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— Introduction —



Ising model

▷ Box: BN = {−N + 1, . . . ,N}2

▷ boundary condition:

ΩN = {σ = (σi)i∈Z2 ∈ {±1}Z
2
: ∀i ̸∈ BN, σi = 1}

▷ Hamiltonian: HN(σ) = −β
∑

{i,j}∩BN ̸=∅
i∼j

σiσj

▷ Gibbs measure: Probability measure on ΩN s.t.

µN;β(σ) =
1

ZN;β
e−HN(σ)

Extends trivially to other boundary conditions.
For instance, the boundary condition: µN;β , . . .
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Phase transition

Let βc =
1
2 log(1 +

√
2). Typical configurations at β ∈ [0,∞) for N > N0(β):

β < βc β > βc

under µN;β

under µN;β
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— Phase coexistence —



Phase coexistence: boundary conditions

To force spatial coexistence, consider 2 types of Dobrushin boundary condition:
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Phase coexistence: scaling limit of the interface

Typical configurations induced by these boundary conditions when β > βc

Corresponding (diffusive) scaling limits of the interface

Brownian bridge
[Greenberg, Ioffe 2005]

Brownian excursion
[Ioffe, Ott, V., Wachtel 2020]

(Diffusive constant = χβ = the curvature of the Wulff shape in direction e1.)
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— Metastability —



Effect of a magnetic field: metastability

▶ Let us consider again the boundary condition

but let us add to the Hamiltonian a magnetic field term

−h
∑
i∈BN

σi

with h > 0.

▶ This induces a competition between the boundary condition and the magnetic field:

effect of the boundary condition ∼ N effect of the field ∼ hN2

competition if h ∼ 1/N
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Effect of a magnetic field: metastability

▶ Let h = λ/N. [Schonmann and Shlosman 1996] proved: ∃λc ∈ (0,∞) such that

λ < λc

− phase is metastable

λ > λc

− phase is unstable

▶ Question: Behavior of the layer of unstable − phase along the walls?
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— Behavior of an unstable layer —



Effect of a magnetic field: simpler geometry

We consider again the boundary condition

but add to the Hamiltonian a magnetic field term

−h
∑
i∈BN

σi

with h > 0.
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Effect of a magnetic field: critical prewetting

Let β > βc. Since h > 0, the layer of − phase becomes unstable:

h = 0

average width = O(N1/2)

h > 0

average width = O(1)
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Effect of a magnetic field: critical prewetting

The width of the layer increases as h decreases:

To get a meaningful scaling limit and mimic the previous situation, we choose
h = h(N) to be of the form

h =
λ

N
for some λ > 0.
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Earlier rigorous results

▶ This type of problem was first studied for effective models in

▷ [Abraham, Smith 1986] specific integrable model: width ∼ N1/3, corr. length ∼ N2/3

▷ [Hryniv, V. 2004] general class: width ∼ N1/3, correlation length ∼ N2/3

▷ [Ioffe, Shlosman, V. 2015] general class: weak convergence to Ferrari–Spohn diffusion

N−N

Prob(path) ∝ e−λ
N Area ProbRW(path)

▶ Results for the 2d Ising model were obtained in
▷ [V. 2004] width ∼ N1/3+o(1)

▷ [Ganguly, Gheissari 2020] width ∼ N1/3 (and various other global estimates)

Goal of this work: complete the analysis by proving weak convergence to a Ferrari–
Spohn diffusion for the 2d Ising interface
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Parenthesis: why N1/3 ?

▶ In effective models, it is easy to understand heuristically the origin of the N1/3

scaling:

▷ consider a path staying in the tube [−N,N]× [H, 3H] for some fixed H > 0.

N−N

3H

H

▷ Energetic cost =
λ

N
· Area ∼ λ

N
· NH ∼ λH

▷ Entropic cost = − log ProbRW
(
∀k ∈ {−N, . . . ,N}, H ≤ Xk ≤ 3H

)
∼ N/H2

▷ These two costs are of the same order when λH ∼ NH−2, that is

H ∼ λ−1/3N1/3

▶ This argument can be converted into a rigorous proof (for effective models).
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The Ferrari–Spohn diffusion

▶ Let us introduce

▷ the spontaneous magnetization: m∗
β

▷ the curvature of the Wulff shape (in direction e1): χβ

▷ the Airy function Ai and its first zero −ω1

−ω1

▶ Set φ0(r) = Ai
(
(4λm∗

β
√
χβ)

1/3 r − ω1
)

.

▶ The relevant Ferrari–Spohn diffusion in the present context is the diffusion on
(0,∞) with generator

Lβ =
1
2

d
dr2 +

φ′
0

φ0

d
dr

and Dirichlet boundary condition at 0.
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Structure of the interface

▶ We want to prove weak convergence of the interface towards the FS diffusion, but
the interface is not the graph of a function:

[zoom on a piece of interface]

▶ We thus need to explain what we mean by the above-mentioned convergence.
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Structure of the interface

▶ We consider the upper and lower envelopes, whose linear interpolations are graphs
of functions from R to R.

▶ It can be shown that there exists K = K(β) such that the probability that these two
envelopes differ by less than K log N everywhere tends to 1 as N → ∞.

▶ Since the relevant vertical scale for our scaling will be N1/3, one can use any of
these envelopes for the weak convergence.
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Main result

Theorem (Informal statement [Ioffe, Ott, Shlosman, V. 2020])

Let γ̂+ : R → R be the function obtained from the (linearly interpolated) upper
envelope by

▷ scaling it horizontally by N−2/3

▷ scaling it vertically by χ−1/2
β N−1/3

Then, as N → ∞, the distribution of γ̂+ converges weakly to that of the
Ferrari–Spohn diffusion introduced in a previous slide.

15/25



— Sketch of proof —



Sketch of proof

▶ Any realization of the interface γ splits the box BN into two sets:

▷ B+
N [γ] above γ ▷ B−

N [γ] below γ
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Sketch of proof — Step 1: (very) weak localization of the interface

▶ For any fixed δ > 0, with high probability, γ remains at a distance at most δN from
the bottom wall.

B+
N [γ]

B−
N [γ]

δN δN
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Sketch of proof — Step 2: all other contours are small

▶ Claim: there exists κ = κ(β) such that, apart from γ,

all contours have diameter at most κ log N

▷ Obvious inside B+
N [γ]: follows from FKG, since already true without magnetic field...

▷ Not so clear inside B−
N [γ]: the − phase is not stable⇝ may be favorable to create

giant droplets of + phase!

▷ However, the critical droplet of + phase is a “square” of sidelength D such that
2β · 4D ≲ 2λ

N · D2, that is, D ≳ 4β
λ

N.
⇝ choosing δ ≪ β/λ, we see that there is not enough room in B−

N [γ] to
accommodate a critical droplet and the layer of − phase is metastable!
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Sketch of proof — Step 3: effective weight due to the magnetic field

▶ Since all contours are small, we can prove that, conditionally on the realization of γ,
the magnetization concentrates (using results from [Ioffe, Schonmann 1998]):∑

i∈BN

σi ≈ m∗
β |B+

N [γ]| − m∗
β |B−

N [γ]| = m∗
β |BN| − 2m∗

β |B−
N [γ]|

▶ From this, we deduce an effective probability for the contour γ in terms of the
probability when h = 0: roughly speaking,

Probβ,h=λ/N(γ) ∝ exp
[
−

2λm∗
β

N
|B−

N [γ]|
]
Probβ,h=0(γ)

▶ Advantage: properties of γ well understood when h = 0 using the Ornstein–Zernike
theory, which yields a coupling to a random walk.

Unfortunately, at this stage this random walk is spatially inhomogeneous, the
increments depending in a complicated way on the distance to the bottom wall...

This problem is dealt with in the next steps.
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Sketch of proof — Step 4: entropic repulsion

▶ First, given the following setting: for any fixed (small) ϵ > 0,

BN

C

2N2/3−ϵ

N1/3+ϵ

C

B

N2/3−ϵ

Nϵ

we show that, with high probability, γ does not intersect B, using the following facts:

▷ we can restrict to the same event in the box C (by FKG)
▷ in the box C, the magnetic field is irrelevant (λN |C| = 2λ is of order 1)
▷ this allows us to use weak convergence of the interface to Brownian excursion

proved in [Ioffe, Ott, V., Wachtel 2020]
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Sketch of proof — Step 4: entropic repulsion

▶ A union bound then allows one to conclude that, with high probability, γ stays
above the following green rectangle:

BN

N1−5ϵ

Nϵ
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Sketch of proof — Step 5: Effective model at h = 0

▶ When h = 0, using the Ornstein–Zernike techniques, as developed in [Campanino,

Ioffe, V. 2003] and [Ott, V. 2018], we can couple the interface γ with a directed random
walk on Z2.

▶ By the previous step, above the green rectangle, the distance between γ and the
bottom wall is at least Nϵ. It follows that the finite-volume weights are well
approximated by infinite-volume weights. Therefore, the resulting effective random
walk can be taken spatially homogeneous.
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Sketch of proof — Step 6: Full effective model

▶ Remember that

Probβ,h=λ/N(γ) ∝ exp
[
−

2λm∗
β

N
|B−

N [γ]|
]
Probβ,h=0(γ)

▶ This leads, in the presence of the magnetic field λ/N, to a coupling between γ and
an effective RW model subject to an area-tilt: roughly speaking,

ProbRW
β,h=λ/N(X) ∝ exp

[
−

2λm∗
β

N
Area(X)

]
ProbRW

β,h=0(X)

▶ This reduces our task to proving the desired weak convergence for this effective
model.
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Sketch of proof — Step 7: proof of convergence for the effective model

▶ This part is done in a way very similar to the analysis in [Ioffe, Shlosman, V. 2015] and
[Ioffe, V., Wachtel 2018]:

▷ Express the relevant partition functions in terms of powers of a suitable transfer
operator.

▷ Compute the scaling limit of these quantities in terms of the scaling limit of the
generator of the induced semigroup, which can be computed explicitly.

▷ Deduce convergence of finite-dimensional distributions.

▷ Complete the analysis with a proof of tightness (rough probabilistic estimates).

▶ The main difference is that in our earlier work, the path was the space-time
trajectory of a 1d random walk rather than the spatial trajectory of a directed 2d
random walk. Mainly, this results in a random number of steps in the present
situation, which adds technicalities but does not affect the general scheme.
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Some open problems

▷ Consider h = N−α for other values of α, in particular α = 0 (i.e., first the limit
N → ∞, then the limit h ↓ 0).

▷ Extend the analysis to the case of boundary condition when λ > λc

(Schonmann–Shlosman geometry).

▷ In the case of boundary condition when λ > λc, determine the limiting process
at the junction between one arc of the droplet of phase and the layer along the
boundary. Fluctuations of all orders from N1/2 to N1/3 are expected to occur.
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Thank you for your attention!
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