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O(N) model

I N 2 f1; 2; 3; : : :g

I Configurations: ~S = (~Si)i2Zd collection of unit vectors in RN

I Given � b Zd and � � 0, the energy of ~S in � is

H�(~S) = ��
X

fi;jg\�6=;
i�j

~Si � ~Sj

Note that ~Si � ~Sj , and thus H�, is invariant under simultaneous and
identical rotation of all spins ~Si.

I Boundary condition: a configuration ~S� = (~S�i )i2Zd

I Gibbs measure in � with b.c. ~S�:

�
~S�

� (d~S) = 1f~Si=~S�
i
8i62�g

1

Z
~S�
�

e�H�(~S)

I Examples: Ising model (N = 1), XY model (N = 2), Heisenberg
model (N = 3)
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O(N) model

Typical configurations (N = 2)

High temperature (� small) Low temperature (� large)

Basic question: does one still feel the effect of the boundary condition
at the center of the box as the size of the box diverges?
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O(N) model

While the answer is always No when � is taken sufficiently small, the
behavior at large � (low temperatures) can depend on N :

N = 1 N � 2
d = 1 No No
d = 2 Yes No
d � 3 Yes Yes

Why does the Ising model behave differently from models with larger
values of N (when d = 2)?

Let us consider the minimal energetic cost of flipping a spin in the
middle of a square box of “radius” n...
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N = 1 (Ising model), d = 2

Min. energy cost: 8�
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N = 2 (XY model), d = 2

Min. energy cost: O(�= logn)

This corresponds to the following
configuration:
If kik1 = r then

~Si = (cos�r; sin�r) with

�r =
�
1�

log(1 + r)

log(1 + n)

�
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O(N)-symmetric models

Let us now consider a more general class of models. These are
constructed exactly as before, but with a Hamiltonian

H�(~S) =
X

fi;jg\�6=;

p(i; j)W (Si � Sj)

where p(i; j) = p(j � i) � 0 and
P

i p(i) = 1 (that is, these are the
transition probabilities of a random walk on Zd)



Mermin-Wagner theorem: statement

The following classical result is due to works of Mermin, Wagner,
Dobrushin, Shlosman, Pfister, and many others:

Theorem

Consider O(N)-symmetric models on Zd, with p(�) such that the
associated random walk is recurrent, and W twice continuously
differentiable. Let �n = f�n; : : : ; ngd and let ~S� be some boundary
condition. Then every cluster point � of the sequence (�~S

�

�n
)n�1 is

rotation invariant.

In particular, it is not possible to find a boundary condition such that, in
the limit, there is a preferred directions for the spins (that is, positive
magnetization).

The recurrence condition is known to be optimal: there is spontaneous
magnetization in the O(N) models as soon as the random walk is
transient [Bonato, Perez, Klein, JSP 1982].
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Mermin-Wagner theorem: proof

(Follows [Pfister, CMP, 1981] with some simplifications.
For details, see Chapter 8 of the book by S. Friedli and YV, at
http://www.unige.ch/math/folks/velenik/smbook)

Suffices to prove:

lim
n!1

���~S��n
(f)� �

~S�

�n
(f � R)

�� = 0;

for all local functions f , all b.c. ~S� and all (simultaneous and identical)
rotations R of all the spins.

To simplify notations:
I Only N = 2. In this case, configurations are parametrized by angles
θ = (�i)i2Zd , �i 2 (��; �], such that ~Si = (cos �i; sin �i).
I We consider functions f depending only on �0.

To prove:
lim
n!1

���θ�

�n
(f(�0))� �θ�

�n
(f(�0 + �))

�� = 0;

for all function f , all b.c. θ� and all � 2 (��; �].



Mermin-Wagner theorem: proof

(Follows [Pfister, CMP, 1981] with some simplifications.
For details, see Chapter 8 of the book by S. Friedli and YV, at
http://www.unige.ch/math/folks/velenik/smbook)

Suffices to prove:

lim
n!1

���~S��n
(f)� �

~S�

�n
(f � R)

�� = 0;

for all local functions f , all b.c. ~S� and all (simultaneous and identical)
rotations R of all the spins.

To simplify notations:
I Only N = 2. In this case, configurations are parametrized by angles
θ = (�i)i2Zd , �i 2 (��; �], such that ~Si = (cos �i; sin �i).
I We consider functions f depending only on �0.

To prove:
lim
n!1

���θ�

�n
(f(�0))� �θ�

�n
(f(�0 + �))

�� = 0;

for all function f , all b.c. θ� and all � 2 (��; �].



Mermin-Wagner theorem: proof

(Follows [Pfister, CMP, 1981] with some simplifications.
For details, see Chapter 8 of the book by S. Friedli and YV, at
http://www.unige.ch/math/folks/velenik/smbook)

Suffices to prove:

lim
n!1

���~S��n
(f)� �

~S�

�n
(f � R)

�� = 0;

for all local functions f , all b.c. ~S� and all (simultaneous and identical)
rotations R of all the spins.

To simplify notations:
I Only N = 2. In this case, configurations are parametrized by angles
θ = (�i)i2Zd , �i 2 (��; �], such that ~Si = (cos �i; sin �i).
I We consider functions f depending only on �0.

To prove:
lim
n!1

���θ�

�n
(f(�0))� �θ�

�n
(f(�0 + �))

�� = 0;

for all function f , all b.c. θ� and all � 2 (��; �].



Mermin-Wagner theorem: proof

Let Ψ = (	i)i2Zd , 	i 2 (��; �], s.t. 	0 = � and 	i = 0 for all i 62 �n.

Denoting by BC = BC(θ�; n) = f�i = ��i for all i 62 �ng, define

�
θ�;Ψ
�n

(dθ) = 1BC(θ)
1

Z
θ�;Ψ
�n

e�H�n (θ�Ψ) :

Easy to check (Jacobian= 1): Z
θ�;Ψ
�n

= Zθ�

�n
. In particular,

�
θ�;Ψ
�n

(f(�0)) =
1

Zθ�

�n

Z
dθ�n

e�H�n (

�~θz }| {
θ �Ψ)f(�0)

=
1

Zθ�

�n

Z
d~θ�n

e�H�n (
~θ)f(~�0 + 	0|{z}

=�

)

= �θ�

�n
(f(�0 + �)) :

Therefore,���θ�

�n
(f(�0))� �θ�

�n
(f(�0 + �))

�� = ���θ�

�n
(f(�0))� �

θ�;Ψ
�n

(f(�0))
�� :
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Mermin-Wagner theorem: proof

Denote by H(�j�) = �
�
log(d�=d�)

�
the relative entropy of � with

respect to � � �.

Pinsker’s inequality:
���(f)� �(f)

�� � kfk1
p
2H(�j�), for all f .

=) Enough to prove that limn!1H(�θ�

�n
j�

θ�;Ψ
�n

) = 0.

Of course,
d�θ�

�n

d�
θ�;Ψ
�n

(θ) = 1BC(θ) e
H�n (θ�Ψ)�H�n (θ) :

Therefore,

H(�θ�

�n
j�

θ�;Ψ
�n

) = �θ�

�n

�
H�n

(θ �Ψ)�H�n
(θ)

�
=

X
fi;jg\�n 6=;

p(i; j)�θ�

�n

�
V (�i �	i � �j +	j)� V (�i � �j)

�
;

where V (x) =W (cos(x)).
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Mermin-Wagner theorem: proof

Therefore,

H(�θ�

�n
j�

θ�;Ψ
�n

) = �θ�

�n

�
H�n

(θ �Ψ)�H�n
(θ)

�
=
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p(i; j)�θ�

�n

�
V (�i �	i � �j +	j)� V (�i � �j)

�
;

where V (x) =W (cos(x)).

Since V is twice continuously differentiable,

V (�i �	i � �j +	j) = V (�i � �j) + V 0(�i � �j) (	j �	i)

+ 1
2 V

00(tij)| {z }
�C

(	j �	i)
2 :

Thus,

H(�θ�

�n
j�

θ�;Ψ
�n

) �
X

fi;jg\�n 6=;

p(i; j)
�
�θ�

�n

�
V 0(�i��j) (	j�	i)

�
+C

2 (	j�	i)
2
	

Trick: Since H(�j�) � 0 for all �; �, we can write

H(�θ�

�n
j�

θ�;Ψ
�n

) � H(�θ�

�n
j�

θ�;Ψ
�n

) +H(�θ�

�n
j�

θ�;�Ψ
�n

)

� C
X

fi;jg\�n 6=;

p(i; j)(	j �	i)
2 :
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Mermin-Wagner theorem: proof

There only remains to prove that one can choose Ψ satisfying 	0 = �,
	 � 0 off �n, and such that

E(Ψ) = 1
2

X
fi;jg\�n 6=;

p(i; j)(	j �	i)
2 ! 0; as n!1.

Easy to prove: the optimal such Ψ is the (unique) solution to the
Dirichlet problem 8<

:
(�Ψ)i = 0 8i 2 �n n f0g
	0 = �
	i = 0 8i 62 �n

This solution is given by: for all i 2 �n n f0g,

	i = � Pi(X visits 0 before leaving �n) ;

and, for this Ψ,

E(Ψ) = 2� P0(X exits �n before returning to 0) ;

so that limn!1 E(Ψ) = 0 if and only if X is recurrent.
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Mermin-Wagner theorem: extension

Even though smoothness of W (and thus V ) played a crucial role in the
above proof, and in all alternative proofs, it turns out that it can be
substantially weakened:

Theorem (Ioffe, Shlosman, YV, CMP, 2001)

The previous theorem remains true when W is only piecewise continuous.



Decay of correlations

I A weakness of the above approach is that it does not provide very
good estimates on decay of correlations in its regime of validity. The best
that can be extracted from it is: for all limiting measures �,

�(~Si � ~Sj) � c (log kj � ik)�1=2 ;

uniformly in i 6= j in Z2.

I In the finite-range case (9R <1 s.t. p(i; j) = 0 when kj � ik > R),
Dobrushin and Shlosman proved that

�(~Si � ~Sj) � c1 kj � ik�c2 ;

for W continuously differentiable, and this was extended to piecewise
continuous W in [Ioffe, Shlosman, YV, CMP, 2001].

I When W is analytic, an alternative approach, due to McBryan and
Spencer and extended by Messager, Miracle-Sole and Ruiz, allows one to
prove that this is still true as long as

p(i; j) � c kj � ik�� for some � > 4.

(Note: correlations do not always decay when � � 1 and � < 4.)
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Decay of correlations

I The above is optimal in general, in the sense that Fröhlich and
Spencer proved a lower bound with the same behavior for the 2d XY
model at large enough �.

I It is however expected to be quite poor for the O(N) models with
N � 3, since in that case it is conjectured that

�(~Si � ~Sj) � c1 e
�c2kj�ik

at all temperatures.



Decay of correlations: Proof for the n.n. XY model

Let us prove the upper bound in the simplest case of the 2d XY model.
We follow the approach of McBryan and Spencer. Details can again be
found in Chapter 8 of our book with S. Friedli.

Again, it is convenient to work in terms of the angles θ. We fix an
arbitrary b.c. θ� outside the box �n.

To prove: limn!1 �θ�

�n

�
cos(�k � �0)

�
� c1 kkk

�c2 for all k 6= 0.

���θ�

�n

�
cos(�k � �0)

��� � ���θ�

�n

�
ei(�k��0)

���
=

1

Zθ�

�n

Z
dθ�n

exp
n
i(�k � �0) + �

X
fi;jg\�n 6=;

i�j

cos(�i � �j)
o
:



Decay of correlations: Proof for the n.n. XY model

���θ�

�n

�
cos(�k��0)

��� = 1

Zθ�

�n

Z
dθ�n

exp
n
i(�k��0)+�

X
fi;jg\�n 6=;

i�j

cos(�i��j)
o
:

The integrand being analytic, Cauchy theorem allows one, for each
integration variable �j , to shift its path of integration from (��; �] to
i rj + (��; �], where r = (rj)j2Zd will be chosen later and will satisfy
rj = 0 for all j 62 �n.

���

� + irj�� + irj

R
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Decay of correlations: Proof for the n.n. XY model

Since

jei(�k+irk��0�ir0)j = e�(rk�r0);

jecos(�i+iri��j�irj)j = ecosh(ri�rj) cos(�i��j) ;

we obtain
���θ�

�n

�
cos(�k � �0)

���
�

e�(rk�r0)

Zθ�

�n

Z
dθ�n

exp
n
�
X
i�j

cosh(ri � rj) cos(�i � �j)
o

= e�(rk�r0)
Z

dθ�n
exp

n
�
X
i�j

�
cosh(ri � rj)� 1

�
cos(�i � �j)

oe�H�n (θ)

Zθ�

�n

= e�(rk�r0) �θ�

�n

�
exp

n
�
X
i�j

�
cosh(ri � rj)� 1

�
cos(#i � #j)

o�

� e�(rk�r0) exp
n
�
X
i�j

�
cosh(ri � rj)� 1

�o
:



Decay of correlations: Proof for the n.n. XY model

We now need to find a suitable candidate for r.
Assume that r can be chosen in such a way that, for some C,

jri � rj j � C=� ; 8i � j :

Then, for any fixed � > 0,

cosh(ri � rj)� 1 � 1
2 (1 + �)(ri � rj)

2; 8i � j ;

provided that � is large enough. Therefore
X
i�j

�
cosh(ri � rj)� 1

�
� 1

2 (1 + �)
X
i�j

(ri � rj)
2 � (1 + �)E(r) :

We thus have
���θ�

�n

�
cos(�k � �0)

��� � expf�D(r)g ;

where, setting �0 = (1 + �)�,

D(r) = rk � r0 � �0E(r) :



Decay of correlations: Proof for the n.n. XY model

The choice of r minimizing D is the unique solution to

(�r)i = (1fi=0g � 1fi=kg)=�
0; i 2 �n ;

and can be expressed explicitly as

ri =
�
G�n

(k; i)�G�n
(0; i)

�
=(4�0); i 2 �n ;

where G�n
(�; �) is the Green function of the simple random walk in �n.

Since, for this choice of r,

D(r) = 1
2 (rk � r0) ;

the conclusion follows from the well-known asymptotics of the Green
function.



Decay of correlations: Main result

Our main result is the following

Theorem (Gagnebin, YV, CMP, 2014)

Assume that d = 2, V is continuous and p(i; j) � c kj � ik�� for some
� > 4. Then,

�(~Si � ~Sj) � c1 kj � ik�c2 ;

uniformly in i 6= j.



Thanks
for your attention!
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