Ferrari-Spohn asymptotics for an Ising model interface

Yvan VELENIK Université de Genève

Joint work with Dmitry Ioffe, Sébastien Ott and Senya Shlosman

- INTRODUCTION -

Ising model

▷ **Box:**
$$B_N = \{-N + 1, ..., N\}^2$$

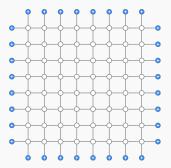
b boundary condition:

$$\Omega_{N}^{\bullet} = \{ \sigma = (\sigma_{i})_{i \in \mathbb{Z}^{2}} \in \{\pm 1\}^{\mathbb{Z}^{2}} : \forall i \notin B_{N}, \sigma_{i} = 1 \}$$

$$\vdash \text{ Hamiltonian: } \mathscr{H}_{\mathbb{N}}(\sigma) = -\beta \sum_{\substack{\{i,j\} \cap \mathbb{B}_{\mathbb{N}} \neq \varnothing \\ i \sim j}} \sigma_i \sigma_j$$

 \triangleright **Gibbs measure:** Probability measure on Ω_N^{\odot} s.t.

$$\mu_{\mathsf{N};\beta}^{\mathbf{O}}(\sigma) = \frac{1}{\mathscr{Z}_{\mathsf{N};\beta}^{\mathbf{O}}} \mathrm{e}^{-\mathscr{H}_{\mathsf{N}}(\sigma)}$$



Ising model

▷ **Box:**
$$B_N = \{-N + 1, ..., N\}^2$$

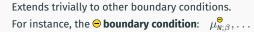
b boundary condition:

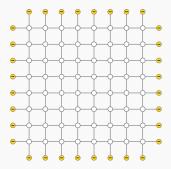
$$\Omega_{N}^{\bullet} = \{ \sigma = (\sigma_{i})_{i \in \mathbb{Z}^{2}} \in \{\pm 1\}^{\mathbb{Z}^{2}} : \forall i \notin B_{N}, \sigma_{i} = 1 \}$$

$$\vdash \text{ Hamiltonian: } \mathscr{H}_{\mathbb{N}}(\sigma) = -\beta \sum_{\substack{\{i,j\} \cap \mathbb{B}_{\mathbb{N}} \neq \varnothing \\ i \sim j}} \sigma_i \sigma_j$$

▷ **Gibbs measure:** Probability measure on Ω_N^{\odot} s.t.

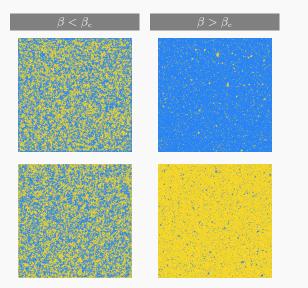
$$\mu_{N;\beta}^{\bullet}(\sigma) = \frac{1}{\mathscr{Z}_{N;\beta}^{\bullet}} e^{-\mathscr{H}_{N}(\sigma)}$$





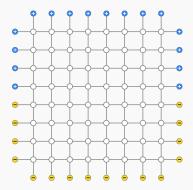
Phase transition

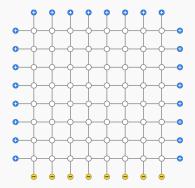
Let $\beta_c = \frac{1}{2} \log(1 + \sqrt{2})$. Typical configurations at $\beta \in [0, \infty)$ for $N > N_0(\beta)$:



- PHASE COEXISTENCE -

To force spatial coexistence, consider 2 types of Dobrushin boundary condition:





Phase coexistence: scaling limit of the interface

Typical configurations induced by these boundary conditions when $\beta > \beta_c$

Phase coexistence: scaling limit of the interface

Typical configurations induced by these boundary conditions when $\beta > \beta_{\rm c}$

Corresponding (diffusive) scaling limits of the interface

Brownian bridge

[Greenberg, Ioffe 2005]

Brownian excursion

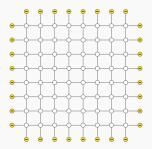
[Ioffe, Ott, V., Wachtel 2020]

(Diffusive constant $= \chi_{\beta} =$ the curvature of the Wulff shape in direction **e**₁.)

- METASTABILITY -

Effect of a magnetic field: metastability

► Let us consider again the ⊖ boundary condition



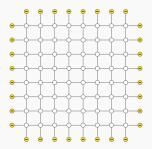
but let us add to the Hamiltonian a magnetic field term

$$-h\sum_{i\in B_N}\sigma_i$$

with h > 0.

Effect of a magnetic field: metastability

► Let us consider again the ⊖ boundary condition



but let us add to the Hamiltonian a magnetic field term

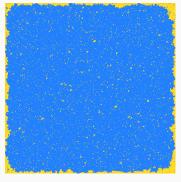
$$-h\sum_{i\in B_N}\sigma_i$$

with h > 0.

► This induces a **competition between the boundary condition and the magnetic field**: effect of the boundary condition $\sim N$ effect of the field $\sim hN^2$

competition if
$$h \sim 1/N$$

▶ Let $h = \lambda/N$. [Schonmann and Shlosman 1996] proved: $\exists \lambda_{
m c} \in (0,\infty)$ such that

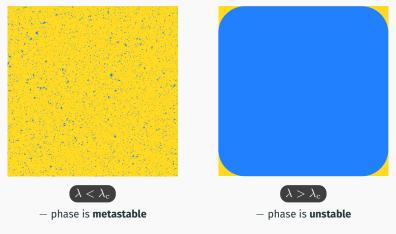


- phase is **metastable**

- phase is unstable

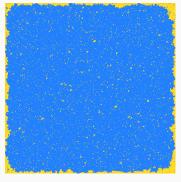
▶ Question: Behavior of the layer of unstable - phase along the walls?

▶ Let $h = \lambda/N$. [Schonmann and Shlosman 1996] proved: $\exists \lambda_c \in (0,\infty)$ such that



▶ Question: Behavior of the layer of unstable - phase along the walls?

▶ Let $h = \lambda/N$. [Schonmann and Shlosman 1996] proved: $\exists \lambda_{
m c} \in (0,\infty)$ such that



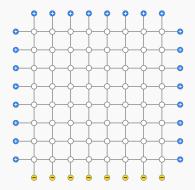
- phase is **metastable**

- phase is unstable

▶ Question: Behavior of the layer of unstable - phase along the walls?

- BEHAVIOR OF AN UNSTABLE LAYER -

We consider again the boundary condition

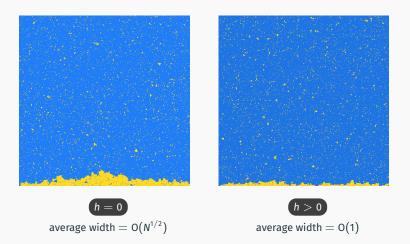


but add to the Hamiltonian a magnetic field term

$$-h\sum_{i\in B_N}\sigma_i$$

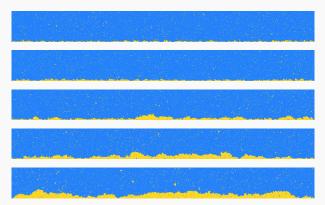
with h > 0.

Let $\beta > \beta_c$. Since h > 0, the layer of - phase becomes **unstable**:



Effect of a magnetic field: critical prewetting

The width of the layer increases as *h* decreases:



To get a meaningful scaling limit and mimic the previous situation, we choose h = h(N) to be of the form

$$h = \frac{\lambda}{N}$$

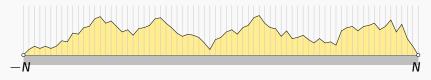
for some $\lambda >$ 0.

> This type of problem was first studied for effective models in

- ▷ [Abraham, Smith 1986]
- ▷ [Hryniv, V. 2004]
- ▷ [loffe, Shlosman, V. 2015]

specific integrable model: width $\sim N^{1/3}$, corr. length $\sim N^{2/3}$ general class: width $\sim N^{1/3}$, correlation length $\sim N^{2/3}$

general class: weak convergence to Ferrari-Spohn diffusion



 $\mathsf{Prob}(\mathsf{path}) \propto e^{-rac{\lambda}{N}\operatorname{Area}} \operatorname{Prob}_{\mathsf{RW}}(\mathsf{path})$

> This type of problem was first studied for effective models in

- ▷ [Abraham, Smith 1986] specific integrable model: width $\sim N^{1/3}$, corr. length $\sim N^{2/3}$ ▷ [Hryniv, V. 2004] general class: width $\sim N^{1/3}$, correlation length $\sim N^{2/3}$
- ▷ [loffe, Shlosman, V. 2015] general class: weak convergence to Ferrari–Spohn diffusion

▶ Results for the 2d Ising model were obtained in

- ▷ [V. 2004] width $\sim N^{1/3+o(1)}$
- \triangleright [Ganguly, Gheissari 2020] width $\sim N^{1/3}$ (and various other global estimates)

> This type of problem was first studied for effective models in

▷ [Abraham, Smith 1986] specific integrable model: width $\sim N^{1/3}$, corr. length $\sim N^{2/3}$ ▷ [Hryniv, V. 2004] general class: width $\sim N^{1/3}$, correlation length $\sim N^{2/3}$ ▷ [Ioffe, Shlosman, V. 2015] general class: weak convergence to Ferrari–Spohn diffusion

▶ Results for the 2d Ising model were obtained in ▷ [V. 2004] width ~ N^{1/3+o(1)} ▷ [Ganguly, Gheissari 2020] width ~ N^{1/3} (and various other global estimates)

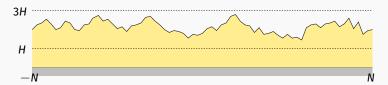
Goal of this work: complete the analysis by proving weak convergence to a Ferrari-Spohn diffusion for the 2d Ising interface

 \triangleright consider a path staying in the tube $[-N, N] \times [H, 3H]$ for some fixed H > 0.

 \triangleright consider a path staying in the tube $[-N, N] \times [H, 3H]$ for some fixed H > 0.

 $\triangleright \text{ Energetic cost} = \frac{\lambda}{N} \cdot \text{Area} \sim \frac{\lambda}{N} \cdot \text{NH} \sim \lambda \text{H}$

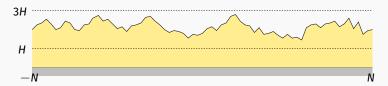
 \triangleright consider a path staying in the tube $[-N, N] \times [H, 3H]$ for some fixed H > 0.



 $\triangleright \text{ Energetic cost} = \frac{\lambda}{N} \cdot \text{Area} \sim \frac{\lambda}{N} \cdot \text{NH} \sim \lambda \text{H}$

 $\triangleright \text{ Entropic cost} = -\log \mathsf{Prob}_{\mathsf{RW}} \big(\forall k \in \{-\mathsf{N}, \dots, \mathsf{N}\}, \ \mathsf{H} \leq \mathsf{X}_k \leq \mathsf{3H} \big) \sim \mathsf{N}/\mathsf{H}^2$

 \triangleright consider a path staying in the tube $[-N, N] \times [H, 3H]$ for some fixed H > 0.



- $\triangleright \text{ Energetic cost} = \frac{\lambda}{N} \cdot \text{Area} \sim \frac{\lambda}{N} \cdot \text{NH} \sim \lambda \text{H}$
- $\triangleright \text{ Entropic cost} = -\log \mathsf{Prob}_{RW} \big(\forall k \in \{-N, \dots, N\}, \ H \leq X_k \leq 3H \big) \sim N/H^2$

 \triangleright These two costs are of the same order when $\lambda H \sim {\it NH^{-2}}$, that is

$$H \sim \lambda^{-1/3} N^{1/3}$$

 \triangleright consider a path staying in the tube $[-N, N] \times [H, 3H]$ for some fixed H > 0.

- $\triangleright \text{ Energetic cost} = \frac{\lambda}{N} \cdot \text{Area} \sim \frac{\lambda}{N} \cdot \text{NH} \sim \lambda \text{H}$
- $\triangleright \text{ Entropic cost} = -\log \mathsf{Prob}_{RW} \big(\forall k \in \{-N, \dots, N\}, \ H \leq X_k \leq 3H \big) \sim N/H^2$

ho These two costs are of the same order when $\lambda H \sim {\it NH}^{-2}$, that is

$$H \sim \lambda^{-1/3} N^{1/3}$$

> This argument can be converted into a rigorous proof (for effective models).

The Ferrari–Spohn diffusion

- ► Let us introduce
 - \triangleright the spontaneous magnetization: m^*_β
 - ▷ the **curvature of the Wulff shape** (in direction e_1): χ_β
 - \triangleright the **Airy function** Ai and its first zero $-\omega_1$



• Set
$$\varphi_0(r) = \operatorname{Ai}((4\lambda m_\beta^* \sqrt{\chi_\beta})^{1/3} r - \omega_1).$$

 \blacktriangleright The relevant Ferrari–Spohn diffusion in the present context is the diffusion on $(0,\infty)$ with generator

$$L_{eta} = rac{1}{2}rac{\mathrm{d}}{\mathrm{d}r^2} + rac{arphi_0'}{arphi_0}rac{\mathrm{d}}{\mathrm{d}r}$$

and Dirichlet boundary condition at 0.

The Ferrari–Spohn diffusion

- ► Let us introduce
 - \triangleright the **spontaneous magnetization**: m_{β}^*
 - ▷ the **curvature of the Wulff shape** (in direction e_1): χ_β
 - \triangleright the **Airy function** Ai and its first zero $-\omega_1$

► Set
$$\varphi_0(r) = \operatorname{Ai}((4\lambda m_\beta^* \sqrt{\chi_\beta})^{1/3} r - \omega_1).$$

 \blacktriangleright The relevant Ferrari–Spohn diffusion in the present context is the diffusion on $(0,\infty)$ with generator

$$L_{eta} = rac{1}{2}rac{\mathrm{d}}{\mathrm{d}r^2} + rac{arphi_0'}{arphi_0}rac{\mathrm{d}}{\mathrm{d}r}$$

and Dirichlet boundary condition at 0.

The Ferrari–Spohn diffusion

- ► Let us introduce
 - \triangleright the **spontaneous magnetization**: m_{β}^*
 - ▷ the **curvature of the Wulff shape** (in direction e_1): χ_β
 - \triangleright the **Airy function** Ai and its first zero $-\omega_1$

► Set
$$\varphi_0(r) = \operatorname{Ai}((4\lambda m_\beta^* \sqrt{\chi_\beta})^{1/3} r - \omega_1).$$

 \blacktriangleright The relevant Ferrari–Spohn diffusion in the present context is the diffusion on $(0,\infty)$ with generator

$$L_{eta} = rac{1}{2}rac{\mathrm{d}}{\mathrm{d}r^2} + rac{arphi_0'}{arphi_0}rac{\mathrm{d}}{\mathrm{d}r}$$

and Dirichlet boundary condition at 0.

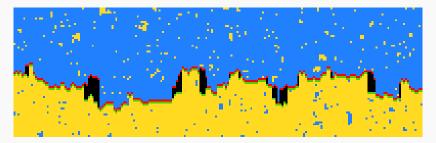
► We want to prove weak convergence of the interface towards the FS diffusion, but the interface is not the graph of a function:

[zoom on a piece of interface]

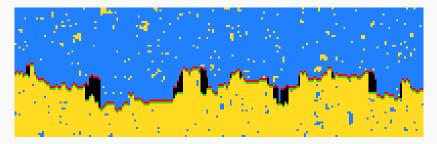
▶ We thus need to explain what we mean by the above-mentioned convergence.

 \blacktriangleright We consider the upper and lower envelopes, whose linear interpolations are graphs of functions from \mathbb{R} to \mathbb{R} .

 \blacktriangleright We consider the upper and lower envelopes, whose linear interpolations are graphs of functions from \mathbb{R} to \mathbb{R} .



• We consider the upper and lower envelopes, whose linear interpolations are graphs of functions from \mathbb{R} to \mathbb{R} .



- ► It can be shown that there exists $K = K(\beta)$ such that the probability that these two envelopes differ by less than $K \log N$ everywhere tends to 1 as $N \to \infty$.
- ▶ Since the relevant vertical scale for our scaling will be $N^{1/3}$, one can use any of these envelopes for the weak convergence.

Theorem (Informal statement [Ioffe, Ott, Shlosman, V. 2020])

Let $\hat{\gamma}^+:\mathbb{R}\to\mathbb{R}$ be the function obtained from the (linearly interpolated) upper envelope by

- \triangleright scaling it horizontally by N^{-2/3}
- \triangleright scaling it vertically by $\chi_{\beta}^{-1/2} N^{-1/3}$

Then, as N $o \infty$, the distribution of $\hat{\gamma}^+$ converges weakly to that of the Ferrari–Spohn diffusion introduced in a previous slide.

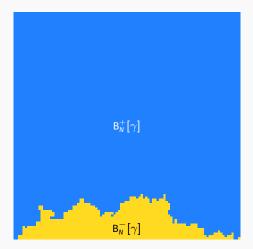
- SKETCH OF PROOF -

▶ Any realization of the interface γ splits the box B_N into two sets:

 $\rhd \operatorname{B}^+_{\operatorname{N}}[\gamma] \text{ above } \gamma \qquad \qquad \rhd \operatorname{B}^-_{\operatorname{N}}[\gamma] \text{ below } \gamma$

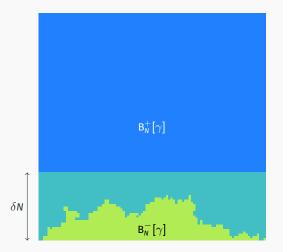
 \blacktriangleright Any realization of the interface γ splits the box B_{N} into two sets:

 $\rhd \operatorname{B}^+_{\operatorname{N}}[\gamma] \text{ above } \gamma \qquad \qquad \rhd \operatorname{B}^-_{\operatorname{N}}[\gamma] \text{ below } \gamma$



Sketch of proof — Step 1: (very) weak localization of the interface

For any fixed $\delta > 0$, with high probability, γ remains at a distance at most δN from the bottom wall.



all contours have diameter at most $\kappa \log N$

all contours have diameter at most $\kappa \log \mathbf{N}$

 \triangleright Obvious inside $B_N^+[\gamma]$: follows from FKG, since already true without magnetic field...

all contours have diameter at most $\kappa \log N$

 \triangleright Obvious inside $B_N^+[\gamma]$: follows from FKG, since already true without magnetic field...

 \triangleright Not so clear inside $B_N^-[\gamma]$: the - phase is not stable \rightsquigarrow may be favorable to create giant droplets of + phase!

all contours have diameter at most $\kappa \log N$

 \triangleright Obvious inside $B_N^+[\gamma]$: follows from FKG, since already true without magnetic field...

 \triangleright Not so clear inside $B_N^-[\gamma]$: the - phase is not stable \rightsquigarrow may be favorable to create giant droplets of + phase!

 \triangleright However, the critical droplet of + phase is a "square" of sidelength *D* such that $2\beta \cdot 4D \lesssim 2\frac{\lambda}{N} \cdot D^2$, that is, $D \gtrsim \frac{4\beta}{\lambda}N$. \rightsquigarrow choosing $\delta \ll \beta/\lambda$, we see that there is not enough room in $B_N^-[\gamma]$ to accommodate a critical droplet and **the layer of** - **phase is metastable!** Since all contours are small, we can prove that, conditionally on the realization of γ , the magnetization concentrates (using results from [Ioffe, Schonmann 1998]):

$$\sum_{i \in \mathsf{B}_N} \sigma_i \approx m_\beta^* |\mathsf{B}_N^+[\gamma]| - m_\beta^* |\mathsf{B}_N^-[\gamma]| = m_\beta^* |\mathsf{B}_N| - 2m_\beta^* |\mathsf{B}_N^-[\gamma]|$$

Since all contours are small, we can prove that, conditionally on the realization of γ , the magnetization concentrates (using results from [Ioffe, Schonmann 1998]):

$$\sum_{i\in\mathsf{B}_N}\sigma_i\approx m_\beta^*|\mathsf{B}_N^+[\gamma]|-m_\beta^*|\mathsf{B}_N^-[\gamma]|=m_\beta^*|\mathsf{B}_N|-2m_\beta^*|\mathsf{B}_N^-[\gamma]|$$

From this, we deduce an **effective probability** for the contour γ in terms of the probability when h = 0: roughly speaking,

$$\mathsf{Prob}_{\beta,h=\lambda/\mathsf{N}}(\gamma) \propto \exp\left[-\frac{2\lambda m_{\beta}^{*}}{\mathsf{N}}|\mathsf{B}_{\mathsf{N}}^{-}[\gamma]|\right] \; \mathsf{Prob}_{\beta,h=0}(\gamma)$$

Since all contours are small, we can prove that, conditionally on the realization of γ , the magnetization concentrates (using results from [Ioffe, Schonmann 1998]):

$$\sum_{i \in \mathsf{B}_N} \sigma_i \approx m_\beta^* |\mathsf{B}_N^+[\gamma]| - m_\beta^* |\mathsf{B}_N^-[\gamma]| = m_\beta^* |\mathsf{B}_N| - 2m_\beta^* |\mathsf{B}_N^-[\gamma]|$$

From this, we deduce an **effective probability** for the contour γ in terms of the probability when h = 0: roughly speaking,

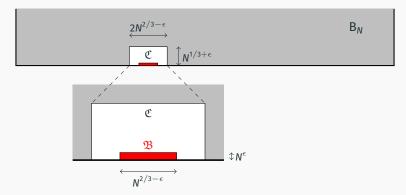
$$\mathsf{Prob}_{\beta,h=\lambda/\mathsf{N}}(\gamma) \propto \exp\Bigl[-\frac{2\lambda m_{\beta}^{*}}{\mathsf{N}}|\mathsf{B}_{\mathsf{N}}^{-}[\gamma]|\Bigr] \; \mathsf{Prob}_{\beta,h=0}(\gamma)$$

Advantage: properties of γ well understood when h = 0 using the Ornstein–Zernike theory, which yields a **coupling to a random walk**.

Unfortunately, at this stage this random walk is **spatially inhomogeneous**, the increments depending in a complicated way on the distance to the bottom wall...

This problem is dealt with in the next steps.

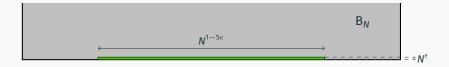
 \blacktriangleright First, given the following setting: for any fixed (small) $\epsilon >$ 0,



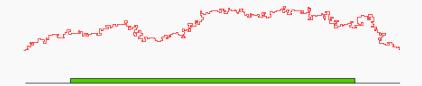
we show that, with high probability, γ does not intersect \mathfrak{B} , using the following facts:

- \triangleright we can restrict to the same event in the box \mathfrak{C} (by FKG)
- ▷ in the box \mathfrak{C} , the magnetic field is irrelevant $(\frac{\lambda}{N}|\mathfrak{C}| = 2\lambda$ is of order 1)
- ▷ this allows us to use weak convergence of the interface to Brownian excursion proved in [Ioffe, Ott, V., Wachtel 2020]

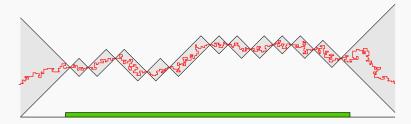
A union bound then allows one to conclude that, with high probability, γ stays above the following green rectangle:



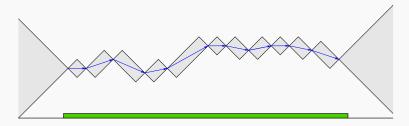
▶ When h = 0, using the Ornstein–Zernike techniques, as developed in [Campanino, loffe, V. 2003] and [Ott, V. 2018], we can couple the interface γ with a directed random walk on \mathbb{Z}^2 .



▶ When h = 0, using the Ornstein–Zernike techniques, as developed in [Campanino, loffe, V. 2003] and [Ott, V. 2018], we can couple the interface γ with a directed random walk on \mathbb{Z}^2 .



▶ When h = 0, using the Ornstein–Zernike techniques, as developed in [Campanino, loffe, V. 2003] and [Ott, V. 2018], we can couple the interface γ with a directed random walk on \mathbb{Z}^2 .



▶ By the previous step, above the green rectangle, the distance between γ and the bottom wall is at least N^{ϵ} . It follows that the finite-volume weights are well approximated by infinite-volume weights. Therefore, the resulting effective random walk can be taken spatially homogeneous.

Remember that

$$\mathsf{Prob}_{\beta,h=\lambda/\mathsf{N}}(\gamma) \propto \exp\left[-\frac{2\lambda m_{\beta}^{*}}{\mathsf{N}}|\mathsf{B}_{\mathsf{N}}^{-}[\gamma]|\right] \mathsf{Prob}_{\beta,h=0}(\gamma)$$

Sketch of proof — Step 6: Full effective model

Remember that

$$\mathsf{Prob}_{\beta,h=\lambda/\mathsf{N}}(\gamma) \propto \exp\Bigl[-\frac{2\lambda m_{\beta}^{*}}{\mathsf{N}}|\mathsf{B}_{\mathsf{N}}^{-}[\gamma]|\Bigr] \; \mathsf{Prob}_{\beta,h=0}(\gamma)$$

► This leads, in the presence of the magnetic field λ/N , to a coupling between γ and an effective RW model subject to an area-tilt: roughly speaking,

$$\operatorname{Prob}_{\beta,h=\lambda/N}^{\operatorname{RW}}(X) \propto \exp\left[-\frac{2\lambda m_{\beta}^{*}}{N}\operatorname{Area}(X)\right] \operatorname{Prob}_{\beta,h=0}^{\operatorname{RW}}(X)$$

Sketch of proof — Step 6: Full effective model

Remember that

$$\mathsf{Prob}_{\beta,h=\lambda/\mathsf{N}}(\gamma) \propto \exp\Bigl[-\frac{2\lambda m_{\beta}^{*}}{\mathsf{N}}|\mathsf{B}_{\mathsf{N}}^{-}[\gamma]|\Bigr] \; \mathsf{Prob}_{\beta,h=0}(\gamma)$$

► This leads, in the presence of the magnetic field λ/N , to a coupling between γ and an effective RW model subject to an area-tilt: roughly speaking,

$$\operatorname{Prob}_{\beta,h=\lambda/N}^{\operatorname{RW}}(X) \propto \exp\left[-\frac{2\lambda m_{\beta}^{*}}{N}\operatorname{Area}(X)\right] \operatorname{Prob}_{\beta,h=0}^{\operatorname{RW}}(X)$$

Remember that

$$\mathsf{Prob}_{\beta,h=\lambda/\mathsf{N}}(\gamma) \propto \exp\Bigl[-\frac{2\lambda m_{\beta}^{*}}{\mathsf{N}}|\mathsf{B}_{\mathsf{N}}^{-}[\gamma]|\Bigr] \; \mathsf{Prob}_{\beta,h=0}(\gamma)$$

▶ This leads, in the presence of the magnetic field λ /N, to a coupling between γ and an effective RW model subject to an area-tilt: roughly speaking,

$$\operatorname{Prob}_{\beta,h=\lambda/N}^{\operatorname{RW}}(X) \propto \exp\left[-\frac{2\lambda m_{\beta}^{*}}{N}\operatorname{Area}(X)\right] \operatorname{Prob}_{\beta,h=0}^{\operatorname{RW}}(X)$$

► This reduces our task to proving the desired weak convergence for this effective model.

► This part is done in a way very similar to the analysis in [Ioffe, Shlosman, V. 2015] and [Ioffe, V., Wachtel 2018]:

- Express the relevant partition functions in terms of powers of a suitable transfer operator.
- Compute the scaling limit of these quantities in terms of the scaling limit of the generator of the induced semigroup, which can be computed explicitly.
- ▷ Deduce convergence of finite-dimensional distributions.
- ▷ Complete the analysis with a proof of tightness (rough probabilistic estimates).

► The main difference is that in our earlier work, the path was the space-time trajectory of a 1d random walk rather than the spatial trajectory of a directed 2d random walk. Mainly, this results in a *random* number of steps in the present situation, which adds technicalities but does not affect the general scheme.

▷ Consider $h = N^{-\alpha}$ for other values of α , in particular $\alpha = 0$ (i.e., first the limit $N \to \infty$, then the limit $h \downarrow 0$).

Some open problems

- ▷ Consider $h = N^{-\alpha}$ for other values of α , in particular $\alpha = 0$ (i.e., first the limit $N \to \infty$, then the limit $h \downarrow 0$).

Some open problems

- ▷ Consider $h = N^{-\alpha}$ for other values of α , in particular $\alpha = 0$ (i.e., first the limit $N \to \infty$, then the limit $h \downarrow 0$).
- $\triangleright \quad \text{Extend the analysis to the case of } \Theta \text{ boundary condition when } \lambda > \lambda_{\rm c}$ (Schonmann-Shlosman geometry).
- ▷ In the case of ⊖ boundary condition when $\lambda > \lambda_c$, determine the limiting process at the junction between one arc of the droplet of ⊕ phase and the layer along the boundary. Fluctuations of all orders from $N^{1/2}$ to $N^{1/3}$ are expected to occur.

Thank you for your attention!

Papers mentioned in the talk i

- D. B. Abraham and E. R. Smith. An exactly solved model with a wetting transition. J. Statist. Phys., 43(3-4):621–643, 1986.
- M. Campanino, D. Ioffe, and Y. Velenik.
 Ornstein-Zernike theory for finite range Ising models above T_c.
 Probab. Theory Related Fields, 125(3):305–349, 2003.
- S. Ganguly and R. Gheissari.
 Local and global geometry of the 2D Ising interface in critical prewetting.
 Ann. Probab., 49(4):2076–2140, 2021.
- Lev Greenberg and D. Ioffe.
 On an invariance principle for phase separation lines.
 Ann. Inst. H. Poincaré Probab. Statist., 41(5):871–885, 2005.
- O. Hryniv and Y. Velenik.
 Universality of critical behaviour in a class of recurrent random walks.
 Probab. Theory Related Fields, 130(2):222–258, 2004.
- D. loffe, S. Ott, S. Shlosman, and Y. Velenik. Critical prewetting in the 2d Ising model. Preprint, arXiv:2011.11997, 2020.
- D. Ioffe, S. Ott, Y. Velenik, and V. Wachtel. Invariance principle for a Potts interface along a wall. J. Stat. Phys., 180(1-6):832–861, 2020.

Papers mentioned in the talk ii

- D. loffe and R. H. Schonmann. Dobrushin-Kotecký-Shlosman theorem up to the critical temperature. Comm. Math. Phys., 199(1):117–167, 1998.
- D. loffe, S. Shlosman, and Y. Velenik.
 An invariance principle to Ferrari-Spohn diffusions.
 Comm. Math. Phys., 336(2):905–932, 2015.
- D. Ioffe, Y. Velenik, and V. Wachtel.
 Dyson Ferrari-Spohn diffusions and ordered walks under area tilts.
 Probab. Theory Related Fields, 170(1-2):11–47, 2018.
- S. Ott and Y. Velenik.
 - Potts models with a defect line.

Comm. Math. Phys., 362(1):55-106, 2018.

- R. H. Schonmann and S. B. Shlosman. Constrained variational problem with applications to the Ising model. J. Statist. Phys., 83(5-6):867–905, 1996.
- Y. Velenik.

Entropic repulsion of an interface in an external field.

Probab. Theory Related Fields, 129(1):83–112, 2004.