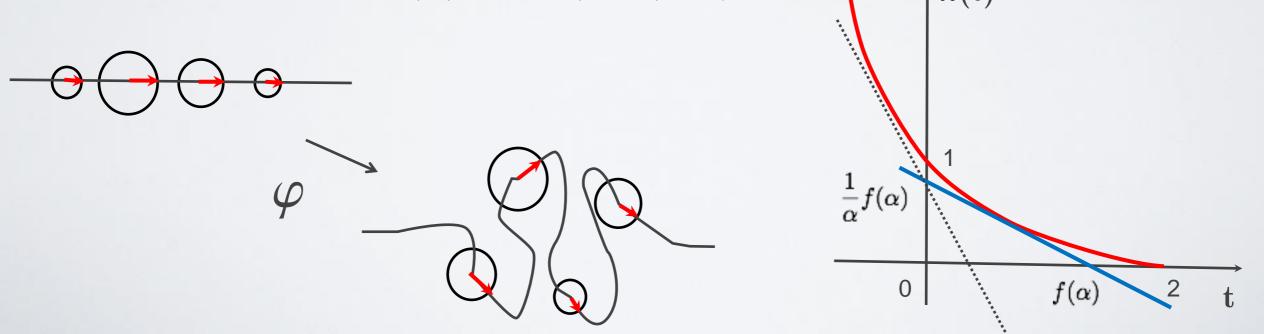
[Brennan-Carleson-Jones-Krätzer-Makarov]

Legendre transform & pressure

Restrict pressure to **conformal maps** $\varphi : \mathbb{C}_+ \to \Omega$ π_{Ω} (t) := log($\Sigma |\mathbf{r}_j(\lambda)|^t$)

Universal pressure $\pi(t) := \sup_{\Omega} \pi_{\Omega}(t)$

Thm [Makarov 1998] Legendre transforms: $f(\alpha) = \inf_{t} \{ \alpha \pi(t) + t \}$ $\pi(t) = \sup_{\alpha} \{ (f(\alpha) - t) / \alpha \}$ Conjecture: $\pi(t) = (2-t)^2 / 4$



finding the universal spectrum

- no real intuition
- some numerical evidence
- only weak estimates

Example: $\pi(1)$ gives optimal

- coefficient decay rate for bounded conformal maps
- growth rate for the length of Green's lines

Conjecturally $\pi(1) = 0.25$, best known estimates: $0.23 \leqslant \pi(1) \leqslant 0.46$ [Beliaev, Smirnov] [Hedenmalm, Shimorin]

fine structure of harmonic measure via the holomorphic motions

- I. qc deformations of conformal structure and harmonic measure
- II. motions in bi-disk
- III. welding conformal structures and Laplacian on 3-manifolds

joint work with Kari Astala and István Prause

I. deforming conf structure

Recall: spt $v \subset \mathbb{R}$ & dim $v = 1 \implies \dim \varphi(v) \ge 1 - k^2$

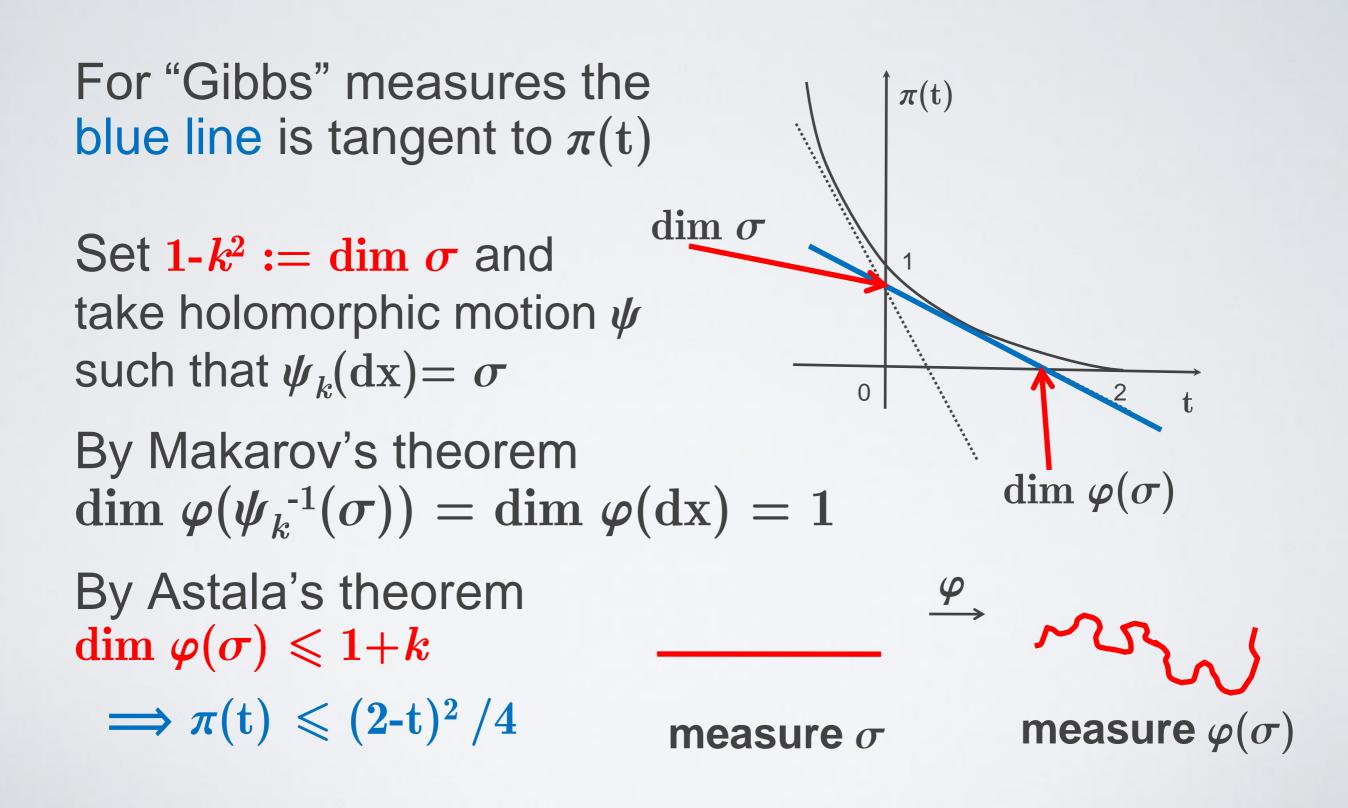
Thm assume that the statement above is sharp: spt $\sigma \subset \mathbb{R}$ dim $\sigma = 1 - k^2$ $\} \Longrightarrow \exists k - qc \varphi$ s.t. $\varphi(dx) = \sigma$

then the universal spectrum conjecture holds

Rem in general no sharpness (e.g. any porous σ), but we need it only for relevant "Gibbs" measures

Question: how to deform? (use φ ?)

I. proof: deforming to ω



II. two-sided spectrum

rotation [Binder]

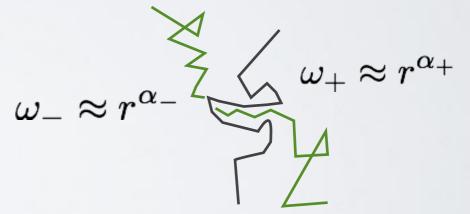
 $f(\alpha, \gamma) = \dim \mathcal{F}_{\alpha, \gamma} \qquad \omega \approx r^{\alpha} \& \gamma$ -spiraling

two-sided spectrum

$$f(\alpha_{-}, \alpha_{+}, \gamma) = \dim \mathcal{F}_{\alpha_{-}, \alpha_{+}, \gamma}$$

Beurling's estimate

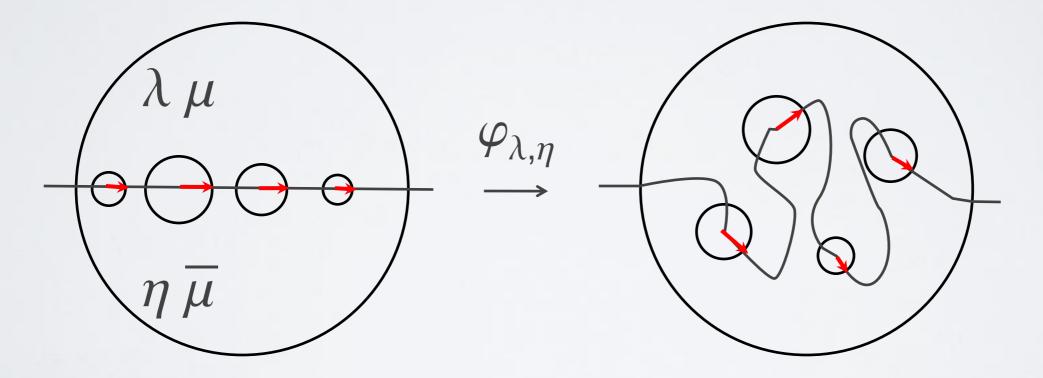
$$\frac{1}{\alpha_-} + \frac{1}{\alpha_+} \leq \frac{2}{1+\gamma^2}$$



II. bidisk motion

Take Beltrami μ in \mathbb{C}_+ of norm 1, symmetrize it

$$\mu_{\lambda,\eta} = \begin{cases} \lambda \mu(z) \text{ in } \mathbb{C}_+ \\ \eta \overline{\mu(z)} \text{ in } \mathbb{C}_- \end{cases} \implies \varphi_{\lambda,\eta}(z) \quad (\lambda,\eta) \in \mathbb{D}^2 \end{cases}$$



symmetric for $\lambda = \overline{\eta}$, antisymmetric for $\lambda = -\overline{\eta}$

II. thermodynamics

$$P_{\lambda,\eta}(t) = \log\left(\sum_{k} |r(B_{\lambda,\eta})|^t\right) = \sup_p (\mathbf{I} - t \operatorname{Re} \Lambda_{\lambda,\eta})$$

$$I = \sum p_i \log \frac{1}{p_i} \qquad \qquad \Lambda_{\lambda,\eta} = \sum p_i \log \frac{1}{r_i(\lambda,\eta)}$$

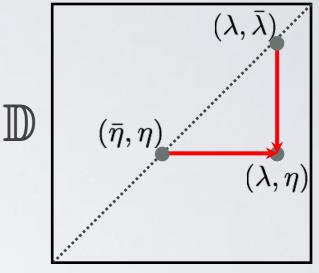
entropy (complex) Lyapunov exponen

$$\dim(C_{\lambda,\eta}) = \sup_{p} \dim p = \sup_{p} \frac{I}{\operatorname{Re} \Lambda_{\lambda,\eta}}$$

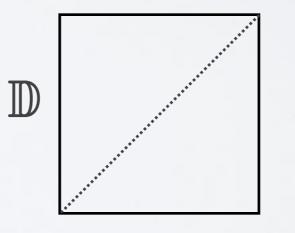
II. "easy" estimates

- reflection symmetry $\varphi_{\lambda,\eta}(z) = \varphi_{\bar{\eta},\bar{\lambda}}(\bar{z})$
- diagonal $(\lambda, \bar{\lambda})$
- projections $(\lambda,\eta)_+ = (\lambda,\bar{\lambda}), (\lambda,\eta)_- = (\bar{\eta},\eta)$

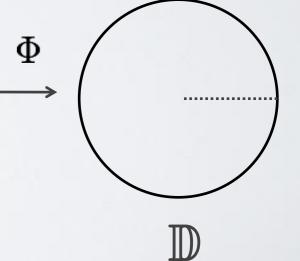
 $\Phi(\lambda,\eta) = 1 - \frac{1}{\Lambda_{\lambda,\eta}}$



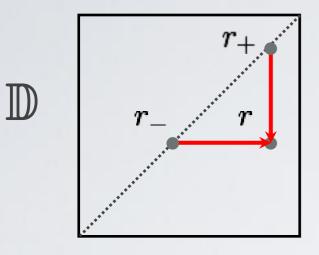
$$\begin{split} \Phi \colon \mathbb{D}^2 \to \mathbb{D} & \dim C_{\lambda,\eta} \leq 2 \\ \Phi(\lambda,\bar{\lambda}) \geq 0 & \dim C_{\lambda,\bar{\lambda}} \leq 1 \\ \Phi(\lambda,\eta) = \overline{\Phi(\bar{\eta},\bar{\lambda})} \end{split}$$



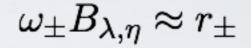
 \mathbb{D}

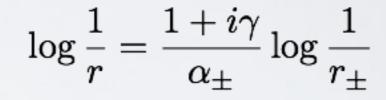


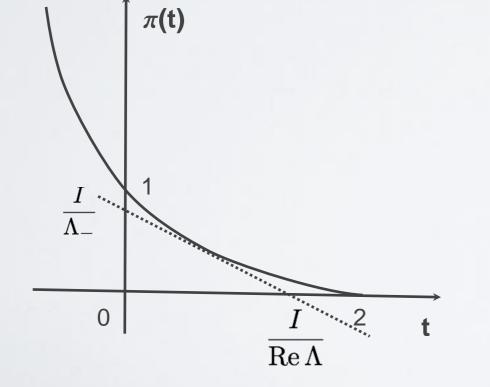
II. scaling relations



 \mathbb{D}







$$\frac{\mathrm{I}}{\Lambda} = \frac{f}{1+i\gamma}, \quad \frac{\mathrm{I}}{\Lambda_-} = \frac{f}{\alpha_-}, \quad \frac{\mathrm{I}}{\Lambda_+} = \frac{f}{\alpha_+}$$

II. Beurling and Brennan

Beurling $\Rightarrow \frac{1}{\alpha_{-}} + \frac{1}{\alpha_{+}} \le \frac{2}{1+\gamma^{2}} \Rightarrow 2\operatorname{Re}\Phi(\lambda,\eta) \le \Phi(\bar{\eta},\eta) + \Phi(\lambda,\bar{\lambda})$

Corollary: $\lambda \mapsto \Phi(\lambda, \overline{\lambda})$ is subharmonic

Brennan's conjecture: $F: \Omega \to \mathbb{D}, \quad F' \in L^{4-\epsilon}$ **Equivalent question:** $f(\alpha) \le 4(\alpha - \frac{1}{2})$?

NO-Sided:
$$2 \operatorname{Re} \frac{1-\Phi}{1+\Phi} \ge \frac{1-\Phi_{-}}{1+\Phi_{-}} + \frac{1-\Phi_{+}}{1+\Phi_{+}}$$
?

II. two-sided spectrum

Conjecture: $|\Phi|^2 \le \Phi_- \Phi_+$ or $\begin{pmatrix} \Phi(\lambda, \lambda) & \Phi(\lambda, \bar{\eta}) \\ \Phi(\eta, \bar{\lambda}) & \Phi(\eta, \bar{\eta}) \end{pmatrix} \ge 0$

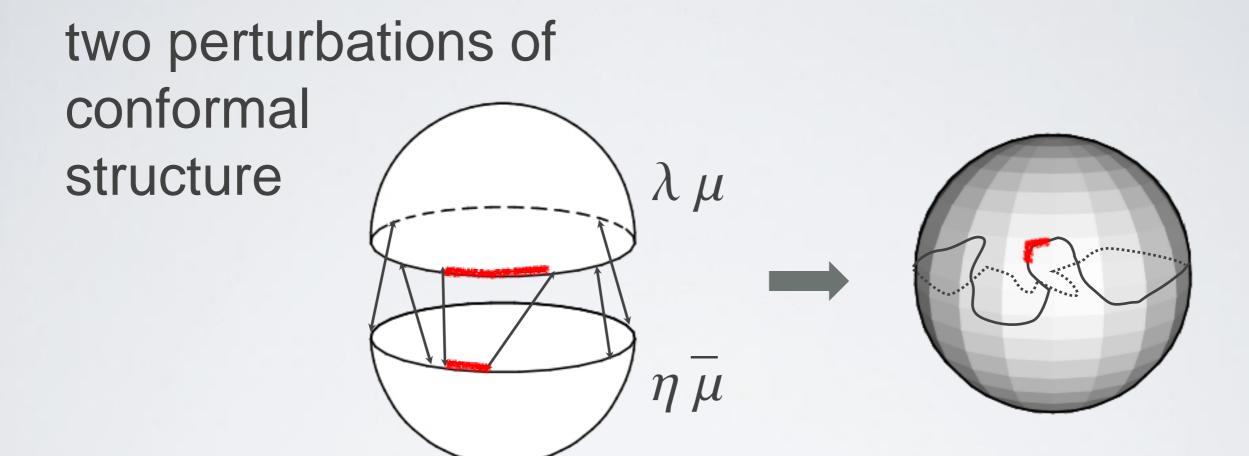
Rem it is equivalent to

II. the question

We know that

What do we need to deduce the conjecture? $\begin{pmatrix} \Phi(\lambda,\bar{\lambda}) & \Phi(\lambda,\bar{\eta}) \\ \Phi(\eta,\bar{\lambda}) & \Phi(\eta,\bar{\eta}) \end{pmatrix} \ge 0$

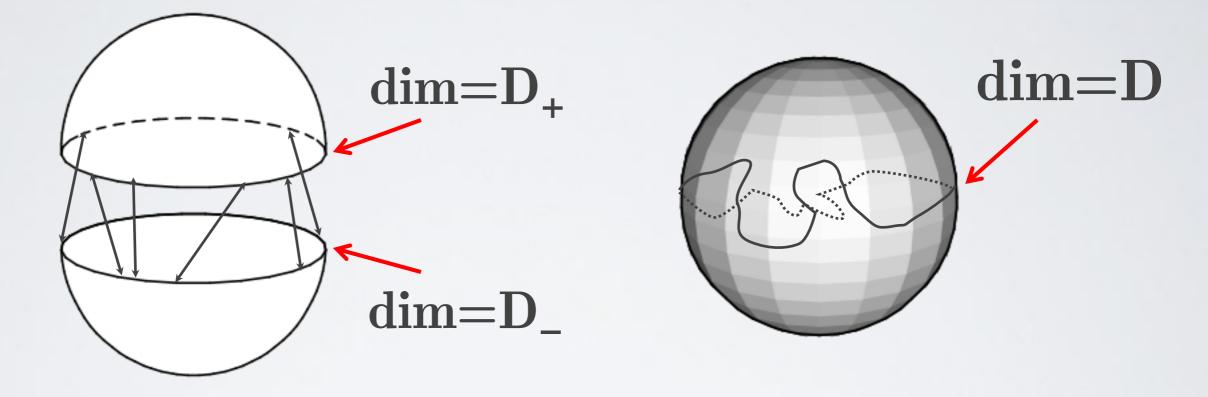
III. conformal welding



quasisymmetric welding - quasicircle

III. welding and dimensions

Take three images of the linear measure dx :



Then the conjectures before are equivalent to

 $(1-D)^2 \leq (1-D_-) (1-D_+)$

III. Questions about $(1-D)^2 \leq (1-D_-) (1-D_+)$ Rem1 The inequality holds if $D_- = 1$.

Q1 Can one interpolate to prove it in general?

Rem2 For quasicirles arising in quasi-Fuchsian groups the base eigenvalue λ_0 of the Laplacian on the associated 3-manifold has $1-\lambda_0=(1-D)^2$ for

Patterson-Sullivan

measure

Q2 Can one use 3D geometry ?

