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— INTRODUCTION —
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Extends trivially to other boundary conditions.
For instance, the © boundary condition: uﬁ;ﬁ, e
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Phase transition

Let B. = 1 log(1+ V/2). Typical configurations at 3 € [0, c0) for N > No(3):

under M;g

under ;ﬁ;ﬁ

2/25



— PHASE COEXISTENCE —



Phase coexistence: boundary conditions

To force spatial coexistence, consider 2 types of Dobrushin boundary condition:
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Corresponding (diffusive) scaling limits of the interface

Brownian bridge Brownian excursion
[Greenberg, loffe 2005] [loffe, Ott, V., Wachtel 2020]

(Diffusive constant = X = the curvature of the Wulff shape in direction er.)
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— METASTABILITY —



Effect of a magnetic field: metastability

» Let us consider again the © boundary condition

but let us add to the Hamiltonian a magnetic field term

—h :E:: agj

i€EBy
with h > 0.
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Effect of a magnetic field: metastability

» Let us consider again the © boundary condition

but let us add to the Hamiltonian a magnetic field term
Y
i€EBy
with h > 0.
» This induces a competition between the boundary condition and the magnetic field:

effect of the boundary condition ~ N effect of the field ~ hN?

competition if h ~ 1/N
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Effect of a magnetic field: metastability

» Let h = A\/N. [Schonmann and Shlosman 1996] proved: J\. € (0, co) such that

B

— phase is metastable — phase is unstable

» Question: Behavior of the layer of unstable — phase along the walls?
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— BEHAVIOR OF AN UNSTABLE LAYER —



Effect of a magnetic field: simpler geometry

We consider again the boundary condition

with h > 0.
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Effect of a magnetic field: critical prewetting

Let 8 > f.. Since h > 0, the layer of — phase becomes unstable:

average width = O(N'/?) average width = 0(1)
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Effect of a magnetic field: critical prewetting

The width of the layer increases as h decreases:

To get a meaningful scaling limit and mimic the previous situation, we choose

h = h(N) to be of the form
A
h==
N

for some A > 0.
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Earlier rigorous results

» This type of problem was first studied for effective models in

specific integrable model: width ~ N'/3, corr. length ~ N?/3
general class: width ~ N'/3, correlation length ~ N*/3
general class: weak convergence to Ferrari-Spohn diffusion

> [Abraham, Smith 1986]
> [Hryniv, V. 2004]
> [loffe, Shlosman, V. 2015]

Prob(path) o S Probgw(path)
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Earlier rigorous results

» This type of problem was first studied for effective models in

> [Abraham, Smith 1986] specific integrable model: width ~ N'/3, corr. length ~ N?/3
> [Hryniv, V. 2004] general class: width ~ N'/3, correlation length ~ N*/3
> [loffe, Shlosman, V. 2015]  general class: weak convergence to Ferrari-Spohn diffusion

» Results for the 2d Ising model were obtained in
> [V. 2004] width ~ N'/3*+o()
> [Ganguly, Gheissari 2020]  width ~ N'/3 (and various other global estimates)

Goal of this work: complete the analysis by proving weak convergence to a Ferrari-
Spohn diffusion for the 2d Ising interface
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Parenthesis: why N'/3 ?

> In effective models, it is easy to understand heuristically the origin of the N'/3
scaling:

> consider a path staying in the tube [—N, N] x [H, 3H] for some fixed H > 0.
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scaling:

> consider a path staying in the tube [—N, N] x [H, 3H] for some fixed H > 0.

MW

—N N

3H

H

. A A
> Energetic cost = i - Area ~ i NH ~ AH
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Parenthesis: why N'/3 ?

> In effective models, it is easy to understand heuristically the origin of the N'/3
scaling:

> consider a path staying in the tube [—N, N] x [H, 3H] for some fixed H > 0.

MW

—N N

3H

H

. A A
> Energetic cost = 5 Area ~ i NH ~ AH
> Entropic cost = — log ProbRW(Vk €{—N,...,N}, H< X, < 3H) ~ N/H
> These two costs are of the same order when AH ~ NH 2, that is
H o~ )\—1/3N1/3
» This argument can be converted into a rigorous proof (for effective models).
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The Ferrari-Spohn diffusion

» Let us introduce

> the spontaneous magnetization: mj;
> the curvature of the Wulff shape (in direction e;): x
> the Airy function Ai and its first zero —w,

—wy

> Set po(r) = Ai((4Xmj/x5)"°r — wy).

» The relevant Ferrari-Spohn diffusion in the present context is the diffusion on

(0, 00) with generator
1d o d
lg =-— + ) =2
2 dr? o dr
and Dirichlet boundary condition at 0.
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Structure of the interface

» We want to prove weak convergence of the interface towards the FS diffusion, but
the interface is not the graph of a function:

[zoom on a piece of interface]

» We thus need to explain what we mean by the above-mentioned convergence.
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Structure of the interface

» We consider the upper and lower envelopes, whose linear interpolations are graphs
of functions from R to R.
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Structure of the interface

» We consider the upper and lower envelopes, whose linear interpolations are graphs
of functions from R to R.

- R o

» It can be shown that there exists K = K([3) such that the probability that these two
envelopes differ by less than K log N everywhere tends to 1as N — co.

» Since the relevant vertical scale for our scaling will be N1/3, one can use any of
these envelopes for the weak convergence.
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Theorem (Informal statement [Ioffe, Ott, Shlosman, V. 2020])

Let " : R — R be the function obtained from the (linearly interpolated) upper
envelope by

> scaling it horizontally by N~—/3

> scaling it vertically by X;/ZN’V3

Then, as N — oo, the distribution of 4 converges weakly to that of the
Ferrari-Spohn diffusion introduced in a previous slide.
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— SKETCH OF PROOF —



Sketch of proof

» Any realization of the interface «y splits the box By into two sets:

> By [y] above ~y > By [7] below ~y
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Sketch of proof — Step 1: (very) weak localization of the interface

» For any fixed 6 > 0, with high probability, v remains at a distance at most dN from
the bottom wall.

6N
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Sketch of proof — Step 2: all other contours are small

» Claim: there exists x = (/3) such that, apart from ~,

all contours have diameter at most « log N
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Sketch of proof — Step 2: all other contours are small

» Claim: there exists x = (/3) such that, apart from ~,

all contours have diameter at most « log N

B> Obvious inside B; [y]: follows from FKG, since already true without magnetic field...

> Not so clear inside By [7]: the — phase is not stable ~~ may be favorable to create
giant droplets of 4 phase!

> However, the critical droplet of 4 phase is a “square” of sidelength D such that
283 - 4D <22 - D thatis, D > “CN.

~~ choosing § < 3/, we see that there is not enough room in By [y] to
accommodate a critical droplet and the layer of — phase is metastable!

18/25



Sketch of proof — Step 3: effective weight due to the magnetic field

» Since all contours are small, we can prove that, conditionally on the realization of -,
the magnetization concentrates (using results from [loffe, Schonmann 1998]):

> oi ~ ms|Bi Y]] — ms[By ]| = m|Ba| — 2mj3|By [1]]
iE€By
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the magnetization concentrates (using results from [loffe, Schonmann 1998]):

S o1~ (B | — m3 1By [7]] = m[Bul — 2m3 |8y ]|
iEBy

» From this, we deduce an effective probability for the contour -y in terms of the
probability when h = 0: roughly speaking,

2Amys
Probg,u-x/n(7) o exp |~ By [7]]] Probs.s—o(7)

» Advantage: properties of v well understood when h = 0 using the Ornstein-Zernike
theory, which yields a coupling to a random walk.

Unfortunately, at this stage this random walk is spatially inhomogeneous, the
increments depending in a complicated way on the distance to the bottom wall...

This problem is dealt with in the next steps.
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Sketch of proof — Step 4: entropic repulsion

» First, given the following setting: for any fixed (small) ¢ > 0,

2N2/3—e BN

NN . E——

N2/3—e

we show that, with high probability, v does not intersect B, using the following facts:

> we can restrict to the same event in the box € (by FKG)
> in the box €, the magnetic field is irrelevant (3 |€] = 2\ is of order 1)
> this allows us to use weak convergence of the interface to Brownian excursion

proved in [loffe, Ott, V., Wachtel 2020] STYED



Sketch of proof — Step 4: entropic repulsion

» A union bound then allows one to conclude that, with high probability, v stays
above the following green rectangle:

=
N Se
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Sketch of proof — Step 5: Effective modelath = 0

» When h = 0, using the Ornstein-Zernike techniques, as developed in [Campanino,
loffe, V. 2003] and [Ott, V. 2018], we can couple the interface y with a directed random
walk on Z2.
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Sketch of proof — Step 5: Effective modelath = 0

» When h = 0, using the Ornstein-Zernike techniques, as developed in [Campanino,
loffe, V. 2003] and [Ott, V. 2018], we can couple the interface y with a directed random

walk on Z2.

» By the previous step, above the green rectangle, the distance between  and the
bottom wall is at least N°. It follows that the finite-volume weights are well
approximated by infinite-volume weights. Therefore, the resulting effective random

walk can be taken spatially homogeneous.
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Sketch of proof — Step 6: Full effective model

» Remember that

2Amys
Prob - /n(7) o exp |~ =2 By [1]]] Probs.ao(7)
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Sketch of proof — Step 6: Full effective model

» Remember that

2my
Prob - /n(7) o exp |~ =2 By [1]]] Probs.ao(7)

» This leads, in the presence of the magnetic field \/N, to a coupling between - and
an effective RW model subject to an area-tilt: roughly speaking,

2mj;
Probl3h—x/n(X) o< exp [_TB Area(X)} Prob',—o(X)

» This reduces our task to proving the desired weak convergence for this effective
model.
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Sketch of proof — Step 7: proof of convergence for the effective model

» This part is done in a way very similar to the analysis in [loffe, Shlosman, V. 2015] and
[loffe, V., Wachtel 2018]:

> Express the relevant partition functions in terms of powers of a suitable transfer

operator.

> Compute the scaling limit of these quantities in terms of the scaling limit of the
generator of the induced semigroup, which can be computed explicitly.

> Deduce convergence of finite-dimensional distributions.

> Complete the analysis with a proof of tightness (rough probabilistic estimates).
» The main difference is that in our earlier work, the path was the space-time
trajectory of a 1d random walk rather than the spatial trajectory of a directed 2d

random walk. Mainly, this results in a random number of steps in the present
situation, which adds technicalities but does not affect the general scheme.
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Some open problems

> Consider h = N~ for other values of ¢, in particular o = 0 (i.e., first the limit
N — oo, then the limit h | 0).
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Some open problems

> Consider h = N~ for other values of ¢, in particular = 0 (i.e., first the limit
N — oo, then the limit h | 0).

> Extend the analysis to the case of ® boundary condition when A > A
(Schonmann-Shlosman geometry).

> Inthe case of © boundary condition when A > A, determine the limiting process
at the junction between one arc of the droplet of © phase and the layer along the
boundary. Fluctuations of all orders from N2 to N'/2 are expected to occur.
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Thank you for your attention!
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