Potts model with a defect line

Yvan Velenik

joint work with Sébastien Ott
Université de Genève

The Potts model \& basic properties

The model

q-state Potts model on \mathbb{Z}^{d}

- The line: $\mathcal{L}=\left\{k \mathbf{e}_{1} \in \mathbb{Z}^{d}: k \in \mathbb{Z}\right\}$
- Configurations:

$$
\Omega=\left\{\sigma=\left(\sigma_{i}\right)_{i \in \mathbb{Z}^{d}}: \sigma_{i} \in\{1, \ldots, q\}\right\}
$$

- Coupling constants:

$$
J_{i j}= \begin{cases}1 & \text { if } i \sim j,\{i, j\} \not \subset \mathcal{L} \\ J & \text { if } i \sim j,\{i, j\} \subset \mathcal{L} \\ 0 & \text { otherwise }\end{cases}
$$

- Energy of $\sigma \in \Omega$ in the box $\Lambda \Subset \mathbb{Z}^{d}$:

$$
\mathcal{H}_{\wedge ; J}(\sigma)=\sum_{\{i, j\} \cap \wedge \neq \emptyset} J_{i j} \mathbb{1}_{\left\{\sigma_{i} \neq \sigma_{j}\right\}}
$$

The model

- Gibbs measure in $\Lambda \Subset \mathbb{Z}^{d}$ with boundary condition $\eta \in \Omega$:

$$
\mu_{\Lambda ; \beta, J}^{\eta}(\sigma)= \begin{cases}\frac{1}{\mathcal{Z}_{\Lambda ; \beta, J}^{n}} e^{-\beta \mathcal{H}_{\Lambda ; j}(\sigma)} & \text { if } \sigma_{i}=\eta_{i} \forall i \notin \Lambda \\ 0 & \text { otherwise }\end{cases}
$$

- Infinite-volume Gibbs measure: any probability measure μ on Ω s.t.

$$
\mu\left(\cdot \mid \sigma_{i}=\eta_{i} \forall i \notin \Lambda\right)=\mu_{\Lambda ; \beta, J}^{\eta}(\cdot)
$$

for all $\Lambda \Subset \mathbb{Z}^{d}$ and μ-a.e. $\eta \in \Omega$.

Some facts about the homogeneous $[J=1]$ model

Phase transition

For all $d \geq 2$, there exists $\beta_{\mathrm{c}}=\beta_{\mathrm{c}}(d) \in(0, \infty)$ s.t.

- for all $\beta<\beta_{c}$, there is a unique infinite-volume Gibbs measure
- for all $\beta>\beta_{\mathrm{c}}$, there exist distinct infinite-volume Gibbs measures $\mu_{\beta}^{1}, \ldots, \mu_{\beta}^{q}$ displaying long-range order: $\inf _{i \in \mathbb{Z}^{d}} \mu_{\beta}^{k}\left(\sigma_{0}=\sigma_{i}\right)>\frac{1}{q}$

Some facts about the homogeneous $[J=1]$ model

Phase transition

For all $d \geq 2$, there exists $\beta_{\mathrm{c}}=\beta_{\mathrm{c}}(d) \in(0, \infty)$ s.t.

- for all $\beta<\beta_{\mathrm{c}}$, there is a unique infinite-volume Gibbs measure
- for all $\beta>\beta_{\mathrm{c}}$, there exist distinct infinite-volume Gibbs measures $\mu_{\beta}^{1}, \ldots, \mu_{\beta}^{q}$ displaying long-range order: $\inf _{i \in \mathbb{Z}^{d}} \mu_{\beta}^{k}\left(\sigma_{0}=\sigma_{i}\right)>\frac{1}{q}$

From now on, we fix some $\beta<\beta_{c}$ and denote by μ the unique infinite-volume Gibbs measure

Some facts about the homogeneous $[J=1]$ model

Exponential decay of correlations

$$
\left|\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)-\frac{1}{q}\right|
$$

Some facts about the homogeneous $[J=1]$ model

Exponential decay of correlations

$$
\xi=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)-\frac{1}{q}\right|>0
$$

[Duminil-Copin, Raoufi, Tassion '17]
ξ is the inverse correlation length (in the \mathbf{e}_{1} direction)

Some facts about the homogeneous $[J=1]$ model

Exponential decay of correlations

$$
\xi=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)-\frac{1}{q}\right|>0
$$

[Duminil-Copin, Raoufi, Tassion '17]
ξ is the inverse correlation length (in the \mathbf{e}_{1} direction)

Ornstein-Zernike asymptotics

There exists $C=C(\beta)$ such that, as $n \rightarrow \infty$,

$$
\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)=\frac{1}{q}+\frac{C}{n^{(d-1) / 2}} e^{-\xi n}(1+o(1))
$$

[Campanino, loffe, V. '08]

Effect of the defect line on the correlation length

Impact of the defect line: basic question

$$
J=3
$$

Impact of the defect line: basic question

Fix $\beta<\boldsymbol{\beta}_{\mathrm{c}}$; let $\boldsymbol{J} \geq \mathbf{0}$ and denote by μ, the unique infinite-volume Gibbs measure.

Longitudinal inverse correlation length:

$$
\xi(J)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mu_{J}\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)-\frac{1}{q}\right|
$$

(exists by FKG + subadditivity)

Impact of the defect line: basic question

Fix $\boldsymbol{\beta}<\boldsymbol{\beta}_{\mathrm{c}}$; let $\boldsymbol{J} \geq \mathbf{0}$ and denote by μ, the unique infinite-volume Gibbs measure.
Longitudinal inverse correlation length:

$$
\xi(J)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mu_{J}\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)-\frac{1}{q}\right|
$$

(exists by FKG + subadditivity)

Main question

How does $\xi(J)$ vary as I grows from 0 to $+\infty$?

Impact of the defect line: basic question

Fix $\boldsymbol{\beta}<\boldsymbol{\beta}_{\mathrm{c}}$; let $\boldsymbol{J} \geq \mathbf{0}$ and denote by $\mu_{\text {j }}$ the unique infinite-volume Gibbs measure.

Longitudinal inverse correlation length:

$$
\xi(J)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mu_{\mu}\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)-\frac{1}{q}\right|
$$

(exists by FKG + subadditivity)

Main question

How does $\xi(J)$ vary as J grows from 0 to $+\infty$?

This question was first addressed, using exact computations in the two-dimensional Ising model in [McCoy, Perk '80]. There were many follow-ups (same model, various settings, exact computations).

We consider the problem for general Potts models, in any dimension $d \geq 2$.

Impact of the defect line: main results

Basic properties

Theorem (Ott, V. ' ${ }^{17 \text {) }}$

- J $\mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing
- $\xi(J)=\xi(1) \equiv \xi$ for all $J \leq 1$
- $\xi(J) \sim e^{-2 \beta J}$ as $J \rightarrow \infty$

Impact of the defect line: main results

Basic properties

Theorem (Ott, V. ' ${ }^{17 \text {) }}$

- J $\mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing
- $\xi(J)=\xi(1) \equiv \xi$ for all $J \leq 1$
- $\xi(J) \sim e^{-2 \beta J}$ as $J \rightarrow \infty$

Impact of the defect line: main results

Basic properties

Theorem (Ott, V. ' ${ }^{17 \text {) }}$

- J $\mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing
- $\xi(J)=\xi(1) \equiv \xi$ for all $J \leq 1$
- $\xi(J) \sim e^{-2 \beta J}$ as $J \rightarrow \infty$

Impact of the defect line: main results

Basic properties

Theorem (Ott, V. '17)

- J $\mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing
- $\xi(J)=\xi(1) \equiv \xi$ for all $J \leq 1$
- $\xi(J) \sim e^{-2 \beta J}$ as $J \rightarrow \infty$

In particular, there exists $J_{c} \in[1, \infty)$ such that

$$
\xi(J)=\xi \text { for all } J \leq J_{\mathrm{c}} \quad \text { and } \quad \xi(J)<\xi \text { for all } J>J_{\mathrm{c}}
$$

Impact of the defect line: main results

Typical graph

Impact of the defect line: main results

Typical graph

Actually: corresponds to the exact result for $2 d$ Ising from [McCoy, Perk '80]

Impact of the defect line: main results

Typical graph

Actually: corresponds to the exact result for $2 d$ Ising from [McCoy, Perk '80]

Impact of the defect line: main results

Theorem (Ott, V. '17)

1. $J_{c}=1$ when $d=2$ or 3 , but $J_{c}>1$ when $d \geq 4$
2. $J \mapsto \xi(J)$ is strictly decreasing and real-analytic when $J>J_{c}$
3. There exist constants $c_{2}^{ \pm}, c_{3}^{ \pm}>0$ such that, as $J \downarrow J_{c}$,

$$
\begin{array}{ll}
c_{2}^{-}\left(J-J_{\mathrm{c}}\right)^{2} \leq \xi\left(J_{\mathrm{c}}\right)-\xi(J) \leq c_{2}^{+}\left(J-J_{\mathrm{c}}\right)^{2} & (d=2) \\
e^{-c_{3}^{-} /\left(J-J_{\mathrm{c}}\right)} \leq \xi\left(J_{\mathrm{c}}\right)-\xi(J) \leq e^{-c_{3}^{+} /\left(J-J_{\mathrm{c}}\right)} & (d=3)
\end{array}
$$

4. For any $J>J_{c}$, there exists $C=C(J, \beta)$ such that

$$
\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)=\frac{1}{q}+C e^{-\xi(J) n}(1+o(1))
$$

Impact of the defect line: main results

Theorem (Ott, V. '17)

1. $J_{c}=1$ when $d=2$ or 3 , but $J_{c}>1$ when $d \geq 4$
2. $J \mapsto \xi(J)$ is strictly decreasing and real-analytic when $J>J_{c}$
3. There exist constants $c_{2}^{ \pm}, c_{3}^{ \pm}>0$ such that, as J $\downarrow J_{c}$,

$$
\begin{array}{ll}
c_{2}^{-}\left(J-J_{c}\right)^{2} \leq \xi\left(J_{c}\right)-\xi(J) \leq c_{2}^{+}\left(J-J_{c}\right)^{2} & (d=2) \\
e^{-c_{3}^{-} /\left(J-J_{c}\right)} \leq \xi\left(J_{c}\right)-\xi(J) \leq e^{-c_{3}^{+} /\left(J-J_{c}\right)} & (d=3)
\end{array}
$$

4. For any $J>J_{c}$, there exists $C=C(J, \beta)$ such that

$$
\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)=\frac{1}{q}+C e^{-\xi(J) n}(1+o(1))
$$

Impact of the defect line: main results

Theorem (Ott, V. '17)

1. $J_{c}=1$ when $d=2$ or 3 , but $J_{c}>1$ when $d \geq 4$
2. $J \mapsto \xi(J)$ is strictly decreasing and real-analytic when $J>J_{c}$
3. There exist constants $c_{2}^{ \pm}, c_{3}^{ \pm}>0$ such that, as $J \downarrow J_{c}$,

$$
\begin{array}{ll}
c_{2}^{-}\left(J-J_{c}\right)^{2} \leq \xi\left(J_{c}\right)-\xi(J) \leq c_{2}^{+}\left(J-J_{c}\right)^{2} & (d=2) \\
e^{-c_{3}^{-} /\left(J-J_{c}\right)} \leq \xi\left(J_{c}\right)-\xi(J) \leq e^{-c_{3}^{+} /\left(J-J_{c}\right)} & (d=3)
\end{array}
$$

4. For any $J>J_{c}$, there exists $C=C(J, \beta)$ such that

$$
\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)=\frac{1}{q}+C e^{-\xi(J) n}(1+o(1))
$$

Impact of the defect line: main results

Theorem (Ott, V. '17)

1. $J_{c}=1$ when $d=2$ or 3 , but $J_{c}>1$ when $d \geq 4$
2. $J \mapsto \xi(J)$ is strictly decreasing and real-analytic when $J>J_{c}$
3. There exist constants $c_{2}^{ \pm}, c_{3}^{ \pm}>0$ such that, as $J \downarrow J_{c}$,

$$
\begin{array}{ll}
c_{2}^{-}\left(J-J_{\mathrm{c}}\right)^{2} \leq \xi\left(J_{\mathrm{c}}\right)-\xi(J) \leq c_{2}^{+}\left(J-J_{\mathrm{c}}\right)^{2} & (d=2) \\
e^{-c_{3}^{-} /\left(J-J_{\mathrm{c}}\right)} \leq \xi\left(J_{\mathrm{c}}\right)-\xi(J) \leq e^{-c_{3}^{+} /\left(J-J_{\mathrm{c}}\right)} & (d=3)
\end{array}
$$

4. For any $J>J_{c}$, there exists $C=C(J, \beta)$ such that

$$
\mu\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)=\frac{1}{q}+C e^{-\xi()) n}(1+o(1))
$$

Reformulation as FK percolation

Reformulation as FK percolation

The proof relies on a reformulation in terms of FK percolation.

- Let $p, p^{\prime} \in(0,1), q \in[1, \infty)$. Set $x=p /(1-p)$ and $x^{\prime}=p^{\prime} /\left(1-p^{\prime}\right)$.

Reformulation as FK percolation

The proof relies on a reformulation in terms of FK percolation.

- Let $p, p^{\prime} \in(0,1), q \in[1, \infty)$. Set $x=p /(1-p)$ and $x^{\prime}=p^{\prime} /\left(1-p^{\prime}\right)$.
- Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^{d}$.

Reformulation as FK percolation

The proof relies on a reformulation in terms of $\mathbf{F K}$ percolation.

- Let $p, p^{\prime} \in(0,1), q \in[1, \infty)$. Set $x=p /(1-p)$ and $x^{\prime}=p^{\prime} /\left(1-p^{\prime}\right)$.
- Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^{d}$.
- Write $|\omega|=\#$ of edges in ω and $O_{\mathcal{L}}(\omega)=\#$ of those edges lying on \mathcal{L}.

Reformulation as FK percolation

The proof relies on a reformulation in terms of FK percolation.

- Let $p, p^{\prime} \in(0,1), q \in[1, \infty)$. Set $x=p /(1-p)$ and $x^{\prime}=p^{\prime} /\left(1-p^{\prime}\right)$.
- Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^{d}$.
- Write $|\omega|=\#$ of edges in ω and $O_{\mathcal{L}}(\omega)=\#$ of those edges lying on \mathcal{L}.
- We associate to ω the probability

$$
\nu_{x, x^{\prime}, q}^{M}(\omega) \propto x^{|\omega|}\left(\frac{x^{\prime}}{x}\right)^{o_{\mathcal{L}}(\omega)} q^{\mathcal{N}(\omega)}
$$

where $\mathcal{N}(\omega)$ denotes the number of connected components (including isolated vertices).

Reformulation as FK percolation

The proof relies on a reformulation in terms of $\mathbf{F K}$ percolation.

- Let $p, p^{\prime} \in(0,1), q \in[1, \infty)$. Set $x=p /(1-p)$ and $x^{\prime}=p^{\prime} /\left(1-p^{\prime}\right)$.
- Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^{d}$.
- Write $|\omega|=\#$ of edges in ω and $O_{\mathcal{L}}(\omega)=\#$ of those edges lying on \mathcal{L}.
- We associate to ω the probability

$$
\nu_{x, x^{\prime}, q}^{M}(\omega) \propto x^{|\omega|}\left(\frac{x^{\prime}}{x}\right)^{o_{\mathcal{L}}(\omega)} q^{\mathcal{N}(\omega)}
$$

where $\mathcal{N}(\omega)$ denotes the number of connected components (including isolated vertices).

- The weak limit as $M \rightarrow \infty$ exists and is denoted simply $\nu_{x^{\prime}}$ (p and q being kept fixed).

Reformulation as FK percolation

Set $p=1-e^{-2 \beta}$ and $p^{\prime}=1-e^{-2 \beta \prime}$.
The standard relation between FK percolation and the q-state Potts model implies that

$$
\mu_{\rho}\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)=\frac{1}{q}+\frac{q-1}{q} \nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)
$$

and thus, writing $\xi\left(x^{\prime}\right) \equiv \xi\left(J\left(x^{\prime}\right)\right)$,

$$
\xi\left(x^{\prime}\right)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)
$$

Reformulation as FK percolation

Set $p=1-e^{-2 \beta}$ and $p^{\prime}=1-e^{-2 \beta J}$.
The standard relation between FK percolation and the q-state Potts model implies that

$$
\mu_{\jmath}\left(\sigma_{0}=\sigma_{n \mathbf{e}_{1}}\right)=\frac{1}{q}+\frac{q-1}{q} \nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)
$$

and thus, writing $\xi\left(x^{\prime}\right) \equiv \xi\left(J\left(x^{\prime}\right)\right)$,

$$
\xi\left(x^{\prime}\right)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)
$$

The analysis of $\xi\left(x^{\prime}\right)$ in the case $q=1$ was done in [Friedli, Ioffe, V. '13]
The extension to any $q \geq 1$ is made difficult by the lack of independence and of useful consequences, such as the BK inequality, which have to be substituted by suitable constructions exploiting exponential mixing properties.

Interface pinning in the $2 d$ Potts model

Pinning in the subcritical Potts model on \mathbb{Z}^{2}

On \mathbb{Z}^{2}, the self-duality of $F K$ percolation allows one to reformulate some of the results in terms of the properties of the interface in the $2 d$ Potts model below its critical temperature.

Pinning in the subcritical Potts model on \mathbb{Z}^{2}

2d Potts model with Dobrushin boundary condition

Only nearest-neighbor spins interact and the coupling constants are all equal to 1 , except for those represented in purple, the value of which is $J \geq 0$. We assume that $\beta>\beta_{c}$.

Pinning in the subcritical Potts model on \mathbb{Z}^{2}

2d Potts model with Dobrushin boundary condition

| 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 3 | 1 |
| 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 1 | 1 |
| 1 | 2 | 1 | 4 | 2 | 2 | 2 | 3 | 1 | 4 | 4 | 4 | 1 |$|$

Pinning in the subcritical Potts model on \mathbb{Z}^{2}

2d Potts model with Dobrushin boundary condition

The interface is the connected set of "frustrated" bonds induced by the boundary condition. Weakly converges to Brownian bridge under diffusive scaling when J = 1. [Campanino, loffe, V. '08]

Pinning in the subcritical Potts model on \mathbb{Z}^{2}

Theorem (Ott, V. ' ${ }^{17 \text {) }}$

The interface localizes (converges to a horizontal line under diffusive scaling) for all J <1.

$J=1$

$$
J=\frac{1}{2}
$$

Some historical remarks

In 1980-1981, Douglas Abraham published two papers

PHYSICAL REVIEW
LETTERS
Volume 44 MAY 1980
Solvable Model with a Roughening Transition for a Planar Ising Ferromagnet
D. B. Abraham ${ }^{\text {(a) }}$

J. Phys. A: Math. Gen. 14 (1981) L369-L372. Printed in Great Britain
LETTER TO THE EDITOR
Binding of a domain wall in the planar Ising ferromagnet
D B Abraham

Some historical remarks

In 1980-1981, Douglas Abraham published two papers

PHYSICAL REVIEW LETTERS		
Vaman 4	5 May 1980	Noman
Solvable Model with a Roughening Transition for a Planar Ising Ferromagnet		

J. Phys. A: Math. Gen. 14 (1981) L369-L372. Printed in Great Britain

LETTER TO THE EDITOR

Binding of a domain wall in the planar Ising ferromagnet
D B Abraham
that immediately triggered an intense activity (partial list from 1981!):

Some historical remarks

- Abraham's papers analyzed the interface pinning (and wetting) problem in the 2d Ising model, using exact computations.
- The subsequent papers dealt with effective (SOS/random walk) versions of the same problem, with two main goals: getting a better understanding of the mechanisms at play, and analyzing various extensions (higher-dimensional spaces, higher-dimensional interfaces, disordered pinning potential, etc.).
- This intense activity continues to date. See Giacomin's book Random Polymer Models for a recent account of the developments from the probabilistic point of view.

Our goal was to show that the current methods of rigorous statistical mechanics finally make it possible to import back some of these results to actual lattice spin systems, for which exact computations are not available (and to provide additional information even when they are available).

Link to RW pinning problem

Link to RW pinning problem - upper bound

- Let $\lambda=\log \left(x^{\prime} / x\right)$. Clearly:

$$
\xi-\xi_{x^{\prime}}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\nu\left[e^{\lambda 0} \mathcal{L} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]}{\nu\left[e^{\lambda 0} \mathcal{L}\right]}
$$

Link to RW pinning problem - upper bound

- Let $\lambda=\log \left(x^{\prime} / x\right)$. Clearly:

$$
\xi-\xi_{x^{\prime}}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\nu\left[e^{\lambda 0_{\mathcal{L}}} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]}{\nu\left[e^{\lambda 0_{\mathcal{L}}}\right]}
$$

- Using FKG, one can show that

$$
\frac{\nu\left[e^{\lambda 0} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]}{\nu\left[e^{\lambda 0} \mathcal{L}\right]} \leq \nu\left[e^{\lambda\left|\mathbf{c}_{0} \cap \mathcal{L}\right|} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]
$$

Link to RW pinning problem - upper bound

- Let $\lambda=\log \left(x^{\prime} / x\right)$. Clearly:

$$
\xi-\xi_{x^{\prime}}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\nu\left[e^{\lambda 0_{\mathcal{L}}} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]}{\nu\left[e^{\lambda 0_{\mathcal{L}}}\right]}
$$

- Using FKG, one can show that

$$
\frac{\nu\left[e^{\lambda 0_{\mathcal{L}}} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]}{\nu\left[e^{\lambda 0_{\mathcal{L}}}\right]} \leq \nu\left[e^{\lambda\left|\mathbf{c}_{0} \cap \mathcal{L}\right|} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]
$$

- This is formally analogous to free energy of RW pinning problem:

$$
f_{n}(\epsilon)=\mathbb{E}\left[e^{\epsilon|\mathbb{X} \cap \mathcal{L}|} \mid X_{n}=0\right]
$$

where the expectation is w.r.t. (\mathbb{Z}^{d-1}-valued) random walk path $\mathbb{X}=\left(X_{0}=0, X_{1} \ldots, X_{n}\right)$ and $\epsilon \in \mathbb{R}_{+}$is the energetical reward (pinning parameter)

Link to RW pinning problem - upper bound

Link to RW pinning problem - upper bound

The analogy is made made more precise using an effective random walk representation for \mathbf{C}_{0}. This allows to use (extensions of) the arguments developed for RW pinning.

Link to RW pinning problem - Effective RW representation

Let $p<p_{\mathrm{c}}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu\left(\cdot \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)$-probability, \mathbf{C}_{0} admits the following decomposition:

Link to RW pinning problem - Effective RW representation

Let $p<p_{\mathrm{c}}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu\left(\cdot \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)$-probability, \mathbf{C}_{0} admits the following decomposition:

Link to RW pinning problem - Effective RW representation

Let $p<p_{\mathrm{c}}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu\left(\cdot \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)$-probability, \mathbf{C}_{0} admits the following decomposition:

where $\left(Y_{k}\right)_{k \geq 1}$ is a random walk on \mathbb{Z}^{d} with law P, and Y^{L}, Y^{R} are independent random variables with exponential tails.

Link to RW pinning problem - Effective RW representation

Let $p<p_{\mathrm{c}}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu\left(\cdot \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)$-probability, \mathbf{C}_{0} admits the following decomposition:

where $\left(Y_{k}\right)_{k \geq 1}$ is a random walk on \mathbb{Z}^{d} with law P, and Y^{L}, Y^{R} are independent random variables with exponential tails.

This relies on the "RW" representation in [Campanino, loffe, v. '08]; independence of the increments is achieved by randomly aggregating the increments of the latter process in a suitable way.

Link to RW pinning problem - Effective RW representation

Let $p<p_{\mathrm{c}}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu\left(\cdot \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)$-probability, \mathbf{C}_{0} admits the following decomposition:

Write $Y_{k}=\left(Y_{k}^{\|}, Y_{k}^{\perp}\right) \in \mathbb{Z} \times \mathbb{Z}^{d-1}$.
Properties of the effective random walk Y :

- $P\left(Y_{1}^{\|} \geq 1\right)=1$;
- $\mathrm{P}\left(\left\|Y_{1}\right\|>t\right) \leq e^{-\nu t}$ for some $\nu=\nu(p)>0$;
- for any $z^{\perp} \in \mathbb{Z}^{d-1}, \mathrm{P}\left(Y_{1}^{\perp}=z^{\perp}\right)=\mathrm{P}\left(Y_{1}^{\perp}=-z^{\perp}\right)$.

Link to RW pinning problem - Effective RW representation

Remember that

$$
\xi-\xi_{x^{\prime}} \leq \lim _{n \rightarrow \infty} \frac{1}{n} \log \nu\left[e^{\lambda\left|\mathbf{c}_{0} \cap \mathcal{L}\right|} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right]
$$

We have basically reduced the problem (well, the upper bound) to RW pinning!

Link to RW pinning problem - Lower bound

Direct analogy with RW pinning only holds for the upper bound.
Problems with lower bound:

- interaction of \mathbf{C}_{0} with the other clusters
- interaction between the other clusters and the line \mathcal{L}
(\rightsquigarrow effective interaction between \mathbf{C}_{0} and \mathcal{L} is not purely attractive)
\rightsquigarrow requires a different approach...

Link to RW pinning problem - Lower bound

We will introduce a suitable event $\mathcal{M}_{\delta} \subset\left\{0 \leftrightarrow n \mathbf{e}_{1}\right\}$ and write

$$
\exp \left\{\left(\xi-\xi_{x^{\prime}}\right) n\right\} \quad \frac{\nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}
$$

Link to RW pinning problem - Lower bound

We will introduce a suitable event $\mathcal{M}_{\delta} \subset\left\{0 \leftrightarrow n \mathbf{e}_{1}\right\}$ and write

$$
\begin{aligned}
\exp \left\{\left(\xi-\xi_{x^{\prime}}\right) n\right\} & \asymp \frac{\nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)} \\
& \geq \frac{\nu_{x^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}
\end{aligned}
$$

Link to RW pinning problem - Lower bound

We will introduce a suitable event $\mathcal{M}_{\delta} \subset\left\{0 \leftrightarrow n \mathbf{e}_{1}\right\}$ and write

$$
\begin{aligned}
\exp \left\{\left(\xi-\xi_{x^{\prime}}\right) n\right\} & \asymp \frac{\nu_{x^{\prime}}\left(0 \leftrightarrow n \mathbf{e}_{1}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)} \\
& \geq \frac{\nu_{x^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\nu\left(0 \leftrightarrow n \mathbf{e}_{1}\right)} \\
& =\underbrace{\frac{\nu_{x^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\nu\left(\mathcal{M}_{\delta}\right)}}_{\text {"Energy" }} \underbrace{\nu\left(\mathcal{M}_{\delta} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)}_{\text {"Entropy" }}
\end{aligned}
$$

Link to RW pinning problem - Lower bound

We choose for $\mathcal{M}_{\delta} \subset\left\{0 \leftrightarrow n \mathbf{e}_{1}\right\}$ the event
There exists a self-avoiding path $\gamma \subset C_{0, n \mathbf{e}_{1}}$ possessing at least δn cone-points on \mathcal{L}

Link to RW pinning problem - Lower bound

We choose for $\mathcal{M}_{\delta} \subset\left\{0 \leftrightarrow n \mathbf{e}_{1}\right\}$ the event

> There exists a self-avoiding path $\gamma \subset C_{0, n \mathbf{e}_{1}}$ possessing at least δ cone-points on \mathcal{L}

The entropy term $\nu\left(\mathcal{M}_{\delta} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)$ reduces to an estimate of the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n \mathbf{e}_{1}$.

Link to RW pinning problem - Lower bound

We choose for $\mathcal{M}_{\delta} \subset\left\{0 \leftrightarrow n \mathbf{e}_{1}\right\}$ the event

There exists a self-avoiding path $\gamma \subset C_{0, n \mathbf{e}_{1}}$ possessing at least δn cone-points on \mathcal{L}

The entropy term $\nu\left(\mathcal{M}_{\delta} \mid 0 \leftrightarrow n \mathbf{e}_{1}\right)$ reduces to an estimate of the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n \mathbf{e}_{1}$.

Let's see how the energy bound is established...

Link to RW pinning problem - Lower bound

We use the following Russo-formula-type inequality:

Lemma

Let A be an increasing event and take $x^{\prime}>x$. Then:

$$
\frac{\nu_{x^{\prime}}(A)}{\nu(A)} \geq \exp \left(\int_{x}^{x^{\prime}} \frac{1}{s(1+s)} \sum_{e \in \mathcal{L}_{[0, n]}} \nu_{s}\left(e \in \operatorname{Piv}_{A} \mid A\right) \mathrm{d} s\right)
$$

Link to RW pinning problem - Lower bound

We use the following Russo-formula-type inequality:

Lemma

Let A be an increasing event and take $x^{\prime}>x$. Then:

$$
\frac{\nu_{x^{\prime}}(A)}{\nu(A)} \geq \exp \left(\int_{x}^{x^{\prime}} \frac{1}{s(1+s)} \sum_{e \in \mathcal{L}_{[0, n]}} \nu_{s}\left(e \in \operatorname{Piv}_{A} \mid A\right) \mathrm{d} s\right)
$$

Applying it with $A=\mathcal{M}_{\delta}$ reduces the problem to showing: $\exists \rho_{1}>0$ s.t.

$$
\sum_{e \in \mathcal{L}_{[0, n]}} \nu_{s}\left(e \in \operatorname{Piv}_{\mathcal{M}_{\delta}} \mid \mathcal{M}_{\delta}\right) \geq \rho_{1} \delta n
$$

which follows from exponential decay under ν.

Open problems and extensions

Open problems, extensions

Open problems

- Behavior of $\xi(J)$ in the neighborhood of J_{c} when $d \geq 4$.
- Sharp asymptotics of 2-point function when $J \leq J_{c}$ (and $J \neq 1$).
- Scaling limit of the interface in the $2 d$ model when $J>J_{c}=1$.

Open problems, extensions

Open problems

- Behavior of $\xi(J)$ in the neighborhood of J_{c} when $d \geq 4$.
- Sharp asymptotics of 2-point function when $J \leq J_{c}$ (and $J \neq 1$).
- Scaling limit of the interface in the $2 d$ model when $J>J_{c}=1$.

Some extensions (work in progress)

- Defect located along the boundary of the system (\rightsquigarrow wetting when $d=2$).
- Defect of dimension $d^{\prime} \in(1, d)$: long-range order along the defect is possible even when the bulk is disordered.
- Quenched random (ferromagnetic) coupling constants along the defect.

Thank you for your attention!

