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— Introduction —
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Ornstein–Zernike asymptotics for the pair correlation function

▶ In 1914 and 1916, Ornstein and Zernike developed a (heuristic)
theory of correlations in fluids with quickly decaying interactions.
In particular, they concluded that, at large distances, the density-
density correlation satisfies

G(r) ∼ r−(d−1)/2e−νr,

where ν is the inverse correlation length.

▶ The OZ theory has become a major piece in the modern statistical
theory of fluids and can be found in most textbooks today.

▶ In the 1960s, it was realized that the above prediction fails close
to a critical point (where ν = 0). It was however generally expected
to hold away from the critical point, in particular at sufficiently high
temperatures and/or sufficiently small densities.

As I’ll explain, the situation is actually more subtle than previously thought...
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Ising model on Zd

[To be specific, I’ll mainly consider the Ising model. Extensions will be mentioned when relevant.]

▶ Let h ∈ R and (Jx)x∈Zd ⊂ [0,∞) such that J0 = 0 and Jx = J−x . We also assume
(except on 1 slide) that ∃C, c > 0 such that Jx ≤ Ce−c∥x∥ for all x ∈ Zd.

▶ The Hamiltonian in Λ ⋐ Zd is the function

HΛ(σ) = −
∑

{x,y}⊂Λ

Jy−x σxσy − h
∑
x∈Λ

σx

defined on configurations σ = (σx)x∈Λ ∈ {±1}Λ.

▶ The Gibbs measure in Λ at inverse temperature β ≥ 0 is the probability measure

PΛ;β,h(σ) =
e−βHΛ(σ)

ZΛ;β,h
.

▶ We are interested in the (infinite-volume) Gibbs measure uniquely defined by

Pβ,h = lim
Λ↑Zd

PΛ;β,h (when h ̸= 0), Pβ,0 = lim
h↓0

Pβ,h.
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2-point function and inverse correlation length

▶ The 2-point function is defined, for any x ∈ Zd, by

Gβ,h(x) = CovPβ,h(σ0, σx).

▶ For each s⃗ ∈ Sd−1, the inverse correlation length is defined by

νβ,h(⃗s) = − lim
n→∞

1
n
log Gβ,h([n⃗s]),

where [x] ∈ Zd is the coordinatewise integer part of x ∈ Rd.

▶ There exists βc = βc(d) ∈ (0,+∞] such that

(β, h) ̸= (βc, 0) =⇒ min
s⃗
νβ,h(⃗s) > 0

∀⃗s ∈ Sd−1, νβc,0(⃗s) = 0

▶ When (β, h) ̸= (βc, 0), νβ,h can be extended to a norm on Rd:

νβ,h(x) = ∥x∥ · νβ,h(x̂),

where x̂ = x/ ∥x∥ ∈ Sd−1.

4/30



2-point function and inverse correlation length

▶ The 2-point function is defined, for any x ∈ Zd, by

Gβ,h(x) = CovPβ,h(σ0, σx).

▶ For each s⃗ ∈ Sd−1, the inverse correlation length is defined by

νβ,h(⃗s) = − lim
n→∞

1
n
log Gβ,h([n⃗s]),

where [x] ∈ Zd is the coordinatewise integer part of x ∈ Rd.

▶ There exists βc = βc(d) ∈ (0,+∞] such that

(β, h) ̸= (βc, 0) =⇒ min
s⃗
νβ,h(⃗s) > 0

∀⃗s ∈ Sd−1, νβc,0(⃗s) = 0

▶ When (β, h) ̸= (βc, 0), νβ,h can be extended to a norm on Rd:

νβ,h(x) = ∥x∥ · νβ,h(x̂),

where x̂ = x/ ∥x∥ ∈ Sd−1.

4/30



2-point function and inverse correlation length

▶ The 2-point function is defined, for any x ∈ Zd, by

Gβ,h(x) = CovPβ,h(σ0, σx).

▶ For each s⃗ ∈ Sd−1, the inverse correlation length is defined by

νβ,h(⃗s) = − lim
n→∞

1
n
log Gβ,h([n⃗s]),

where [x] ∈ Zd is the coordinatewise integer part of x ∈ Rd.

▶ There exists βc = βc(d) ∈ (0,+∞] such that

(β, h) ̸= (βc, 0) =⇒ min
s⃗
νβ,h(⃗s) > 0

∀⃗s ∈ Sd−1, νβc,0(⃗s) = 0

▶ When (β, h) ̸= (βc, 0), νβ,h can be extended to a norm on Rd:

νβ,h(x) = ∥x∥ · νβ,h(x̂),

where x̂ = x/ ∥x∥ ∈ Sd−1.

4/30



2-point function and inverse correlation length

▶ The 2-point function is defined, for any x ∈ Zd, by

Gβ,h(x) = CovPβ,h(σ0, σx).

▶ For each s⃗ ∈ Sd−1, the inverse correlation length is defined by

νβ,h(⃗s) = − lim
n→∞

1
n
log Gβ,h([n⃗s]),

where [x] ∈ Zd is the coordinatewise integer part of x ∈ Rd.

▶ There exists βc = βc(d) ∈ (0,+∞] such that

(β, h) ̸= (βc, 0) =⇒ min
s⃗
νβ,h(⃗s) > 0

∀⃗s ∈ Sd−1, νβc,0(⃗s) = 0

▶ When (β, h) ̸= (βc, 0), νβ,h can be extended to a norm on Rd:

νβ,h(x) = ∥x∥ · νβ,h(x̂),

where x̂ = x/ ∥x∥ ∈ Sd−1.

4/30



— Rigorous results —
1. Finite-range interactions

∃R < ∞, ∥x∥ > R =⇒ Jx = 0.
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Asymptotic behavior of the 2-point function

Ornstein–Zernike asymptotic behavior holds when β < βc or h ̸= 0 :

Theorem

Assume that β < βc or h ̸= 0. Then, as n → ∞,

Gβ,h([n⃗s]) =
Ψβ,h(⃗s)
n(d−1)/2 e−νβ,h (⃗s)n (1 + o(1))

Moreover, the functions Ψβ,h and νβ,h are analytic in s⃗ .

The above result has a long history. Some milestones are

▷ Wu 1966, Wu–McCoy–Tracy–Barouch 1976: exact computation in d = 2 when h = 0
▷ Abraham–Kunz 1977, Paes-Leme 1978: any dimension, h = 0 and β ≪ 1
▷ Campanino–Ioffe–V. 2003: any dimension, h = 0 and β < βc

▷ Campanino–Ioffe–V. 2008: extension to Potts models
▷ Ott 2020: any dimension, h ̸= 0 and β arbitrary
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Asymptotic behavior of the 2-point function

Knowledge much less complete when h = 0 and β > βc , but OZ can be violated:

Theorem

Assume that h = 0 and β > βc. Then, as n → ∞,

Gβ,h([n⃗s]) =


Ψβ,0(⃗s)

n2 e−νβ,0 (⃗s)n (1 + o(1)) in the planar case

Ψβ,0(⃗s)
n(d−1)/2 e−νβ,0 (⃗s)n (1 + o(1)) when d ≥ 3, β ≫ 1

▷ Wu–McCoy–Tracy–Barouch 1976: exact computations in the planar case
▷ Bricmont–Fröhlich 1985: d ≥ 3, β ≫ 1

Remarks: 1. OZ decay expected to persist for all β > βc when d ≥ 3.
2. OZ expected to hold when d = 2 and the graph is not planar.

7/30



— Rigorous results —
2. Infinite-range interactions

[From now on, for simplicity, we assume that h = 0 and omit it from the notations. However,

many results extend to all h ̸= 0.]
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Subexponential decay of interactions

▶ Assume that interactions decay strictly slower than exponentially:

∀c > 0, lim
∥x∥→∞

ec∥x∥Jx = +∞.

▶ Since at least Widom (1964), it is known that Gβ cannot decay faster than the
interaction (for ferromagnetic systems).

This obviously implies that OZ asymptotics do not hold.

▶ In fact, sharp asymptotics have been obtained:

Theorem [Newman–Spohn 1998]

Assume that β < βc. Then, as ∥x∥ → ∞,

Gβ(x) = βχ2
β Jx(1 + o(1)),

where χβ =
∑

x Gβ(x) is the magnetic susceptibility.

▶ This result was extended to Potts models by Aoun (2020).
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Superexponential decay of interactions

▶ Assume that interactions decay strictly faster than exponentially:

∀c ∈ R, lim
∥x∥→∞

ec∥x∥Jx = 0.

In this case, the results obtained in the finite-range case when β < βc extend
verbatim:

Work in progress [Aoun–Ott–V.]

Assume that β < βc. Then, as n → ∞,

Gβ([n⃗s]) =
Ψβ (⃗s)
n(d−1)/2 e−νβ (⃗s)n (1 + o(1))

Moreover, the functions Ψβ and νβ are analytic in s⃗ .

In particular, OZ asymptotic behavior holds in all dimensions.
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Exponential decay of interactions

Let us thus consider the “critical” case of exponentially decaying interactions:

Jx = ψ(x)e−|||x|||,

where

▷ |||·||| denotes an arbitrary norm on Rd

▷ ψ is subexponential

and we assume in this talk, for simplicity, that

∀x ∈ Rd, ψ(x) = ψ(|||x|||) > 0.
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Qualitative behavior of the inverse correlation length

β ↑ βc

It is a general result that limβ↑βc νβ (⃗s) = 0 for all s⃗ ∈ Sd−1.

β ↓ 0

▷ For superexponentially decaying interactions,

lim
β↓0

νβ (⃗s) = +∞ for all s⃗ ∈ Sd−1.

▷ For exponentially decaying interactions, since νβ(·) ≤ |||·|||,

lim
β↓0

νβ (⃗s) = |||⃗s||| for all s⃗ ∈ Sd−1.

▶ This leads to two scenarios:

β
βc

|||⃗s|||

νβ (⃗s)

0
β

βc

|||⃗s |||

νβ (⃗s)

0 βsat(⃗s)
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Saturation

β
βc

|||⃗s|||

νβ (⃗s)

0
β

βc

|||⃗s |||

νβ (⃗s)

0 βsat(⃗s)

No saturation Saturation

▶ We define βsat(⃗s) = sup{β ≥ 0 : νβ (⃗s) = |||⃗s |||} and say that there is saturation in
direction s⃗ at inverse temperature β if β < βsat(⃗s).

▶ Observe that βsat(⃗s) > 0 implies that β 7→ νβ (⃗s) is not analytic on [0, βc).
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Criterion for the existence of a saturation regime

▶ Let us introduce the generating functions (for t ∈ Rd)

Gβ(t) =
∑
x∈Zd

et·x Gβ(x), J(t) =
∑
x∈Zd

et·xJx.

▶ Let us also introduce

U = {x ∈ Rd : |||x||| ≤ 1}, W = {t ∈ Rd : ∀x ∈ Rd, t · x ≤ |||x|||}.

Easy fact: W is the closure of the domain of convergence of J.

▶ t ∈ ∂W is dual to s⃗ ∈ Sd−1 if

t · s⃗ = |||⃗s|||
U W

s⃗
t1

t2 W

s⃗

t
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Criterion for the existence of a saturation regime

Theorem [Aoun–Ioffe–Ott-V. 2021]

Let s⃗ ∈ Sd−1 and T⃗s = {t ∈ ∂W : t is dual to s⃗}. Then

βsat(⃗s) > 0 ⇐⇒ inf
t∈T⃗s

J(t) <∞.

▶ Shows that the correlation length does not always depend analytically on β in the
whole high-temperature region (even in dimension 1!).

▶ Extends to many models: Potts, XY, (FK)-percolation, GFF with mass as parameter,
Ising with magnetic field as parameter, etc.

▶ Application of this criterion yields, for instance, that

▷ If
∑

ℓ∈N Ψ(ℓ) = ∞, then βsat(⃗s) = 0 for all s⃗ ∈ Sd−1.

▷ If
∑

ℓ∈N ℓ
d−1 Ψ(ℓ) <∞, then βsat(⃗s) > 0 for all s⃗ ∈ Sd−1.

It would be useful to have a more explicit criterion in general.
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A more explicit form of the criterion

▶ Local parametrization of ∂U at s0 = s⃗/|||⃗s |||:

s0

∂U
τ

v

f(τv)

▶ Assume there exist C, c > 0 and a nonnegative nondecreasing function g such that

C g(τ) ≥ f(τv) ≥ c g(τ)

for all small τ ≥ 0 and all vectors v in a supporting hyperplane to ∂U at s0.

Then the following more explicit version of the criterion holds:

βsat(⃗s) > 0 ⇐⇒
∑
ℓ≥1

ψ(ℓ)
(
ℓg−1(1/ℓ)

)d−1
<∞.
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An example

▶ Let us illustrate the previous criterion for the model on Z2 with

Jx = ∥x∥αp e−∥x∥p ,

where ∥·∥p is the p-norm, α ∈ R and we assume p ∈ (2,∞).

▶ Let s⃗ ∈ S1 and s0 = (x0, y0) = s⃗/ ∥⃗s∥p.

▶ When both x0 and y0 are nonzero,

f(τv) =
p − 1

2
xp−2

0 yp−2
0

(x2p−2
0 + y2p−2

0 )3/2
τ 2 + o(τ 2).

U
We can thus choose g(τ) = τ 2. It follows that

βsat(⃗s) > 0 ⇐⇒
∑
ℓ≥1

ℓα(ℓ
√

1/ℓ) <∞ ⇐⇒ α < − 3
2
.

17/30



An example

▶ Let us illustrate the previous criterion for the model on Z2 with

Jx = ∥x∥αp e−∥x∥p ,

where ∥·∥p is the p-norm, α ∈ R and we assume p ∈ (2,∞).

▶ Let s⃗ ∈ S1 and s0 = (x0, y0) = s⃗/ ∥⃗s∥p.

▶ When both x0 and y0 are nonzero,

f(τv) =
p − 1

2
xp−2

0 yp−2
0

(x2p−2
0 + y2p−2

0 )3/2
τ 2 + o(τ 2).

U
We can thus choose g(τ) = τ 2. It follows that

βsat(⃗s) > 0 ⇐⇒
∑
ℓ≥1

ℓα(ℓ
√

1/ℓ) <∞ ⇐⇒ α < − 3
2
.

17/30



An example

▶ Let us illustrate the previous criterion for the model on Z2 with

Jx = ∥x∥αp e−∥x∥p ,

where ∥·∥p is the p-norm, α ∈ R and we assume p ∈ (2,∞).

▶ Let s⃗ ∈ S1 and s0 = (x0, y0) = s⃗/ ∥⃗s∥p.

▶ When both x0 and y0 are nonzero,

f(τv) =
p − 1

2
xp−2

0 yp−2
0

(x2p−2
0 + y2p−2

0 )3/2
τ 2 + o(τ 2).

U
We can thus choose g(τ) = τ 2. It follows that

βsat(⃗s) > 0 ⇐⇒
∑
ℓ≥1

ℓα(ℓ
√

1/ℓ) <∞ ⇐⇒ α < − 3
2
.

17/30



An example

▶ In the remaining cases, that is, when s⃗ ∈ {±(1, 0),±(0, 1)},

f(τv) = 1
pτ

p + o(τ p).

U
We can thus choose g(τ) = τ p. Therefore,

βsat(⃗s) > 0 ⇐⇒
∑
ℓ≥1

ℓα(ℓ p
√

1/ℓ) <∞ ⇐⇒ α <
1
p
− 2.

▶ This shows that the positivity of βsat(⃗s) (and a fortiori its actual value) depends on

the norm. It also depends in general on the direction: when − 3
2
> α ≥ 1

p
− 2,

▷ βsat(⃗s) = 0 for s⃗ ∈ {±(1, 0),±(0, 1)}

▷ βsat(⃗s) > 0 in all the other directions.
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Consequences for OZ behavior

▶ When βsat(⃗s) > 0, OZ asymptotics are known not to hold at sufficiently high
temperatures for various classes of interactions. For instance:

▷ ψ(x) = C e−c|||x|||α with 0 < α < 1
▷ ψ(x) = C e−c(log|||x|||)α for some α > 1
▷ ψ(x) = C |||x|||−α for some α > d

Theorem [Aoun–Ioffe–Ott–V. 2021]

Assume that βsat(⃗s) > 0 and that ψ is as above. Then, for all β small enough,
there exist c+ > c− > 0 such that, for all n,

c− J[n⃗s ] ≤ Gβ([n⃗s]) ≤ c+ J[n⃗s ].

▶ Current work in progress:

▷ more general classes of prefactors
▷ extension to all β ∈ (0, βsat(⃗s))
▷ sharp asymptotics
▷ proof that OZ holds for all β ∈ (βsat(⃗s), βc)

▷ proof that OZ usually holds at βsat(⃗s)
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— Comments on the proof —
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Proof of the criterion when d = 1

1. Preliminaries.

▶ When β < βc,
Gβ(x) =

∑
γ: 0→x

qβ(γ), (1)

where γ is a self-avoiding path from 0 to x and qβ(γ) a suitable non-negative weight.

▶ One can show that there exists Cβ > 0 such that, if γ = (γ0, γ1, . . . , γn) is
self-avoiding,

n∏
i=1

β Jγi−γi−1 ≥ qβ(γ) ≥
n∏

i=1

Cβ Jγi−γi−1 . (2)
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n∏
i=1

β Jγi−γi−1 ≥ qβ(γ) ≥
n∏

i=1

Cβ Jγi−γi−1 . (2)

▶ Recall that Gβ(t) =
∑

x∈Z etxGβ(x)︸ ︷︷ ︸
≍ e−νβ (1)·|x|

and J(t) =
∑

x∈Z etx Jx︸︷︷︸
≍ e−|||1|||·|x|

.

Observe that

▷ the radii of convergence of Gβ and J are given by νβ(1) and |||1|||, respectively;

▷ (1) and (2) imply that νβ(1) ≤ |||1||| (use γ = {0, x} for a lower bound on Gβ ).
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Proof of the criterion when d = 1

▶ Note that, using (1),

Gβ(t) =
∑
x∈Z

etx Gβ(x)

=
∑
x∈Z

etx
∑

γ: 0→x

qβ(γ)

=
∑
x∈Z

etx
∑
n≥1

∑
y1,...,yn∑

k yk=x

qβ

(
(0, y1, y1 + y2, . . . , y1 + · · ·+ yn)

)
=

∑
x∈Z

∑
n≥1

∑
y1,...,yn∑

k yk=x

et(y1+···+yn)qβ

(
(0, y1, y1 + y2, . . . , y1 + · · ·+ yn)

)
=

∑
n≥1

∑
y1,...,yn

et(y1+···+yn)qβ

(
(0, y1, y1 + y2, . . . , y1 + · · ·+ yn)

)
. (3)

▶ Let s⃗ = 1. Then T⃗s = {|||1|||}.

The criterion thus reduces to: βsat(1) > 0 ⇐⇒ J(|||1|||) <∞

22/30



Proof of the criterion when d = 1

▶ Note that, using (1),

Gβ(t) =
∑
x∈Z

etx Gβ(x)

=
∑
x∈Z

etx
∑

γ: 0→x

qβ(γ)

=
∑
x∈Z

etx
∑
n≥1

∑
y1,...,yn∑

k yk=x

qβ

(
(0, y1, y1 + y2, . . . , y1 + · · ·+ yn)

)
=

∑
x∈Z

∑
n≥1

∑
y1,...,yn∑

k yk=x

et(y1+···+yn)qβ

(
(0, y1, y1 + y2, . . . , y1 + · · ·+ yn)

)
=

∑
n≥1

∑
y1,...,yn

et(y1+···+yn)qβ

(
(0, y1, y1 + y2, . . . , y1 + · · ·+ yn)

)
. (3)

▶ Let s⃗ = 1. Then T⃗s = {|||1|||}.

The criterion thus reduces to: βsat(1) > 0 ⇐⇒ J(|||1|||) <∞

22/30



Proof of the criterion when d = 1

2. Proof that J(|||1|||) <∞ =⇒ βsat(1) > 0.

▶ By (3) and the upper bound in (2),

Gβ(t) ≤
∑
n≥1

∑
y1,...,yn

n∏
k=1

etykβJyk =
∑
n≥1

(
βJ(t)

)n
.

Therefore,
J(t) <∞ and β <

1
J(t)

=⇒ Gβ(t) <∞.

▶ In particular, with t = |||1|||,

J(|||1|||) <∞ =⇒ Gβ(|||1|||) <∞ =⇒ |||1||| ≤ νβ(1) =⇒ |||1||| = νβ(1),

for all β < 1/J(|||1|||). This show that βsat(1) > 0.
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Proof of the criterion when d = 1

3. Proof that J(|||1|||) = ∞ =⇒ βsat(1) = 0.

▶ Let β > 0. By Fatou, there exists ϵ > 0 such that

J((1 − ϵ)|||1|||) ≥ 2
Cβ
.

▶ Let t = (1 − ϵ)|||1|||. Using (3) and the lower bound in (2), we obtain

Gβ(t) ≥
∑
n≥1

∑
y1≥1

· · ·
∑
yn≥1

n∏
k=1

Cβ Jyk etyk

=
∑
n≥1

(
Cβ

∑
y≥1

Jyety
)n

≥
∑
n≥1

(
Cβ

1
2J(t)

)n

= +∞.

▶ This implies that (1 − ϵ)|||1||| ≥ νβ(1) and thus |||1||| > νβ(1).

▶ We conclude that βsat(1) ≤ β. Since β > 0 was arbitrary, βsat(1) = 0.
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— One final remark —
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An associated condensation phenomenon

▶ Sketches of typical paths γ contributing to Gβ(x) =
∑

γ: 0→x qβ(γ) :

0

x

0 0

x

β > βsat β < βsat

▶ Reminiscent of the condensation phenomenon for large deviations of the sum of
independent random variables, depending on the fatness of their tail.
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Thank you for your attention!
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