Potts model with a defect line

Yvan Velenik

joint work with Sébastien Ott

Université de Genève

The Potts model & basic properties

The model

q-state Potts model on \mathbb{Z}^d

- ▶ The line: $\mathcal{L} = \{k\mathbf{e}_1 \in \mathbb{Z}^d : k \in \mathbb{Z}\}$
- ► Configurations:

$$\Omega = \left\{ \sigma = (\sigma_i)_{i \in \mathbb{Z}^d} : \sigma_i \in \{1, \dots, q\} \right\}$$

Coupling constants:

$$J_{ij} = \begin{cases} 1 & \text{if } i \sim j, \{i, j\} \not\subset \mathcal{L} \\ J & \text{if } i \sim j, \{i, j\} \subset \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

• Energy of $\sigma \in \Omega$ in the box $\Lambda \Subset \mathbb{Z}^d$:

$$\mathcal{H}_{\Lambda;J}(\sigma) = \sum_{\{i,j\} \cap \Lambda
eq \emptyset} J_{ij} \mathbb{1}_{\{\sigma_i
eq \sigma_j\}}$$

• Gibbs measure in $\Lambda \Subset \mathbb{Z}^d$ with boundary condition $\eta \in \Omega$:

$$\mu_{\Lambda;\beta,j}^{\eta}(\sigma) = \begin{cases} \frac{1}{\mathbb{Z}_{\Lambda;\beta,j}^{\eta}} e^{-\beta \mathcal{H}_{\Lambda;j}(\sigma)} & \text{if } \sigma_i = \eta_i \ \forall i \notin \Lambda \\ 0 & \text{otherwise} \end{cases}$$

• Infinite-volume Gibbs measure: any probability measure μ on Ω s.t.

$$\mu(\,\cdot\,|\,\sigma_i=\eta_i\;\forall i\not\in\Lambda)=\mu^{\eta}_{\Lambda;\beta,J}(\,\cdot\,)$$

for all $\Lambda \Subset \mathbb{Z}^d$ and μ -a.e. $\eta \in \Omega$.

Some facts about the homogeneous [J = 1] model

Phase transition

For all $d \geq 2$, there exists $\beta_c = \beta_c(d) \in (0,\infty)$ s.t.

▶ for all β < β_c, there is a unique infinite-volume Gibbs measure

For all β > β_c, there exist distinct infinite-volume Gibbs measures μ¹_β,..., μ^q_β displaying long-range order: inf_{i∈Z^d} μ^k_β(σ₀ = σ_i) > ¹/_q

Some facts about the homogeneous [J = 1] model

Phase transition

For all $d\geq$ 2, there exists $eta_{ ext{c}}=eta_{ ext{c}}(d)\in(0,\infty)$ s.t.

▶ for all β < β_c, there is a unique infinite-volume Gibbs measure

For all β > β_c, there exist distinct infinite-volume Gibbs measures μ¹_β,..., μ^q_β displaying long-range order: inf_{i∈Z^d} μ^k_β(σ₀ = σ_i) > ¹_q

Exponential decay of correlations

$$\left|\mu(\sigma_0=\sigma_{n\mathbf{e}_1})-\frac{1}{q}\right|$$

Exponential decay of correlations

$$\xi = -\lim_{n \to \infty} \frac{1}{n} \log \left| \mu(\sigma_0 = \sigma_{n\mathbf{e}_1}) - \frac{1}{q} \right| > 0$$

[Duminil-Copin, Raoufi, Tassion '17]

 ξ is the inverse correlation length (in the **e**₁ direction)

Exponential decay of correlations

$$\xi = -\lim_{n \to \infty} \frac{1}{n} \log \left| \mu(\sigma_0 = \sigma_{n\mathbf{e}_1}) - \frac{1}{q} \right| > 0$$

[Duminil-Copin, Raoufi, Tassion '17]

 ξ is the inverse correlation length (in the **e**₁ direction)

Ornstein–Zernike asymptotics

There exists $C = C(\beta)$ such that, as $n \to \infty$,

$$\mu(\sigma_0 = \sigma_{n\mathbf{e}_1}) = \frac{1}{q} + \frac{C}{n^{(d-1)/2}} e^{-\xi n} (1 + o(1))$$

[Campanino, Ioffe, V. '08]

Effect of the defect line on the correlation length

Fix $\beta < \beta_c$; let $J \ge 0$ and denote by μ_J the unique infinite-volume Gibbs measure.

Longitudinal inverse correlation length:

$$\xi(J) = -\lim_{n \to \infty} \frac{1}{n} \log \left| \mu_J(\sigma_0 = \sigma_{n\mathbf{e}_1}) - \frac{1}{q} \right|$$

(exists by FKG + subadditivity)

Fix $\beta < \beta_c$; let $J \ge 0$ and denote by μ_J the unique infinite-volume Gibbs measure.

Longitudinal inverse correlation length:

$$\xi(J) = -\lim_{n \to \infty} \frac{1}{n} \log \left| \mu_J(\sigma_0 = \sigma_{n\mathbf{e}_1}) - \frac{1}{q} \right|$$

(exists by FKG + subadditivity)

Main question

How does $\xi(J)$ vary as J grows from 0 to $+\infty$?

Fix $\beta < \beta_c$; let $J \ge 0$ and denote by μ_J the unique infinite-volume Gibbs measure.

Longitudinal inverse correlation length:

$$\xi(J) = -\lim_{n \to \infty} \frac{1}{n} \log \left| \mu_J(\sigma_0 = \sigma_{n\mathbf{e}_1}) - \frac{1}{q} \right|$$

(exists by FKG + subadditivity)

Main question How does $\xi(J)$ vary as J grows from 0 to $+\infty$?

This question was first addressed, using **exact computations** in the **two-dimensional Ising model** in [McCoy, Perk '80]. There were many follow-ups (same model, various settings, exact computations).

We consider the problem for **general Potts models**, in **any dimension** $d \ge 2$.

Theorem (Ott, V. '17)

• $J \mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing

•
$$\xi(J) = \xi(1) \equiv \xi$$
 for all $J \leq 1$

•
$$\xi(J) \sim e^{-2\beta J}$$
 as $J \to \infty$

Theorem (Ott, V. '17)

- ▶ $J \mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing
- $\xi(J) = \xi(1) \equiv \xi$ for all $J \leq 1$

•
$$\xi(J) \sim e^{-2\beta J}$$
 as $J \to \infty$

Theorem (Ott, V. '17)

- ► $J \mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing
- $\xi(J) = \xi(1) \equiv \xi$ for all $J \leq 1$
- ▶ $\xi(J) \sim e^{-2\beta J}$ as $J \to \infty$

Theorem (Ott, V. '17)

► $J \mapsto \xi(J)$ is positive, Lipschitz-continuous and nonincreasing

•
$$\xi(J) = \xi(1) \equiv \xi$$
 for all $J \leq 1$

•
$$\xi(J) \sim e^{-2\beta J}$$
 as $J \to \infty$

In particular, there exists J _ c \in [1,\infty) such that

 $\xi(J) = \xi$ for all $J \le J_c$ and $\xi(J) < \xi$ for all $J > J_c$

Impact of the defect line: main results

Impact of the defect line: main results

Actually: corresponds to the exact result for 2d Ising from [McCoy, Perk '80]

Impact of the defect line: main results

Actually: corresponds to the exact result for 2d Ising from [McCoy, Perk '80]

- 1. $J_{\rm c}=1$ when d=2 or 3, but $J_{\rm c}>1$ when $d\geq4$
- 2. J $\mapsto \xi(J)$ is strictly decreasing and real-analytic when J $> J_{\rm c}$
- 3. There exist constants $c_2^\pm, c_3^\pm > 0$ such that, as $J \downarrow J_{\rm c},$

$$c_{2}^{-}(J - J_{c})^{2} \leq \xi(J_{c}) - \xi(J) \leq c_{2}^{+}(J - J_{c})^{2} \qquad (d = 2)$$

$$e^{-c_3^-/(J-J_c)} \le \xi(J_c) - \xi(J) \le e^{-c_3^+/(J-J_c)}$$
 (d = 3)

$$\mu(\sigma_0 = \sigma_{n\mathbf{e}_1}) = \frac{1}{q} + C e^{-\xi(I)n} (1 + o(1))$$

- 1. $J_{\rm c}=1$ when d=2 or 3, but $J_{\rm c}>1$ when $d\geq4$
- 2. J $\mapsto \xi(J)$ is strictly decreasing and real-analytic when J > J_c
- 3. There exist constants $c_2^\pm, c_3^\pm > 0$ such that, as $J \downarrow J_{\rm c},$

$$c_2^{-}(J - J_c)^2 \le \xi(J_c) - \xi(J) \le c_2^{+}(J - J_c)^2$$
 (d = 2)

$$e^{-c_3^-/(J-J_c)} \le \xi(J_c) - \xi(J) \le e^{-c_3^+/(J-J_c)}$$
 (d = 3)

$$\mu(\sigma_0 = \sigma_{n\mathbf{e}_1}) = \frac{1}{q} + C e^{-\xi(I)n} (1 + o(1))$$

- 1. $J_{\rm c}=1$ when d=2 or 3, but $J_{\rm c}>1$ when $d\geq4$
- 2. J $\mapsto \xi(J)$ is strictly decreasing and real-analytic when J $> J_{\rm c}$
- 3. There exist constants $c_2^\pm,c_3^\pm>0$ such that, as $J\downarrow J_{\rm c},$

$$\begin{aligned} c_2^-(J-J_c)^2 &\leq \xi(J_c) - \xi(J) \leq c_2^+(J-J_c)^2 & (d=2) \\ e^{-c_3^-/(J-J_c)} &\leq \xi(J_c) - \xi(J) \leq e^{-c_3^+/(J-J_c)} & (d=3) \end{aligned}$$

$$\mu(\sigma_0 = \sigma_{n\mathbf{e}_1}) = \frac{1}{q} + C e^{-\xi(I)n} (1 + o(1))$$

- 1. $J_{\rm c}=1$ when d=2 or 3, but $J_{\rm c}>1$ when $d\geq4$
- 2. J $\mapsto \xi(J)$ is strictly decreasing and real-analytic when J $> J_{\rm c}$
- 3. There exist constants $c_2^\pm, c_3^\pm > 0$ such that, as $J \downarrow J_{\rm c},$

$$c_{2}^{-}(J-J_{c})^{2} \leq \xi(J_{c}) - \xi(J) \leq c_{2}^{+}(J-J_{c})^{2}$$
 (d = 2)

$$e^{-c_3^-/(J-J_c)} \le \xi(J_c) - \xi(J) \le e^{-c_3^+/(J-J_c)}$$
 (d = 3)

$$\mu(\sigma_0 = \sigma_{ne_1}) = \frac{1}{q} + C e^{-\xi(l)n} (1 + o(1))$$

Reformulation as FK percolation

▶ Let
$$p, p' \in (0, 1)$$
, $q \in [1, \infty)$. Set $x = p/(1-p)$ and $x' = p'/(1-p')$.

▶ Let $p, p' \in (0, 1)$, $q \in [1, \infty)$. Set x = p/(1-p) and x' = p'/(1-p').

▶ Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^d$.

- ▶ Let $p, p' \in (0, 1)$, $q \in [1, \infty)$. Set x = p/(1-p) and x' = p'/(1-p').
- ▶ Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^d$.
- Write $|\omega| = \#$ of edges in ω and $O_{\mathcal{L}}(\omega) = \#$ of those edges lying on \mathcal{L} .

▶ Let $p, p' \in (0, 1)$, $q \in [1, \infty)$. Set x = p/(1-p) and x' = p'/(1-p').

▶ Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^d$.

• Write $|\omega| = \#$ of edges in ω and $O_{\mathcal{L}}(\omega) = \#$ of those edges lying on \mathcal{L} .

 \blacktriangleright We associate to ω the probability

$$u_{\mathbf{x},\mathbf{x}',q}^{\mathsf{M}}(\omega) \propto \mathbf{x}^{|\omega|} \left(\frac{\mathbf{x}'}{\mathbf{x}}\right)^{\mathsf{O}_{\mathcal{L}}(\omega)} q^{\mathcal{N}(\omega)}$$

where $\mathcal{N}(\omega)$ denotes the number of connected components (including isolated vertices).

▶ Let $p, p' \in (0, 1)$, $q \in [1, \infty)$. Set x = p/(1-p) and x' = p'/(1-p').

• Let ω be a collection of n.n. edges of $\{-M, \ldots, M\}^d$.

• Write $|\omega| = \#$ of edges in ω and $O_{\mathcal{L}}(\omega) = \#$ of those edges lying on \mathcal{L} .

 \blacktriangleright We associate to ω the probability

$$u_{x,x',q}^{\mathsf{M}}(\omega) \propto x^{|\omega|} \left(\frac{x'}{x}\right)^{\mathsf{O}_{\mathcal{L}}(\omega)} q^{\mathcal{N}(\omega)}$$

where $\mathcal{N}(\omega)$ denotes the number of connected components (including isolated vertices).

▶ The weak limit as $M \to \infty$ exists and is denoted simply $\nu_{x'}$ (*p* and *q* being kept fixed).

Reformulation as FK percolation

Set
$$p = 1 - e^{-2\beta}$$
 and $p' = 1 - e^{-2\beta J}$.

The standard relation between FK percolation and the *q*-state Potts model implies that

$$\mu_J(\sigma_0 = \sigma_{n\mathbf{e}_1}) = \frac{1}{q} + \frac{q-1}{q} \nu_{X'}(\mathbf{0} \leftrightarrow n\mathbf{e}_1)$$

and thus, writing $\xi(x') \equiv \xi(J(x'))$,

$$\xi(x') = -\lim_{n\to\infty} \frac{1}{n} \log \nu_{x'}(0 \leftrightarrow n\mathbf{e}_1)$$

Reformulation as FK percolation

Set
$$p = 1 - e^{-2\beta}$$
 and $p' = 1 - e^{-2\beta J}$.

The standard relation between FK percolation and the *q*-state Potts model implies that

$$\mu_J(\sigma_0 = \sigma_{n\mathbf{e}_1}) = \frac{1}{q} + \frac{q-1}{q} \nu_{x'}(\mathbf{0} \leftrightarrow n\mathbf{e}_1)$$

and thus, writing $\xi(x') \equiv \xi(J(x'))$,

$$\xi(x') = -\lim_{n\to\infty} \frac{1}{n} \log \nu_{x'}(0 \leftrightarrow n\mathbf{e}_1)$$

The analysis of $\xi(x')$ in the case q = 1 was done in [Friedli, Ioffe, V. '13]

The extension to any $q \ge 1$ is made difficult by the lack of independence and of useful consequences, such as the BK inequality, which have to be substituted by suitable constructions exploiting **exponential mixing** properties.

Interface pinning in the 2d Potts model

On \mathbb{Z}^2 , the **self-duality** of FK percolation allows one to reformulate some of the results in terms of the properties of the **interface** in the 2*d* Potts model below its critical temperature.

2d Potts model with Dobrushin boundary condition

Only nearest-neighbor spins interact and the coupling constants are all equal to 1, except for those represented in purple, the value of which is $J \ge 0$. We assume that $\beta > \beta_c$.

2d Potts model with Dobrushin boundary condition

2d Potts model with Dobrushin boundary condition

The interface is the connected set of "frustrated" bonds induced by the boundary condition. Weakly converges to Brownian bridge under diffusive scaling when J = 1. [Campanino, Ioffe, V. '08]

The interface localizes (converges to a horizontal line under diffusive scaling) for all J < 1.

In 1980–1981, Douglas Abraham published two papers

PHYSICAL REVIEW Letters			
VOLUME 44	5 MAY 1980	NUMBER 18	
Solvable Model	with a Roughening Transition for a Planar D. B. Abraham ⁽²⁾	Ising Ferromagnet	

J. Phys. A: Math. Gen. 14 (1981) L369-L372. Printed in Great Britain

LETTER TO THE EDITOR

Binding of a domain wall in the planar Ising ferromagnet

D B Abraham

Some historical remarks

In 1980–1981, Douglas Abraham published two papers

PHYSICAL REVIEW LETTERS			
VOLUME 44	5 MAY 1980	NUMBER 18	
Solvable Model	with a Roughening Transition for a Planar	Ising Ferromagnet	
	D. B. Abraham ^(*)		

J. Phys. A: Math. Gen. 14 (1981) L369-L372. Printed in Great British LETTER TO THE EDITOR Binding of a domain wall in the planar Ising ferromagnet D B Abraham

that immediately triggered an intense activity (partial list from 1981!):

Some historical remarks

- Abraham's papers analyzed the interface pinning (and wetting) problem in the 2d Ising model, using exact computations.
- The subsequent papers dealt with effective (SOS/random walk) versions of the same problem, with two main goals: getting a better understanding of the mechanisms at play, and analyzing various extensions (higher-dimensional spaces, higher-dimensional interfaces, disordered pinning potential, etc.).
- This intense activity continues to date. See Giacomin's book Random Polymer Models for a recent account of the developments from the probabilistic point of view.

Our goal was to show that the current methods of rigorous statistical mechanics finally make it possible to **import back some of these results to actual lattice spin systems**, for which exact computations are not available (and to provide additional information even when they are available).

Link to RW pinning problem

▶ Let
$$\lambda = \log(x'/x)$$
. Clearly:

$$\xi - \xi_{x'} = \lim_{n \to \infty} \frac{1}{n} \log \frac{\nu_{x'}(0 \leftrightarrow n\mathbf{e}_1)}{\nu(0 \leftrightarrow n\mathbf{e}_1)} = \lim_{n \to \infty} \frac{1}{n} \log \frac{\nu[e^{\lambda_0 \zeta} \mid 0 \leftrightarrow n\mathbf{e}_1]}{\nu[e^{\lambda_0 \zeta}]}$$

▶ Let
$$\lambda = \log (x'/x)$$
. Clearly:

$$\xi - \xi_{x'} = \lim_{n \to \infty} \frac{1}{n} \log \frac{\nu_{x'}(0 \leftrightarrow n\mathbf{e}_1)}{\nu(0 \leftrightarrow n\mathbf{e}_1)} = \lim_{n \to \infty} \frac{1}{n} \log \frac{\nu[e^{\lambda_0 \varepsilon} \mid 0 \leftrightarrow n\mathbf{e}_1]}{\nu[e^{\lambda_0 \varepsilon}]}$$

▶ Using FKG, one can show that

$$\frac{\nu[\boldsymbol{e}^{\lambda_{0_{\mathcal{L}}}} \mid \boldsymbol{0} \leftrightarrow n\boldsymbol{e}_{1}]}{\nu[\boldsymbol{e}^{\lambda_{0_{\mathcal{L}}}}]} \leq \nu[\boldsymbol{e}^{\lambda|\boldsymbol{c}_{0}\cap\mathcal{L}|} \mid \boldsymbol{0} \leftrightarrow n\boldsymbol{e}_{1}]$$

• Let
$$\lambda = \log (x'/x)$$
. Clearly:

$$\xi - \xi_{x'} = \lim_{n \to \infty} \frac{1}{n} \log \frac{\nu_{x'}(0 \leftrightarrow n\mathbf{e}_1)}{\nu(0 \leftrightarrow n\mathbf{e}_1)} = \lim_{n \to \infty} \frac{1}{n} \log \frac{\nu[e^{\lambda_0 \varepsilon} \mid 0 \leftrightarrow n\mathbf{e}_1]}{\nu[e^{\lambda_0 \varepsilon}]}$$

▶ Using FKG, one can show that

$$\frac{\nu[\boldsymbol{e}^{\lambda_{0_{\mathcal{L}}}} \mid \boldsymbol{0} \leftrightarrow n\boldsymbol{e}_{1}]}{\nu[\boldsymbol{e}^{\lambda_{0_{\mathcal{L}}}}]} \leq \nu[\boldsymbol{e}^{\lambda|\boldsymbol{c}_{0}\cap\mathcal{L}|} \mid \boldsymbol{0} \leftrightarrow n\boldsymbol{e}_{1}]$$

> This is formally analogous to free energy of **RW pinning problem**:

$$f_n(\epsilon) = \mathbb{E}\big[e^{\epsilon|\mathbb{X}\cap\mathcal{L}|} \,|\, X_n = 0\big]$$

where the expectation is w.r.t. (\mathbb{Z}^{d-1} -valued) random walk path $\mathbb{X} = (X_0 = 0, X_1 \dots, X_n)$ and $\epsilon \in \mathbb{R}_+$ is the energetical reward (pinning parameter)

Link to RW pinning problem — upper bound

Link to RW pinning problem — upper bound

The analogy is made made more precise using an **effective random walk representation** for C_0 . This allows to use (extensions of) the arguments developed for RW pinning.

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu(\cdot \mid 0 \leftrightarrow n\mathbf{e}_1)$ -probability, \mathbf{C}_0 admits the following decomposition:

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu(\cdot \mid 0 \leftrightarrow n\mathbf{e}_1)$ -probability, \mathbf{C}_0 admits the following decomposition:

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu(\cdot \mid 0 \leftrightarrow n\mathbf{e}_1)$ -probability, \mathbf{C}_0 admits the following decomposition:

$$\{\mathbf{0} \leftrightarrow n\mathbf{e}_1\} = \{Y^{\mathrm{L}} + Y_1 + \dots + Y_N + Y^{\mathrm{R}} = n\mathbf{e}_1\},\$$

where $(Y_k)_{k\geq 1}$ is a random walk on \mathbb{Z}^d with law P, and Y^L , Y^R are independent random variables with exponential tails.

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu(\cdot \mid 0 \leftrightarrow n\mathbf{e}_1)$ -probability, \mathbf{C}_0 admits the following decomposition:

$$\{\mathbf{0} \leftrightarrow n\mathbf{e}_1\} = \{Y^{\text{L}} + Y_1 + \dots + Y_N + Y^{\text{R}} = n\mathbf{e}_1\},\$$

where $(Y_k)_{k\geq 1}$ is a random walk on \mathbb{Z}^d with law P, and Y^L , Y^R are independent random variables with exponential tails.

This relies on the "RW" representation in [Campanino, Ioffe, V. '08]; independence of the increments is achieved by randomly aggregating the increments of the latter process in a suitable way.

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\nu(\cdot \mid 0 \leftrightarrow n\mathbf{e}_1)$ -probability, \mathbf{C}_0 admits the following decomposition:

).

Write
$$Y_k = (Y_k^{\parallel}, Y_k^{\perp}) \in \mathbb{Z} \times \mathbb{Z}^{d-1}$$
.

Properties of the effective random walk Y:

▶
$$P(Y_1^{\parallel} \ge 1) = 1;$$

▶ $P(||Y_1|| > t) \le e^{-\nu t} \text{ for some } \nu = \nu(p) > 0;$
▶ for any $z^{\perp} \in \mathbb{Z}^{d-1}$, $P(Y_1^{\perp} = z^{\perp}) = P(Y_1^{\perp} = -z^{\perp})$

Remember that

$$\xi - \xi_{\mathbf{x}'} \leq \lim_{n \to \infty} \frac{1}{n} \log \nu \left[e^{\lambda |\mathbf{c}_0 \cap \mathcal{L}|} \mid \mathbf{0} \leftrightarrow n \mathbf{e}_1 \right]$$

We have basically **reduced the problem** (well, the upper bound) **to RW pinning**!

Direct analogy with RW pinning **only holds for the upper bound**. Problems with lower bound:

- ▶ interaction of **C**₀ with the other clusters
- interaction between the other clusters and the line \mathcal{L} (\rightsquigarrow effective interaction between C_0 and \mathcal{L} is not purely attractive)
- → requires a different approach...

We will introduce a suitable event $\mathcal{M}_{\delta} \subset \{ 0 \leftrightarrow \textit{ne}_1 \}$ and write

$$\exp\{(\xi - \xi_{x'})n\} \quad \asymp \quad \frac{\nu_{x'}(0 \leftrightarrow n\mathbf{e}_1)}{\nu(0 \leftrightarrow n\mathbf{e}_1)}$$

We will introduce a suitable event $\mathcal{M}_{\delta} \subset \{ 0 \leftrightarrow \textit{ne}_1 \}$ and write

$$\exp\{(\xi - \xi_{x'})n\} \approx \frac{\nu_{x'}(0 \leftrightarrow n\mathbf{e}_1)}{\nu(0 \leftrightarrow n\mathbf{e}_1)}$$
$$\geq \frac{\nu_{x'}(\mathcal{M}_{\delta})}{\nu(0 \leftrightarrow n\mathbf{e}_1)}$$

We will introduce a suitable event $\mathcal{M}_{\delta} \subset \{\mathbf{0} \leftrightarrow n\mathbf{e}_1\}$ and write

$$\exp\{(\xi - \xi_{x'})n\} \approx \frac{\nu_{x'}(0 \leftrightarrow n\mathbf{e}_{1})}{\nu(0 \leftrightarrow n\mathbf{e}_{1})}$$

$$\geq \frac{\nu_{x'}(\mathcal{M}_{\delta})}{\nu(0 \leftrightarrow n\mathbf{e}_{1})}$$

$$= \underbrace{\frac{\nu_{x'}(\mathcal{M}_{\delta})}{\nu(\mathcal{M}_{\delta})}}_{\text{"Energy"}} \underbrace{\nu(\mathcal{M}_{\delta} \mid 0 \leftrightarrow n\mathbf{e}_{1})}_{\text{"Entropy"}}$$

Link to RW pinning problem — Lower bound

We choose for $\mathcal{M}_{\delta} \subset \{\mathbf{0} \leftrightarrow n\mathbf{e}_1\}$ the event

There exists a self-avoiding path $\gamma \subset C_{0,ne_1}$ possessing at least δn cone-points on \mathcal{L}

We choose for $\mathcal{M}_{\delta} \subset \{\mathbf{0} \leftrightarrow n\mathbf{e}_1\}$ the event

There exists a self-avoiding path $\gamma \subset C_{0,ne_1}$ possessing at least δn cone-points on \mathcal{L}

The **entropy term** $\nu(\mathcal{M}_{\delta} | 0 \leftrightarrow n\mathbf{e}_1)$ reduces to an estimate of the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n\mathbf{e}_1$.

We choose for $\mathcal{M}_{\delta} \subset \{\mathbf{0} \leftrightarrow n\mathbf{e}_1\}$ the event

There exists a self-avoiding path $\gamma \subset C_{0,ne_1}$ possessing at least δn cone-points on \mathcal{L}

The **entropy term** $\nu(\mathcal{M}_{\delta} | \mathbf{0} \leftrightarrow n\mathbf{e}_1)$ reduces to an estimate of the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n\mathbf{e}_1$.

Let's see how the energy bound is established...

Link to RW pinning problem — Lower bound

We use the following Russo-formula-type inequality:

Lemma

Let A be an increasing event and take x' > x. Then:

$$\frac{\nu_{x'}(A)}{\nu(A)} \geq \exp\Bigl(\int_x^{x'} \frac{1}{s(1+s)} \sum_{e \in \mathcal{L}_{[0,n]}} \nu_s(e \in \mathsf{Piv}_A \,|\, A) \, \mathrm{d}s \Bigr).$$

Link to RW pinning problem — Lower bound

We use the following Russo-formula-type inequality:

Lemma

Let A be an increasing event and take x' > x. Then:

$$\frac{\nu_{X'}(A)}{\nu(A)} \geq exp\Big(\int_{x}^{x'} \frac{1}{s(1+s)} \sum_{e \in \mathcal{L}_{[0,n]}} \nu_s(e \in \mathsf{Piv}_A \,|\, A) \, \mathrm{d}s\Big).$$

Applying it with $A = M_{\delta}$ reduces the problem to showing: $\exists \rho_1 > 0$ s.t.

$$\sum_{\boldsymbol{e}\in\mathcal{L}_{[0,n]}}\nu_{\boldsymbol{s}}(\boldsymbol{e}\in\mathsf{Piv}_{\mathcal{M}_{\delta}}\,|\,\mathcal{M}_{\delta})\geq\rho_{1}\delta n$$

which follows from exponential decay under ν .

Open problems and extensions

Open problems

- Behavior of $\xi(J)$ in the neighborhood of J_c when $d \ge 4$.
- ▶ Sharp asymptotics of 2-point function when $J \leq J_c$ (and $J \neq 1$).
- Scaling limit of the interface in the 2*d* model when $J > J_c = 1$.

Open problems

- ▶ Behavior of $\xi(J)$ in the neighborhood of J_c when $d \ge 4$.
- ▶ Sharp asymptotics of 2-point function when $J \leq J_c$ (and $J \neq 1$).
- Scaling limit of the interface in the 2*d* model when $J > J_c = 1$.

Some extensions (work in progress)

- Defect located along the boundary of the system (\rightsquigarrow wetting when d = 2).
- ▶ Defect of dimension $d' \in (1, d)$: long-range order along the defect is possible even when the bulk is disordered.
- Quenched random (ferromagnetic) coupling constants along the defect.

Thank you for your attention!