Upper bound on correlations for two-dimensional O(N)-symmetric models

Yvan Velenik

based on (an old) joint work with Dima loffe and Senya Shlosman and (a recent one) with Maxime Gagnebin

- 2 Mermin-Wagner theorem
- 3 Decay of correlations

$\blacktriangleright N \in \{1, 2, 3, \ldots\}$

- $\blacktriangleright N \in \{1, 2, 3, \ldots\}$
- \blacktriangleright Configurations: $\vec{\mathbf{S}}=(\vec{S}_i)_{i\in\mathbb{Z}^d}$ collection of unit vectors in \mathbb{R}^N

- $\blacktriangleright N \in \{1,2,3,\ldots\}$
- ▶ Configurations: $\vec{\mathbf{S}} = (\vec{S}_i)_{i \in \mathbb{Z}^d}$ collection of unit vectors in \mathbb{R}^N
- Given $\Lambda \Subset \mathbb{Z}^d$ and $\beta \ge 0$, the **energy** of $\vec{\mathbf{S}}$ in Λ is

$$\mathcal{H}_{\Lambda}(ec{\mathbf{S}}) = -eta \sum_{\substack{\{i,j\} \cap \Lambda
eq \emptyset \ i \sim j}} ec{S}_i \cdot ec{S}_j$$

Note that $\vec{S}_i \cdot \vec{S}_j$, and thus \mathcal{H}_{Λ} , is invariant under simultaneous and identical rotation of all spins \vec{S}_i .

- $\blacktriangleright N \in \{1,2,3,\ldots\}$
- ▶ Configurations: $\vec{\mathbf{S}} = (\vec{S}_i)_{i \in \mathbb{Z}^d}$ collection of unit vectors in \mathbb{R}^N
- Given $\Lambda \Subset \mathbb{Z}^d$ and $\beta \ge 0$, the **energy** of $\vec{\mathbf{S}}$ in Λ is

$$\mathcal{H}_{\Lambda}(ec{\mathbf{S}}) = -eta \sum_{\substack{\{i,j\} \cap \Lambda
eq \emptyset \ i \sim j}} ec{S}_i \cdot ec{S}_j$$

Note that $\vec{S}_i \cdot \vec{S}_j$, and thus \mathcal{H}_{Λ} , is invariant under simultaneous and identical rotation of all spins \vec{S}_i .

- ▶ Boundary condition: a configuration $\vec{\mathbf{S}}^* = (\vec{S}^*_i)_{i \in \mathbb{Z}^d}$
- ▶ Gibbs measure in Λ with b.c. \vec{S}^* :

$$\mu^{ec{\mathbf{S}}^{*}}_{\Lambda}(\mathrm{d}\mathbf{S}) = \mathbb{1}_{\{ec{S}_{i}=ec{S}^{*}_{i} \; orall i
otin \mathcal{A}\}} \; rac{1}{\mathbf{Z}^{ec{\mathbf{S}}^{*}}_{\Lambda}} \, e^{-\mathcal{H}_{\Lambda}(ec{\mathbf{S}})}$$

- $\blacktriangleright N \in \{1,2,3,\ldots\}$
- ▶ Configurations: $\vec{\mathbf{S}} = (\vec{S}_i)_{i \in \mathbb{Z}^d}$ collection of unit vectors in \mathbb{R}^N
- ▶ Given $\Lambda \Subset \mathbb{Z}^d$ and $\beta \ge 0$, the **energy** of $\vec{\mathbf{S}}$ in Λ is

$$\mathcal{H}_{\Lambda}(ec{\mathbf{S}}) = -eta \sum_{\substack{\{i,j\} \cap \Lambda
eq \emptyset \ i \sim j}} ec{S}_i \cdot ec{S}_j$$

Note that $\vec{S}_i \cdot \vec{S}_j$, and thus \mathcal{H}_{Λ} , is invariant under simultaneous and identical rotation of all spins \vec{S}_i .

- ▶ Boundary condition: a configuration $\vec{\mathbf{S}}^* = (\vec{S}^*_i)_{i \in \mathbb{Z}^d}$
- ▶ Gibbs measure in Λ with b.c. \vec{S}^* :

$$\mu^{ec{\mathbf{S}}^{*}}_{\Lambda}(\mathrm{d}\mathbf{\vec{S}}) = \mathbb{1}_{\{ec{S}_{i}=ec{S}^{*}_{i} \; orall i
otin \mathcal{A}\}} \; rac{1}{\mathbf{Z}^{ec{\mathbf{S}}^{*}}_{\Lambda}} \, e^{-\mathcal{H}_{\Lambda}(ec{\mathbf{S}})}$$

Examples: Ising model (N = 1), XY model (N = 2), Heisenberg model (N = 3)

Typical configurations (N = 2)

High temperature (β small)

Typical configurations (N = 2)

$\rightarrow \rightarrow$	ightarrow $ ightarrow$ $ ig$
< 1 >	→
< < > →	→
· K K 🔿	→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→
· * 4 >	→ → → → ↓ ↓ → → → → → ↓ ↓ → ↓ ↓ → ↓ → ↓
• ↑ ↗ >	+ + + + + + + + + + + + + + + + + + +
. 7 × →	→ √ <p< th=""></p<>
· + > >	→
71>	+
×× →	→ </th
- \	+ + + + + + + + + + + + + + + + + + +
- 4 4 >	→ → → → → → → → → → → → → → → → → → →
× 2 >	→ → → → → → → → → → → → → → → → → → →
1 T K ->	\rightarrow
· > 4 ->	→ メメション・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン
+ y y ->	→ → → → → → → → → → → → → → → → → → →
· ア ナ - >	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
• ∡	→
1K->	→
· → → →	→ → → → → → → → → → → → → → → → → → →
· K K 🔿	→
· 7 × →	→→→→→ →→ </th
1 + + ->	→
$\rightarrow \leftarrow \rightarrow$	→
1 K 2 ->	→ → → → → → → ✓ ✓ ✓ ✓ ★ ★ ★ ★ ★ ★ ★ ★ ★
144 >	→
. → * <mark>→</mark>	→
· ∠ ≯ →	►
· 1 + ->	→
× × →	→
· > → >	→
• 7 ← →	★ A <p< th=""></p<>
$\rightarrow \rightarrow$	++++++++++++++++++++++++++++++++++++++

High temperature (β small)

1-1-1-1-1-2

↓<↓</>

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓</td

ケレウックフィート

ペチレス アノーチャー

ナンシスマインイ

>+++++.

12166-

イストト レンン.

ベベベビ ムアナキキィ

1 2 1

Low temperature (β large)

Basic question: does one still feel the effect of the boundary condition at the center of the box as the size of the box diverges?

While the answer is always **No** when β is taken sufficiently small, the behavior at large β (low temperatures) can depend on N:

	N = 1	$N \ge 2$
d = 1	No	No
d = 2	Yes	No
$d \geq 3$	Yes	Yes

While the answer is always **No** when β is taken sufficiently small, the behavior at large β (low temperatures) can depend on N:

	N = 1	$N \ge 2$
d = 1	No	No
d=2	Yes	No
$d \ge 3$	Yes	Yes

Why does the Ising model behave differently from models with larger values of N (when d = 2)?

While the answer is always **No** when β is taken sufficiently small, the behavior at large β (low temperatures) can depend on N:

	N = 1	$N \ge 2$
d = 1	No	No
d=2	Yes	No
$d \ge 3$	Yes	Yes

Why does the Ising model behave differently from models with larger values of N (when d = 2)?

Let us consider the **minimal energetic cost** of flipping a spin in the middle of a square box of "radius" n...

N=1 (Ising model), d=2

____ \rightarrow $\rightarrow \rightarrow$ \rightarrow - $\rightarrow \rightarrow$ \rightarrow $\rightarrow \rightarrow$ \rightarrow $\rightarrow \rightarrow$ $\rightarrow \rightarrow$ $\rightarrow \rightarrow$

Min. energy cost: 8β

→ → → → → → → → → ----2 **** ב ב ב ב х х *** → → → → → → ∧ ∧ ∧ *********** \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 71 7 7 7 ブブ 7 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 1 1 アアア 7 7 <</pre> \mathbf{T} ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 7 ۲ ۲ 1 Ť 1 イベベベイナアフス * ĸ ĸ **Υ** 1 ア ۲ ĸ **K K Y T T T** $\rightarrow \rightarrow \rightarrow$ ↑ ۲ イイイ ↑ ↑ ア ア ス $\rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ ↑ ↑ Ť ↑ ↑ ↑ 7 7 * * * * * * * * * * * * * アアアアア ********* 7 ****** $\rightarrow \rightarrow \rightarrow$ גגג ***** \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $\rightarrow \rightarrow \rightarrow \rightarrow$ *** $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Min. energy cost: $O(\beta / \log n)$

. * $\uparrow \uparrow \uparrow \uparrow \uparrow$ 17 ۲ 1 ب 丶 丶 ヘイイナブ K. ĸ ۲ ۲ ۴ ۲ ↑ * 7 ↑ ↑ * * * * * * * * * 7 7 オオ 7 * * * * * * $\rightarrow \rightarrow \rightarrow \rightarrow$

Min. energy cost: $O(\beta / \log n)$

This corresponds to the following configuration:

If
$$\|i\|_{\infty} = r$$
 then $ec{S}_i = (\cos lpha_r, \sin lpha_r)$ with

$$\alpha_r = \big(1 - \frac{\log(1+r)}{\log(1+n)}\big)$$

Let us now consider a more general class of models. These are constructed exactly as before, but with a Hamiltonian

$${\mathcal H}_{\Lambda}({f {f S}}) = \sum_{\{i,j\} \cap \Lambda
eq \emptyset} p(i,j) \, W(S_i \cdot S_j)$$

where $p(i, j) = p(j - i) \ge 0$ and $\sum_i p(i) = 1$ (that is, these are the transition probabilities of a random walk on \mathbb{Z}^d)

The following classical result is due to works of Mermin, Wagner, Dobrushin, Shlosman, Pfister, and many others:

Theorem

Consider O(N)-symmetric models on \mathbb{Z}^d , with $p(\cdot)$ such that the associated random walk is recurrent, and W twice continuously differentiable. Let $\Lambda_n = \{-n, \ldots, n\}^d$ and let $\vec{\mathbf{S}}^*$ be some boundary condition. Then every cluster point μ of the sequence $(\mu_{\Lambda_n}^{\vec{\mathbf{S}}^*})_{n\geq 1}$ is rotation invariant.

The following classical result is due to works of Mermin, Wagner, Dobrushin, Shlosman, Pfister, and many others:

Theorem

Consider O(N)-symmetric models on \mathbb{Z}^d , with $p(\cdot)$ such that the associated random walk is recurrent, and W twice continuously differentiable. Let $\Lambda_n = \{-n, \ldots, n\}^d$ and let $\vec{\mathbf{S}}^*$ be some boundary condition. Then every cluster point μ of the sequence $(\mu_{\Lambda_n}^{\vec{\mathbf{S}}^*})_{n\geq 1}$ is rotation invariant.

In particular, it is not possible to find a boundary condition such that, in the limit, there is a preferred directions for the spins (that is, positive magnetization).

The following classical result is due to works of Mermin, Wagner, Dobrushin, Shlosman, Pfister, and many others:

Theorem

Consider O(N)-symmetric models on \mathbb{Z}^d , with $p(\cdot)$ such that the associated random walk is recurrent, and W twice continuously differentiable. Let $\Lambda_n = \{-n, \ldots, n\}^d$ and let $\vec{\mathbf{S}}^*$ be some boundary condition. Then every cluster point μ of the sequence $(\mu_{\Lambda_n}^{\vec{\mathbf{S}}^*})_{n\geq 1}$ is rotation invariant.

In particular, it is not possible to find a boundary condition such that, in the limit, there is a preferred directions for the spins (that is, positive magnetization).

The recurrence condition is known to be optimal: there is spontaneous magnetization in the O(N) models as soon as the random walk is transient [Bonato, Perez, Klein, JSP 1982].

(Follows [Pfister, CMP, 1981] with some simplifications. For details, see Chapter 8 of the book by S. Friedli and YV, at http://www.unige.ch/math/folks/velenik/smbook)

Suffices to prove:

$$\lim_{n o\infty} \left| \mu^{ec{\mathbf{S}}^*}_{\Lambda_n}(f) - \mu^{ec{\mathbf{S}}^*}_{\Lambda_n}(f\circ\mathsf{R})
ight| = \mathsf{0},$$

for all local functions f, all b.c. \vec{S}^* and all (simultaneous and identical) rotations R of all the spins.

(Follows [Pfister, CMP, 1981] with some simplifications. For details, see Chapter 8 of the book by S. Friedli and YV, at http://www.unige.ch/math/folks/velenik/smbook)

Suffices to prove:

$$\lim_{n o\infty} \left| \mu^{ec{\mathbf{S}}^*}_{\Lambda_n}(f) - \mu^{ec{\mathbf{S}}^*}_{\Lambda_n}(f\circ\mathsf{R})
ight| = \mathsf{0},$$

for all local functions f, all b.c. \vec{S}^* and all (simultaneous and identical) rotations R of all the spins.

To simplify notations:

Only N = 2. In this case, configurations are parametrized by angles θ = (θ_i)_{i∈Z^d}, θ_i ∈ (-π, π], such that S
 ⁱ = (cos θ_i, sin θ_i).
 We consider functions f depending only on θ₀.

(Follows [Pfister, CMP, 1981] with some simplifications. For details, see Chapter 8 of the book by S. Friedli and YV, at http://www.unige.ch/math/folks/velenik/smbook)

Suffices to prove:

$$\lim_{n o\infty} \left| \mu^{ec{\mathbf{S}}^*}_{\Lambda_n}(f) - \mu^{ec{\mathbf{S}}^*}_{\Lambda_n}(f\circ\mathsf{R})
ight| = \mathsf{0},$$

for all local functions f, all b.c. \vec{S}^* and all (simultaneous and identical) rotations R of all the spins.

To simplify notations:

▶ Only N = 2. In this case, configurations are parametrized by angles $\theta = (\theta_i)_{i \in \mathbb{Z}^d}, \ \theta_i \in (-\pi, \pi]$, such that $\vec{S}_i = (\cos \theta_i, \sin \theta_i)$. ▶ We consider functions f depending only on θ_0 .

To prove:

$$\lim_{n\to\infty} \left| \mu_{\Lambda_n}^{\boldsymbol{\theta}^*}(f(\theta_0)) - \mu_{\Lambda_n}^{\boldsymbol{\theta}^*}(f(\theta_0+\alpha)) \right| = 0,$$

for all function f, all b.c. θ^* and all $\alpha \in (-\pi, \pi]$.

Let $\Psi = (\Psi_i)_{i \in \mathbb{Z}^d}$, $\Psi_i \in (-\pi, \pi]$, s.t. $\Psi_0 = \alpha$ and $\Psi_i = 0$ for all $i \notin \Lambda_n$.

Let $\Psi = (\Psi_i)_{i \in \mathbb{Z}^d}$, $\Psi_i \in (-\pi, \pi]$, s.t. $\Psi_0 = \alpha$ and $\Psi_i = 0$ for all $i \notin \Lambda_n$. Denoting by BC = BC(θ^* , n) = { $\theta_i = \theta_i^*$ for all $i \notin \Lambda_n$ }, define

$$\mu_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}(\mathrm{d}\boldsymbol{\theta}) = \mathbb{1}_{\mathrm{BC}}(\boldsymbol{\theta}) \, \frac{1}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}} \, e^{-\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta}-\boldsymbol{\Psi})}$$

Let $\Psi = (\Psi_i)_{i \in \mathbb{Z}^d}$, $\Psi_i \in (-\pi, \pi]$, s.t. $\Psi_0 = \alpha$ and $\Psi_i = 0$ for all $i \notin \Lambda_n$. Denoting by BC = BC(θ^* , n) = { $\theta_i = \theta_i^*$ for all $i \notin \Lambda_n$ }, define

$$\mu_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}(\mathrm{d}\boldsymbol{\theta}) = \mathbf{1}_{\mathrm{BC}}(\boldsymbol{\theta}) \, \frac{1}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}} \, e^{-\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta}-\boldsymbol{\Psi})}$$

Easy to check (Jacobian=1): $\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta^*},\Psi} = \mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta^*}}$. In particular,

$$\begin{split} \mu_{\Lambda_n}^{\boldsymbol{\theta^*},\boldsymbol{\Psi}}(f(\theta_0)) &= \frac{1}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta^*}}} \int \mathrm{d}\boldsymbol{\theta}_{\Lambda_n} e^{-\mathcal{H}_{\Lambda_n}}(\overbrace{\boldsymbol{\theta}-\boldsymbol{\Psi}}^{\equiv\boldsymbol{\theta}}) f(\theta_0) \\ &= \frac{1}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta^*}}} \int \mathrm{d}\tilde{\boldsymbol{\theta}}_{\Lambda_n} e^{-\mathcal{H}_{\Lambda_n}}(\check{\boldsymbol{\theta}}) f(\tilde{\theta}_0 + \underbrace{\boldsymbol{\Psi}_0}_{=\boldsymbol{\alpha}}) \\ &= \mu_{\Lambda_n}^{\boldsymbol{\theta^*}}(f(\theta_0 + \boldsymbol{\alpha})) \,. \end{split}$$

Let $\Psi = (\Psi_i)_{i \in \mathbb{Z}^d}$, $\Psi_i \in (-\pi, \pi]$, s.t. $\Psi_0 = \alpha$ and $\Psi_i = 0$ for all $i \notin \Lambda_n$. Denoting by BC = BC(θ^* , n) = { $\theta_i = \theta_i^*$ for all $i \notin \Lambda_n$ }, define

$$\mu_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}(\mathrm{d}\boldsymbol{\theta}) = \mathbf{1}_{\mathrm{BC}}(\boldsymbol{\theta}) \, \frac{1}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}} \, e^{-\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta}-\boldsymbol{\Psi})}$$

Easy to check (Jacobian = 1): $\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta^*},\Psi} = \mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta^*}}$. In particular,

$$\begin{split} \mu_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}(f(\theta_0)) &= \frac{1}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta}^*}} \int \mathrm{d}\boldsymbol{\theta}_{\Lambda_n} e^{-\mathcal{H}_{\Lambda_n}}(\overbrace{\boldsymbol{\theta}-\boldsymbol{\Psi}}^{\equiv\boldsymbol{\theta}}) f(\theta_0) \\ &= \frac{1}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta}^*}} \int \mathrm{d}\tilde{\boldsymbol{\theta}}_{\Lambda_n} e^{-\mathcal{H}_{\Lambda_n}}(\widecheck{\boldsymbol{\theta}}) f(\widetilde{\boldsymbol{\theta}}_0 + \underbrace{\boldsymbol{\Psi}_0}_{=\boldsymbol{\alpha}}) \\ &= \mu_{\Lambda_n}^{\boldsymbol{\theta}^*}(f(\theta_0 + \boldsymbol{\alpha})) \,. \end{split}$$

Therefore,

$$\left|\mu_{\Lambda_n}^{{m heta}^*}(f(heta_0))-\mu_{\Lambda_n}^{{m heta}^*}(f(heta_0+lpha))
ight|=\left|\mu_{\Lambda_n}^{{m heta}^*}(f(heta_0))-\mu_{\Lambda_n}^{{m heta}^*,m \Psi}(f(heta_0))
ight|.$$

Denote by $H(\mu|\nu) = \mu (\log(d\mu/d\nu))$ the **relative entropy** of μ with respect to $\nu \gg \mu$.

Pinsker's inequality: $|\mu(f) - \nu(f)| \le ||f||_{\infty} \sqrt{2H(\mu|\nu)}$, for all f.

Denote by $H(\mu|\nu) = \mu (\log(d\mu/d\nu))$ the **relative entropy** of μ with respect to $\nu \gg \mu$.

Pinsker's inequality: $|\mu(f) - \nu(f)| \le ||f||_{\infty} \sqrt{2H(\mu|\nu)}$, for all f.

 $\implies \text{Enough to prove that } \lim_{n \to \infty} H(\mu_{\Lambda_n}^{\theta^*} | \mu_{\Lambda_n}^{\theta^*, \Psi}) = 0.$

Denote by $H(\mu|\nu) = \mu (\log(d\mu/d\nu))$ the **relative entropy** of μ with respect to $\nu \gg \mu$.

Pinsker's inequality: $|\mu(f) - \nu(f)| \le ||f||_{\infty} \sqrt{2H(\mu|\nu)}$, for all f.

 $\implies \text{Enough to prove that } \lim_{n \to \infty} H(\mu_{\Lambda_n}^{\theta^*} | \mu_{\Lambda_n}^{\theta^*, \Psi}) = 0.$

Of course,

$$\frac{\mathrm{d}\mu_{\Lambda_n}^{\boldsymbol{\theta}^*}}{\mathrm{d}\mu_{\Lambda_n}^{\boldsymbol{\theta}^*,\Psi}}(\boldsymbol{\theta}) = \mathbb{1}_{\mathrm{BC}}(\boldsymbol{\theta}) \; e^{\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta}-\Psi)-\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta})}$$

Denote by $H(\mu|\nu) = \mu (\log(d\mu/d\nu))$ the **relative entropy** of μ with respect to $\nu \gg \mu$.

Pinsker's inequality: $|\mu(f) - \nu(f)| \le ||f||_{\infty} \sqrt{2H(\mu|\nu)}$, for all f.

 $\implies \text{Enough to prove that } \lim_{n \to \infty} H(\mu_{\Lambda_n}^{\theta^*} | \mu_{\Lambda_n}^{\theta^*, \Psi}) = 0.$

Of course,

$$\frac{\mathrm{d}\mu_{\Lambda_n}^{\boldsymbol{\theta}^*}}{\mathrm{d}\mu_{\Lambda_n}^{\boldsymbol{\theta}^*,\boldsymbol{\Psi}}}(\boldsymbol{\theta}) = \mathbb{1}_{\mathrm{BC}}(\boldsymbol{\theta}) \; e^{\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta}-\boldsymbol{\Psi})-\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta})}$$

Therefore,

$$egin{aligned} H(\mu_{\Lambda_n}^{oldsymbol{ heta}^*}|\mu_{\Lambda_n}^{oldsymbol{ heta}^*}(\Psi) &= \mu_{\Lambda_n}^{oldsymbol{ heta}^*}ig(\mathcal{H}_{\Lambda_n}(oldsymbol{ heta}-\Psi) - \mathcal{H}_{\Lambda_n}(oldsymbol{ heta})ig) \ &= \sum_{\{i,j\}\cap\Lambda_n
eq \emptyset} p(i,j)\mu_{\Lambda_n}^{oldsymbol{ heta}^*}ig(V(heta_i - \Psi_i - heta_j + \Psi_j) - V(heta_i - heta_j)ig)\,, \end{aligned}$$

where $V(x) = W(\cos(x))$.

Therefore,

$$\begin{split} H(\mu_{\Lambda_n}^{\boldsymbol{\theta^*}}|\mu_{\Lambda_n}^{\boldsymbol{\theta^*},\boldsymbol{\Psi}}) &= \mu_{\Lambda_n}^{\boldsymbol{\theta^*}} \big(\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta}-\boldsymbol{\Psi}) - \mathcal{H}_{\Lambda_n}(\boldsymbol{\theta}) \big) \\ &= \sum_{\{i,j\} \cap \Lambda_n \neq \emptyset} p(i,j) \mu_{\Lambda_n}^{\boldsymbol{\theta^*}} \big(V(\theta_i - \Psi_i - \theta_j + \Psi_j) - V(\theta_i - \theta_j) \big) \,, \end{split}$$

where $V(x) = W(\cos(x))$.

Therefore,

$$egin{aligned} H(\mu_{\Lambda_n}^{oldsymbol{ heta}} | \mu_{\Lambda_n}^{oldsymbol{ heta}}(oldsymbol{\Psi}) &= \mu_{\Lambda_n}^{oldsymbol{ heta}}ig(\mathcal{H}_{\Lambda_n}(oldsymbol{ heta} - oldsymbol{\Psi}) - \mathcal{H}_{\Lambda_n}(oldsymbol{ heta})ig) \ &= \sum_{\{i,j\} \cap \Lambda_n
eq \emptyset} p(i,j) \mu_{\Lambda_n}^{oldsymbol{ heta}^*}ig(V(oldsymbol{ heta}_i - oldsymbol{ heta}_j + oldsymbol{\Psi}_j) - V(oldsymbol{ heta}_i - oldsymbol{ heta}_j)ig)\,, \end{aligned}$$

where $V(x) = W(\cos(x))$. Since V is twice continuously differentiable,

$$egin{aligned} V(heta_i-\Psi_j- heta_j+\Psi_j) &= V(heta_i- heta_j)+V'(heta_i- heta_j)\left(\Psi_j-\Psi_i
ight)\ &+ rac{1}{2}\underbrace{V''(t_{ij})}_{<\mathcal{C}}\left(\Psi_j-\Psi_i
ight)^2. \end{aligned}$$

Therefore,

$$egin{aligned} H(\mu_{\Lambda_n}^{oldsymbol{ heta}} | \mu_{\Lambda_n}^{oldsymbol{ heta}}(oldsymbol{\Psi}) &= \mu_{\Lambda_n}^{oldsymbol{ heta}}ig(\mathcal{H}_{\Lambda_n}(oldsymbol{ heta} - oldsymbol{\Psi}) - \mathcal{H}_{\Lambda_n}(oldsymbol{ heta})ig) \ &= \sum_{\{i,j\} \cap \Lambda_n
eq \emptyset} p(i,j) \mu_{\Lambda_n}^{oldsymbol{ heta}^*}ig(V(oldsymbol{ heta}_i - oldsymbol{ heta}_j + oldsymbol{\Psi}_j) - V(oldsymbol{ heta}_i - oldsymbol{ heta}_j)ig)\,, \end{aligned}$$

where $V(x) = W(\cos(x))$. Since V is twice continuously differentiable,

$$V(\theta_i - \Psi_i - \theta_j + \Psi_j) = V(\theta_i - \theta_j) + V'(\theta_i - \theta_j) (\Psi_j - \Psi_i) + \frac{1}{2} \underbrace{V''(t_{ij})}_{\leq C} (\Psi_j - \Psi_i)^2.$$

Thus,

$$H(\mu_{\Lambda_n}^{\boldsymbol{\theta^*}}|\mu_{\Lambda_n}^{\boldsymbol{\theta^*},\boldsymbol{\Psi}}) \leq \sum_{\{i,j\}\cap\Lambda_n\neq\emptyset} p(i,j) \big\{ \mu_{\Lambda_n}^{\boldsymbol{\theta^*}} \big(V'(\theta_i - \theta_j) \left(\Psi_j - \Psi_i \right) \big) + \frac{C}{2} \left(\Psi_j - \Psi_i \right)^2 \big\}$$

Therefore,

$$egin{aligned} H(\mu_{\Lambda_n}^{oldsymbol{ heta}} | \mu_{\Lambda_n}^{oldsymbol{ heta}}(oldsymbol{\Psi}) &= \mu_{\Lambda_n}^{oldsymbol{ heta}}ig(\mathcal{H}_{\Lambda_n}(oldsymbol{ heta} - oldsymbol{\Psi}) - \mathcal{H}_{\Lambda_n}(oldsymbol{ heta})ig) \ &= \sum_{\{i,j\} \cap \Lambda_n
eq \emptyset} p(i,j) \mu_{\Lambda_n}^{oldsymbol{ heta}^*}ig(V(oldsymbol{ heta}_i - oldsymbol{ heta}_j + oldsymbol{\Psi}_j) - V(oldsymbol{ heta}_i - oldsymbol{ heta}_j)ig)\,, \end{aligned}$$

where $V(x) = W(\cos(x))$. Since V is twice continuously differentiable,

$$V(\theta_i - \Psi_i - \theta_j + \Psi_j) = V(\theta_i - \theta_j) + V'(\theta_i - \theta_j) (\Psi_j - \Psi_i) + \frac{1}{2} \underbrace{V''(t_{ij})}_{\leq C} (\Psi_j - \Psi_i)^2.$$

Thus,

$$H(\mu_{\Lambda_n}^{\boldsymbol{\theta^*}}|\mu_{\Lambda_n}^{\boldsymbol{\theta^*},\boldsymbol{\Psi}}) \leq \sum_{\{i,j\}\cap\Lambda_n\neq\emptyset} p(i,j) \big\{ \mu_{\Lambda_n}^{\boldsymbol{\theta^*}} \big(V'(\theta_i - \theta_j) \left(\Psi_j - \Psi_i \right) \big) + \frac{C}{2} \left(\Psi_j - \Psi_i \right)^2 \big\}$$

Trick: Since $H(\mu|\nu) \ge 0$ for all μ, ν , we can write

$$egin{aligned} H(\mu_{\Lambda_n}^{oldsymbol{ heta}} | \mu_{\Lambda_n}^{oldsymbol{ heta}} | \Psi & = H(\mu_{\Lambda_n}^{oldsymbol{ heta}} | \mu_{\Lambda_n}^{oldsymbol{ heta}}) + H(\mu_{\Lambda_n}^{oldsymbol{ heta}} | \mu_{\Lambda_n}^{oldsymbol{ heta}}) \ & \leq C \sum_{\{i,j\} \cap \Lambda_n
eq \emptyset} p(i,j) (\Psi_j - \Psi_i)^2 \,. \end{aligned}$$

There only remains to prove that one can choose Ψ satisfying $\Psi_0 = \alpha$, $\Psi \equiv 0$ off Λ_n , and such that

$$\mathcal{E}(\mathbf{\Psi}) = rac{1}{2} \sum_{\{i,j\} \cap \Lambda_n
eq \emptyset} p(i,j) (\Psi_j - \Psi_i)^2 o \mathsf{0}, \hspace{1em} \mathsf{as} \hspace{1em} n o \infty.$$

There only remains to prove that one can choose Ψ satisfying $\Psi_0 = \alpha$, $\Psi \equiv 0$ off Λ_n , and such that

$$\mathcal{E}(\Psi) = rac{1}{2} \sum_{\{i,j\} \cap \Lambda_n
eq \emptyset} p(i,j) (\Psi_j - \Psi_i)^2 o 0, \hspace{1em} ext{as} \hspace{1em} n o \infty.$$

Easy to prove: the optimal such Ψ is the (unique) solution to the Dirichlet problem

$$\begin{cases} (\Delta \Psi)_i = 0 \quad \forall i \in \Lambda_n \setminus \{0\} \\ \Psi_0 = \alpha \\ \Psi_i = 0 \qquad \forall i \not\in \Lambda_n \end{cases}$$

There only remains to prove that one can choose Ψ satisfying $\Psi_0 = \alpha$, $\Psi \equiv 0$ off Λ_n , and such that

$$\mathcal{E}(\Psi) = rac{1}{2} \sum_{\{i,j\} \cap \Lambda_n
eq \emptyset} p(i,j) (\Psi_j - \Psi_i)^2 o 0, \hspace{1em} ext{as} \hspace{1em} n o \infty.$$

Easy to prove: the optimal such Ψ is the (unique) solution to the Dirichlet problem

$$\left\{egin{array}{cc} (\Delta oldsymbol{\Psi})_i = 0 & orall i \in \Lambda_n \setminus \{0\} \ \Psi_0 = lpha \ \Psi_i = 0 & orall i
ot\in \Lambda_n \end{array}
ight.$$

This solution is given by: for all $i \in \Lambda_n \setminus \{0\}$,

 $\Psi_i = \alpha \mathbb{P}_i(X \text{ visits 0 before leaving } \Lambda_n),$

and, for this Ψ ,

 $\mathcal{E}(\Psi) = 2\alpha \mathbb{P}_0(X \text{ exits } \Lambda_n \text{ before returning to } 0),$

so that $\lim_{n \to \infty} \mathcal{E}(\Psi) = 0$ if and only if X is recurrent.

Even though smoothness of W (and thus V) played a crucial role in the above proof, and in all alternative proofs, it turns out that it can be substantially weakened:

Theorem (loffe, Shlosman, YV, CMP, 2001)

The previous theorem remains true when W is only piecewise continuous.

Decay of correlations

► A weakness of the above approach is that it does not provide very good estimates on decay of correlations in its regime of validity. The best that can be extracted from it is: for all limiting measures μ ,

$$\mu(ec{S}_i \cdot ec{S}_j) \leq c \, (\log \|j-i\|)^{-1/2}$$
 ,

uniformly in $i \neq j$ in \mathbb{Z}^2 .

▶ In the finite-range case ($\exists R < \infty$ s.t. p(i, j) = 0 when ||j - i|| > R), Dobrushin and Shlosman proved that

$$\mu(ec{S}_i \cdot ec{S}_j) \leq c_1 \, \|j-i\|^{-c_2}$$
 ,

for W continuously differentiable, and this was extended to piecewise continuous W in [loffe, Shlosman, YV, CMP, 2001].

Decay of correlations

► A weakness of the above approach is that it does not provide very good estimates on decay of correlations in its regime of validity. The best that can be extracted from it is: for all limiting measures μ ,

$$\mu(ec{S}_i \cdot ec{S}_j) \leq c \, (\log \|j-i\|)^{-1/2}$$
 ,

uniformly in $i \neq j$ in \mathbb{Z}^2 .

▶ In the finite-range case ($\exists R < \infty$ s.t. p(i, j) = 0 when ||j - i|| > R), Dobrushin and Shlosman proved that

$$\mu(ec{S}_i \cdot ec{S}_j) \leq c_1 \, \|j-i\|^{-c_2}$$
 ,

for W continuously differentiable, and this was extended to piecewise continuous W in [loffe, Shlosman, YV, CMP, 2001].

▶ When W is **analytic**, an alternative approach, due to McBryan and Spencer and extended by Messager, Miracle-Sole and Ruiz, allows one to prove that this is still true as long as

$$p(i, j) \leq c ||j - i||^{-\alpha}$$
 for some $\alpha > 4$.

(Note: correlations do not always decay when $\beta \gg 1$ and $\alpha < 4$.)

► The above is optimal in general, in the sense that Fröhlich and Spencer proved a lower bound with the same behavior for the 2d XY model at large enough β .

▶ It is however expected to be quite poor for the O(N) models with $N \ge 3$, since in that case it is conjectured that

$$\mu(ec{S}_i\cdotec{S}_j)\leq c_1\,e^{-c_2\|j-i\|}$$

at all temperatures.

Let us prove the upper bound in the simplest case of the 2d XY model. We follow the approach of McBryan and Spencer. Details can again be found in Chapter 8 of our book with S. Friedli.

Again, it is convenient to work in terms of the angles θ . We fix an arbitrary b.c. θ^* outside the box Λ_n .

To prove: $\lim_{n\to\infty} \mu_{\Lambda_n}^{\theta^*} \left(\cos(\theta_k - \theta_0) \right) \leq c_1 \|k\|^{-c_2}$ for all $k \neq 0$.

$$egin{aligned} &\left|\mu_{\Lambda_n}^{m{ heta}^*}\left(\cos(heta_k- heta_0)
ight)
ight|&=rac{1}{\mathbf{Z}_{\Lambda_n}^{m{ heta}^*}}\int\mathrm{d}m{ heta}_{\Lambda_n}\exp\Bigl\{\mathrm{i}(heta_k- heta_0)+eta\sum_{\substack{\{i,j\}\cap\Lambda_n
eq 0\ i< j}}\cos(heta_i- heta_j)\Bigr\}. \end{aligned}$$

Decay of correlations: Proof for the n.n. XY model

The integrand being analytic, Cauchy theorem allows one, for each integration variable θ_j , to shift its path of integration from $(-\pi, \pi]$ to $ir_j + (-\pi, \pi]$, where $\mathbf{r} = (r_j)_{j \in \mathbb{Z}^d}$ will be chosen later and will satisfy $r_j = 0$ for all $j \notin \Lambda_n$.

Decay of correlations: Proof for the n.n. XY model

Since

$$\begin{split} |e^{\mathrm{i}(\theta_k + \mathrm{i}r_k - \theta_0 - \mathrm{i}r_0)}| &= e^{-(r_k - r_0)}, \\ |e^{\cos(\theta_i + \mathrm{i}r_i - \theta_j - \mathrm{i}r_j)}| &= e^{\cosh(r_i - r_j)\cos(\theta_i - \theta_j)}, \end{split}$$

we obtain

$$\begin{split} & \mu_{\Lambda_n}^{\boldsymbol{\theta}^*} \left(\cos(\theta_k - \theta_0) \right) \Big| \\ & \leq \frac{e^{-(r_k - r_0)}}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta}^*}} \int \mathrm{d}\boldsymbol{\theta}_{\Lambda_n} \exp\left\{ \beta \sum_{i \sim j} \cosh(r_i - r_j) \cos(\theta_i - \theta_j) \right\} \\ & = e^{-(r_k - r_0)} \int \mathrm{d}\boldsymbol{\theta}_{\Lambda_n} \exp\left\{ \beta \sum_{i \sim j} \left(\cosh(r_i - r_j) - 1 \right) \cos(\theta_i - \theta_j) \right\} \frac{e^{-\mathcal{H}_{\Lambda_n}(\boldsymbol{\theta})}}{\mathbf{Z}_{\Lambda_n}^{\boldsymbol{\theta}^*}} \\ & = e^{-(r_k - r_0)} \mu_{\Lambda_n}^{\boldsymbol{\theta}^*} \left(\exp\left\{ \beta \sum_{i \sim j} \left(\cosh(r_i - r_j) - 1 \right) \cos(\vartheta_i - \vartheta_j) \right\} \right) \\ & \leq e^{-(r_k - r_0)} \exp\left\{ \beta \sum_{i \sim j} \left(\cosh(r_i - r_j) - 1 \right) \right\}. \end{split}$$

SITÉ

Decay of correlations: Proof for the n.n. XY model

We now need to find a suitable candidate for \mathbf{r} . Assume that r can be chosen in such a way that, for some C,

$$|r_i-r_j| \leq C/eta$$
 , $orall i \sim j$.

Then, for any fixed $\epsilon > 0$,

$$\cosh(r_i-r_j)-1\leq rac{1}{2}(1+\epsilon)(r_i-r_j)^2, \qquad orall i\sim j\,,$$

provided that β is large enough. Therefore

$$\sum_{i \sim j} igl(\cosh(r_i - r_j) - 1igr) \leq rac{1}{2}(1 + \epsilon) \sum_{i \sim j} (r_i - r_j)^2 \equiv (1 + \epsilon) \mathcal{E}(\mathbf{r}) \,.$$

We thus have

$$\left|\mu_{\Lambda_n}^{{m heta}^*}ig(\cos(heta_k- heta_0)ig)
ight|\le \exp\{-\mathcal{D}(\mathbf{r})\}\,,$$

where, setting $\beta' = (1 + \epsilon)\beta$,

$$\mathcal{D}(\mathbf{r}) = r_k - r_0 - eta' \mathcal{E}(r)$$
 .

The choice of ${\bf r}$ minimizing ${\cal D}$ is the unique solution to

$$(\Delta {f r})_i = (1_{\{i=0\}} - 1_{\{i=k\}})/eta', \quad i\in \Lambda_n$$
 ,

and can be expressed explicitly as

$$r_i = ig(G_{\Lambda_n}(k,i) - G_{\Lambda_n}(0,i)ig)/(4eta'), \quad i\in\Lambda_n\,,$$

where $G_{\Lambda_n}(\cdot, \cdot)$ is the Green function of the simple random walk in Λ_n . Since, for this choice of \mathbf{r} ,

$$\mathcal{D}(\mathbf{r}) = rac{1}{2}(r_k - r_0)$$
 ,

the conclusion follows from the well-known asymptotics of the Green function.

Our main result is the following

Theorem (Gagnebin, YV, CMP, 2014)

Assume that d = 2, V is continuous and $p(i, j) \le c ||j - i||^{-\alpha}$ for some $\alpha > 4$. Then,

$$\mu(\vec{S}_i \cdot \vec{S}_j) \le c_1 \, \|j - i\|^{-c_2} \, ,$$

uniformly in $i \neq j$.

Thanks for your attention!

