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The Potts model & basic properties



The model

q-state Potts model on Zd

I The line: L = {ke1 ∈ Zd : k ∈ Z}

I Configurations:

Ω =
{
σ = (σi)i∈Zd : σi ∈ {1, . . . ,q}

}
I Coupling constants:

Jij =


1 if i ∼ j, {i, j} 6⊂ L
J if i ∼ j, {i, j} ⊂ L
0 otherwise

I Energy of σ ∈ Ω in the box Λ b Zd:

HΛ;J(σ) =
∑

{i,j}∩Λ 6=∅

Jij 1{σi 6=σj}

1/26



The model

I Gibbs measure in Λ b Zd with boundary condition η ∈ Ω:

µηΛ;β,J(σ) =


1

Zη
Λ;β,J

e−βHΛ;J(σ) if σi = ηi ∀i 6∈ Λ

0 otherwise

I Infinite-volume Gibbs measure: any probability measure µ on Ω s.t.

µ( · |σi = ηi ∀i 6∈ Λ) = µηΛ;β,J( · )

for all Λ b Zd and µ-a.e. η ∈ Ω.
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Some facts about the homogeneous [J = 1] model

Phase transition

For all d ≥ 2, there exists βc = βc(d) ∈ (0,∞) s.t.

I for all β < βc, there is a unique infinite-volume
Gibbs measure

I for all β > βc, there exist distinct infinite-volume
Gibbs measures µ1β , . . . , µqβ displaying long-range
order: inf i∈Zd µkβ(σ0 = σi) >

1
q

From now on, we fix some β < βc and denote by µ the unique
infinite-volume Gibbs measure
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Some facts about the homogeneous [J = 1] model

Exponential decay of correlations

ξ = − lim
n→∞

1
n log

∣∣∣µ(σ0 = σne1)−
1
q

∣∣∣ > 0

[Duminil-Copin, Raoufi, Tassion ’17]

ξ is the inverse correlation length (in the e1 direction)

Ornstein–Zernike asymptotics

There exists C = C(β) such that, as n→∞,

µ(σ0 = σne1) =
1
q +

C
n(d−1)/2 e

−ξn (1 + o(1))

[Campanino, Ioffe, V. ’08]
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Effect of the defect line on the
correlation length



Impact of the defect line: basic question

J = 1 J = 3
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Impact of the defect line: basic question

Fix β < βc ; let J ≥ 0 and denote by µJ the unique infinite-volume Gibbs
measure.

Longitudinal inverse correlation length:

ξ(J) = − lim
n→∞

1
n log

∣∣∣µJ(σ0 = σne1)−
1
q

∣∣∣
(exists by FKG + subadditivity)

Main question
How does ξ(J) vary as J grows from 0 to +∞?

This question was first addressed, using exact computations in the
two-dimensional Ising model in [McCoy, Perk ’80]. There were many
follow-ups (same model, various settings, exact computations).

We consider the problem for general Potts models, in any dimension d ≥ 2.
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Impact of the defect line: main results

Basic properties

Theorem (Ott, V. ’17)

I J 7→ ξ(J) is positive, Lipschitz-continuous and nonincreasing
I ξ(J) = ξ(1) ≡ ξ for all J ≤ 1
I ξ(J) ∼ e−2βJ as J→∞

In particular, there exists Jc ∈ [1,∞) such that

ξ(J) = ξ for all J ≤ Jc and ξ(J) < ξ for all J > Jc
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Impact of the defect line: main results

Typical graph

ξ

JJc

ξ(J)

Actually: corresponds to the exact result for 2d Ising from [McCoy, Perk ’80]
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Impact of the defect line: main results

Theorem (Ott, V. ’17)

1. Jc = 1 when d = 2 or 3, but Jc > 1 when d ≥ 4
2. J 7→ ξ(J) is strictly decreasing and real-analytic when J > Jc
3. There exist constants c±2 , c

±
3 > 0 such that, as J ↓ Jc,

c−2 (J− Jc)2 ≤ ξ(Jc)− ξ(J) ≤ c+
2 (J− Jc)2 (d = 2)

e−c
−
3 /(J−Jc) ≤ ξ(Jc)− ξ(J) ≤ e−c

+
3 /(J−Jc) (d = 3)

4. For any J > Jc, there exists C = C(J, β) such that

µ(σ0 = σne1) =
1
q + C e−ξ(J)n (1 + o(1))
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Reformulation as FK percolation



Reformulation as FK percolation

The proof relies on a reformulation in terms of FK percolation.

I Let p,p′ ∈ (0, 1), q ∈ [1,∞). Set x = p/(1− p) and x′ = p′/(1− p′).

I Let ω be a collection of n.n. edges of {−M, . . . ,M}d.

I Write |ω| = # of edges in ω and OL(ω) = # of those edges lying on L.

I We associate to ω the probability

νMx,x′,q(ω) ∝ x|ω|
(x′
x
)OL(ω) qN (ω)

where N (ω) denotes the number of connected components (including
isolated vertices).

I The weak limit as M→∞ exists and is denoted simply νx′ (p and q being
kept fixed).
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Reformulation as FK percolation

Set p = 1− e−2β and p′ = 1− e−2βJ.

The standard relation between FK percolation and the q-state Potts model
implies that

µJ(σ0 = σne1) =
1
q +

q− 1
q νx′(0↔ ne1)

and thus, writing ξ(x′) ≡ ξ(J(x′)),

ξ(x′) = − lim
n→∞

1
n log νx

′(0↔ ne1)

The analysis of ξ(x′) in the case q = 1 was done in [Friedli, Ioffe, V. ’13]

The extension to any q ≥ 1 is made difficult by the lack of independence
and of useful consequences, such as the BK inequality, which have to be
substituted by suitable constructions exploiting exponential mixing
properties.
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Interface pinning in the 2d Potts model



Pinning in the subcritical Potts model on Z2

On Z2, the self-duality of FK percolation allows one to reformulate some of
the results in terms of the properties of the interface in the 2d Potts model
below its critical temperature.
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Pinning in the subcritical Potts model on Z2

2d Potts model with Dobrushin boundary condition
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Only nearest-neighbor spins interact and the coupling constants are all
equal to 1, except for those represented in purple, the value of which is
J ≥ 0. We assume that β > βc . 13/26



Pinning in the subcritical Potts model on Z2

2d Potts model with Dobrushin boundary condition
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The interface is the connected set of “frustrated” bonds induced by the
boundary condition. Weakly converges to Brownian bridge under diffusive
scaling when J = 1.[Campanino, Ioffe, V. ’08] 13/26
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Pinning in the subcritical Potts model on Z2

Theorem (Ott, V. ’17)
The interface localizes (converges to a horizontal line under diffusive
scaling) for all J < 1.

J = 1 J = 1
2
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Some historical remarks

In 1980–1981, Douglas Abraham published two papers

that immediately triggered an intense activity (partial list from 1981!):
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Some historical remarks

I Abraham’s papers analyzed the interface pinning (and wetting)
problem in the 2d Ising model, using exact computations.

I The subsequent papers dealt with effective (SOS/random walk)
versions of the same problem, with two main goals: getting a better
understanding of the mechanisms at play, and analyzing various
extensions (higher-dimensional spaces, higher-dimensional interfaces,
disordered pinning potential, etc.).

I This intense activity continues to date. See Giacomin’s book Random
Polymer Models for a recent account of the developments from the
probabilistic point of view.

Our goal was to show that the current methods of rigorous statistical
mechanics finally make it possible to import back some of these results to
actual lattice spin systems, for which exact computations are not available
(and to provide additional information even when they are available).

16/26



Link to RW pinning problem



Link to RW pinning problem — upper bound

I Let λ = log (x′/x). Clearly:

ξ − ξx′ = lim
n→∞

1
n log

νx′(0↔ ne1)
ν(0↔ ne1)

= lim
n→∞

1
n log

ν
[
eλoL

∣∣ 0↔ ne1
]

ν
[
eλoL

]

I Using FKG, one can show that

ν
[
eλoL

∣∣ 0↔ ne1
]

ν
[
eλoL

] ≤ ν
[
eλ|C0∩L|

∣∣ 0↔ ne1
]

I This is formally analogous to free energy of RW pinning problem:

fn(ε) = E
[
eε|X∩L| | Xn = 0

]
where the expectation is w.r.t. (Zd−1-valued) random walk path
X = (X0 = 0, X1 . . . , Xn) and ε ∈ R+ is the energetical reward (pinning
parameter)
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Link to RW pinning problem — upper bound

0 ne1

0 n

The analogy is made made more precise using an effective random walk
representation for C0. This allows to use (extensions of) the arguments
developed for RW pinning.
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Link to RW pinning problem — Effective RW representation

Let p < pc and n ∈ N. Then, up to an event of exponentially small
ν(· | 0↔ ne1)-probability, C0 admits the following decomposition:

ne10

Y3

Y2
YR

Y4

Y1YL
ne10

{0↔ ne1} = {YL + Y1 + · · ·+ YN + YR = ne1},

where (Yk)k≥1 is a random walk on Zd with law P, and YL, YR are
independent random variables with exponential tails.

This relies on the “RW” representation in [Campanino, Ioffe, V. ’08];
independence of the increments is achieved by randomly aggregating the
increments of the latter process in a suitable way.
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Link to RW pinning problem — Effective RW representation

Let p < pc and n ∈ N. Then, up to an event of exponentially small
ν(· | 0↔ ne1)-probability, C0 admits the following decomposition:

Y3

Y2
YR

Y4

Y1YL
ne10

Write Yk = (Y‖k , Y
⊥
k ) ∈ Z× Zd−1.

Properties of the effective random walk Y:

I P(Y‖1 ≥ 1) = 1;
I P(‖Y1‖ > t) ≤ e−νt for some ν = ν(p) > 0;
I for any z⊥ ∈ Zd−1, P

(
Y⊥1 = z⊥

)
= P

(
Y⊥1 = −z⊥

)
.
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Link to RW pinning problem — Effective RW representation

Remember that

ξ − ξx′ ≤ lim
n→∞

1
n log ν

[
eλ|C0∩L|

∣∣ 0↔ ne1
]

We have basically reduced the problem (well, the upper bound) to RW
pinning!
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Link to RW pinning problem — Lower bound

Direct analogy with RW pinning only holds for the upper bound.

Problems with lower bound:

I interaction of C0 with the other clusters
I interaction between the other clusters and the line L

( effective interaction between C0 and L is not purely attractive)

 requires a different approach...
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Link to RW pinning problem — Lower bound

We will introduce a suitable eventMδ ⊂ {0↔ ne1} and write

exp{(ξ − ξx′)n} � νx′(0↔ ne1)
ν(0↔ ne1)

≥ νx′(Mδ)

ν(0↔ ne1)

=
νx′(Mδ)

ν(Mδ)︸ ︷︷ ︸
“Energy”

ν(Mδ | 0↔ ne1)︸ ︷︷ ︸
“Entropy”
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Link to RW pinning problem — Lower bound

We choose forMδ ⊂ {0↔ ne1} the event

There exists a self-avoiding path γ ⊂ C0,ne1
possessing at least δn cone-points on L

The entropy term ν(Mδ | 0↔ ne1) reduces to an estimate of the
probability that the effective random walk Y visits L at least δn times
before reaching ne1.

Let’s see how the energy bound is established...
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Link to RW pinning problem — Lower bound

We use the following Russo-formula-type inequality:

Lemma
Let A be an increasing event and take x′ > x. Then:

νx′(A)

ν(A)
≥ exp

(∫ x′

x

1
s(1 + s)

∑
e∈L[0,n]

νs(e ∈ PivA | A) ds
)
.

Applying it with A =Mδ reduces the problem to showing: ∃ρ1 > 0 s.t.∑
e∈L[0,n]

νs(e ∈ PivMδ |Mδ) ≥ ρ1δn

which follows from exponential decay under ν.
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Open problems and extensions



Open problems, extensions

Open problems

I Behavior of ξ(J) in the neighborhood of Jc when d ≥ 4.
I Sharp asymptotics of 2-point function when J ≤ Jc (and J 6= 1).
I Scaling limit of the interface in the 2d model when J > Jc = 1.

Some extensions (work in progress)

I Defect located along the boundary of the system ( wetting when
d = 2).

I Defect of dimension d′ ∈ (1,d): long-range order along the defect is
possible even when the bulk is disordered.

I Quenched random (ferromagnetic) coupling constants along the
defect.
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Thank you for your attention!
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