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Introduction and results



Ising model on Z¢

Formal Hamiltonian:

» ferromagnetism:
» symmetry:

» finite-range:

» irreducibility:

Hr = — Z Ji—ioioj

{ijyczd

Jx > 0forallx € Z¢

Jx = J_x forallx € Z¢

3R < oo such that Jy = 0 whenever ||x||, > R;
Jx > 0forall x € Z° with ||x|| = 1.
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Ising model on Z¢

Formal Hamiltonian: Hr = — Z Ji—i oioj
{ijyczd

» ferromagnetism:  Jx > 0forallx € VAL

» symmetry: Jx = J_xforallx € Z°
» finite-range: 3R < oo such that J = 0 whenever [[x||, > R;
» irreducibility: Jx > 0forallx € Z¢ with ||x|| = 1.

We assume that and

, and let pug be the unique Gibbs measure.

vy

B> B:(2)
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Decay of correlations

Let Covs(f, 9) = ps(fg) — ps(Frs(9)-
Let [x] € Z“ be the coordinate-wise integer part of x € Z°.

Theorem [Aizenman, Barsky, Fernandez 1987]

Forall 8 < B.(d) and any unit-vector u in RY, the inverse correlation length

. 1
&a(u) = — HILn;O - log Covg (00, Ojn)

exists and is positive.
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Let Covs(f, 9) = ps(fg) — ps(Frs(9)-
Let [x] € Z“ be the coordinate-wise integer part of x € Z°.

Theorem [Aizenman, Barsky, Fernandez 1987]

Forall 8 < B.(d) and any unit-vector u in RY, the inverse correlation length

. 1
&a(u) = — HILn;O - log Covg (00, Ojn)

exists and is positive.

What about covariances of more general functions?
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Asymptotics of correlations

Let f, g be two local functions and denote by 6y the translation by x € Z¢.

What is the asymptotic behavior of

COV,@ (f7 e[nu]g)
asn — oo?
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Asymptotics of correlations

Let f, g be two local functions and denote by 6y the translation by x € Z¢.

What is the asymptotic behavior of
COV,@ (f7 e[nu]g)
asn — o0o?
Let oa = [];c, 01 Writing
f= Z faoa, g= Z Gs0s,
ACsupp(f) BCsupp(g)

yields
Covs(f, e[nu]g) = Z fAéB Covg(oa, 0atn)-

ACsupp(f)
BCsupp(g)
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Decay of correlations

This motivates the following
Main question
What is the asymptotic behavior of

Covs(oa, 0s1nu)

forA,B € Z% as n — co?
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Decay of correlations

This motivates the following
Main question

What is the asymptotic behavior of

Covs(oa, 0s1nu)

forA,B € Z% as n — co?

Of course, by symmetry, pg(oc) = 0 whenever |C| is odd.
In particular, if |A| + |B| is odd, then Covg(ca, 05) = 0.

There are thus two cases to consider:

Ocd-odd correlatons

|A], |B| both odd |A], |B| both even

417



0dd-odd correlations

Theorem [Campanino, loffe, V. 2004]
Letd > 2and B < B.(d). Let A, B € Z* with |A| and |B| odd.
For any unit-vector u, there exists a constant 0 < C < oo (depending on
A, B,u, 3) such that

C
n(d=1)/2

COVﬁ (UAu UB+[nu]) - eiéﬁ(uy’ (1 + 0(1))7

as n — oQ.
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0dd-odd correlations

Theorem [Campanino, loffe, V. 2004]

A, B,u, 3) such that

C
n(d=1)/2

Covs(0a, T ifn) =

as n — oQ.

Letd > 2and B < B.(d). Let A, B € Z* with |A| and |B| odd.
For any unit-vector u, there exists a constant 0 < C < oo (depending on

e (1.4 0(n),

This result has a long history. Some milestones:

» Ornstein-Zernike 1914, Zernike 1916:
» Abraham-Kunz 1977, Paes-Leme 1978:

» Bricmont-Frohlich 1985, Minlos-Zhizhina 1988, 1996:

» Campanino-loffe-V. 2003:

|A] = |B| =
Al = |B =1
1Al |B| odd
Al = |B| =1

non-rigorous
B <K

B <1

B < Be(d)
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Even-even correlations

Substantially more delicate!
The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

Covp(on, Taipy) = e 7 (e,
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Even-even correlations

Substantially more delicate!
The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

Covs(aa, 0gruy) = e o700,

However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969 Camp-Fisher 1971
n—? d=2
(nlogn)™ d=3 n~¢ foralld >2
n~@=" d>4

(Note that both coincide with the exact computation when d = 2.)
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Even-even correlations

Substantially more delicate!
The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

Covs(aa, 0gruy) = e o700,

However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969 Camp-Fisher 1971
(nlogn)™ d=3 n~¢ foralld >2
n=@=7 d>4

(Note that both coincide with the exact computation when d = 2.)
It turns out that Polyakov was right. This was first shown in

» Bricmont-Fréhlich 1985: Al=1B|=2 <1 d>4
» Minlos-Zhizhina 1988, 1996:  |A|, |B| even g1 d>2
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Even-even correlations

n’ when d = 2,

Let =(n) = { (nlogn)’ whend = 3,
n?! when d > 4.
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Even-even correlations

n’ when d = 2,
Let =(n) = { (nlogn)’ whend = 3,
n?! when d > 4.

Our main result is

Theorem [Ott, V. 2018]

Letd > 2and B < B.(d). Let A, B € Z* with |A| and |B| even.
For any unitvector uin R, there exist constants 0 < C_ < C4 < oo (depending

on A, B, u, 3) such that, for all n large enough,

7(:7 e—zgg(u)n S COV[; (UA7UB+[nu]) S _C(+)e—2§5(u)n.
=(n

(n
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Heuristics



LetA = {x,y} and B + [nu] = {u, v}. High-temperature expansion of 15(cx0y0,0V)
yields 3 types of configurations:

’Yzq‘l:
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Heuristics (and difficulties)

Now, since 8 < f.(d), one may expect the paths y; and 7, to stay far from each other,
so that the expectation factorizes and

X u
yS% %qv ~ %qs
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Heuristics (and difficulties)

Now, since 8 < f.(d), one may expect the paths y; and 7, to stay far from each other,
so that the expectation factorizes and

X u
v S’W ’Yzqv ~ ’Yzqs

Then, neglecting the interactions between 1, v, would yield

Covs(oa, 0siimy) = pp(0x0u)s(0y00) + pp(ox0v) ps(oyou) m n~ Ve 21,

which is what we want when d > 4. Assuming that the paths behave as random walk
bridges and taking into account the non-intersection constraint would then yield the
correct behavior also when d = 2 or 3...
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Problems with this argument

1. In fact,

; S ﬂ/zqr ; & — = 26p(u)n (1+0(1))

- 5

and thus cannot be neglected!
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Problems with this argument

1. In fact,

’;Sm n/zq: _ ;Sw — o265 (Wn (1+o(1))

%Sy

and thus cannot be neglected!

2. The paths 1, 7, have long-distance (self)interactions. In particular,
w(y1,72) # w(r)w(72)-
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Problems with this argument

1. In fact,

x v y o 265 (u)n (1+0(1))
ysn‘” n/zqv _ qu: — e~ %pWn(1to
and thus cannot be neglected!

2. The paths 1, 7, have long-distance (self)interactions. In particular,
w(m, %) # w(n)w(7).

3. Itis not at all obvious why the non-intersection constraint should yield the same
behavior as if 7, and 7, were random walk bridges.

10/17



Problems with this argument

To solve these problems, we use

» The random-current & high-temperature, or the FK representations, in order to
reduce to two independent objects (HT paths or FK clusters), conditioned on not
intersecting:

» The Ornstein-Zernike theory (Campanino-loffe-V. 2003, 2008 and Ott-V. 2017), in
order to approximate these objects using directed random walks on Z°:

nn7



Sketch of the lower bound




Sketch of the lower bound: Step 1

The first step is to prove that, for any x,y € Aand u,v € Bwith x # y and u # v, the
following bound holds:

Covg(oa, o8)
ps(oxou) pe(oyov) —
> Tana=oyP ™ (Cu = G [ x & 1) PT(G = G |y 4+ ),

Ciox,u
G3y,v

where the sum is over pairs of disjoint FK-clusters containing, respectively x, u and
y,z,and Cy,, denotes the common cluster of x and u, and similarly for C ..
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The first step is to prove that, for any x,y € Aand u,v € Bwith x # y and u # v, the
following bound holds:

Covg(oa, o8)
ps(oxou) pe(oyov) —
> Tana=oyP ™ (Cu = G [ x & 1) PT(G = G |y 4+ ),

Ciox,u
G3y,v

where the sum is over pairs of disjoint FK-clusters containing, respectively x, u and
y,z,and Cy,, denotes the common cluster of x and u, and similarly for C ..

Note that the RHS is precisely the probability that the two clusters ¢, and Gy,
sampled independently from P (- | x <> u) and P**(- |y <> v), are disjoint.

Note also that the denominator in the LHS provides the main “squared OZ” behavior.
The RHS can then be used to find the corrections due to the non-intersection
constraint.
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Sketch of the lower bound: Step 1

» Let us write

O(E) = {all edges in E are open}, C(E) = {all edges in E are closed}.
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Sketch of the lower bound: Step 1

» Let us write
O(E) = {all edges in E are open}, C(E) = {all edges in E are closed}.
» It is well know that Ising correlation functions can be expressed in FK terms as
ps(oc) =P (&),

where & is the event that all FK-clusters contain an even number of vertices of C.
» Therefore,

(€aus) — P (€1) P (&5)

Covg(oa,08) = P
P (€aus N &F) + PTX(Caus N 1) — PTH(E)) PT(&5)
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» Let us write
O(E) = {all edges in E are open}, C(E) = {all edges in E are closed}.
» It is well know that Ising correlation functions can be expressed in FK terms as
ps(oc) =P (&),

where & is the event that all FK-clusters contain an even number of vertices of C.
» Therefore,

Covg(oa,08) = P (Caus) — P(€4) P (Es)
= P™(Caus N &) + PN (Caus N &) — PTE(EL) PT(&5)
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Sketch of the lower bound: Step 1

» Let us write
O(E) = {all edges in E are open}, C(E) = {all edges in E are closed}.
» It is well know that Ising correlation functions can be expressed in FK terms as
ps(oc) =P (&),

where & is the event that all FK-clusters contain an even number of vertices of C.
» Therefore,

Covp(on,08) = P (Eas) — P7(E) PT(&s)
PFK(@AUB n @Ac) + PFK(QAUB N eA) - PFK(GA) PFK(GB)
= P™(Cus N E) +P7(EaN E6) — PTH(E) PT(E5)
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Sketch of the lower bound: Step 1

» Let us write
O(E) = {all edges in E are open}, C(E) = {all edges in E are closed}.
» It is well know that Ising correlation functions can be expressed in FK terms as
ps(oc) =P (&),

where & is the event that all FK-clusters contain an even number of vertices of C.
» Therefore,

]PFK @AUB) o ]P)FK(GA) PFK(GB)
P (€aus N &F) + PTX(Caus N 1) — PTH(E)) PT(&5)

Covg(oa, o8) (
(

P (€as N EF) + P¥(Ea N €5) — P(&4) PN (&5)
(
(

\Y]

P*¥ (G N &) (by FKG)

Y

PP (x <3 U,y <5 v, X ¢ y).
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Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of

P (x ¢ U,y <> v, X e y) = ZIP’FK(CM = Gy Gy = @)
G,G

= > P™0(G:),C(0G:), 0(G), C(9G))

G,G

-G —G

(C)C1 8C2
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Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of

P (x ¢ U,y <> v, X e y) = ZIP’FK(CM = Gy Gy = @)

= ZJ}DFK C(06), 0(G),C(06))
= > P™(0(G)[C(06)) P(C(00) | €(G)) PT(O(G), C(IG))
> ZPFK x,u = CW PFK(C%V = CZ)

-G —G

(C)C1 8C2
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Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of

P (x ¢ U,y <> v, X e y) = ZIP’FK(CM = Gy Gy = @)

1,6

= > P™0(G:),C(0G:), 0(G), C(9G))

1,6
= ) PT(O(0) [C(96)) PTE(C(9G) | €(96)) PT(O(C2), €(0G))

C1,G
2 ZPFK XU — C1 IP)FK(Cy,v = CZ)

1,6
= PN e u)P™Ny o v)d PG =0lx o )P, =Gy o v).

1,G
-G —G

(C)C1 8C2
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Sketch of the lower bound: Step 2

» We now only need to understand the asymptotic behavior of the probability that
the two clusters do not intersect.

» Under both measures P**(- | x <+ u) and P"¥(- | y <+ v), the OZ theory can be
applied to approximate the cluster by a suitable directed random walk.
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Sketch of the lower bound: Step 2

» We now only need to understand the asymptotic behavior of the probability that
the two clusters do not intersect.

» Under both measures P**(- | x <+ u) and P"¥(- | y <+ v), the OZ theory can be
applied to approximate the cluster by a suitable directed random walk.

The resulting directed random walk has increments with exponential tails and thus
approximates well the original cluster.
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Sketch of the lower bound: Step 2

» Whenever the two “necklaces” are disjoint, the corresponding clusters are also
necessarily disjoint.

~~ Lower bound in terms of a random walk event, with the same asymptotic behavior
as non-crossing constraint.

16/17



Conclusion




» Another nice example of the power and versatility of the OZ theory!
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representation...
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» Another nice example of the power and versatility of the OZ theory!

» It would be nice to obtain sharp asymptotics, but this seems difficult. Maybe by

developing a version of OZ applicable directly in the (double)random-current
representation...

» Extension to models with richer symmetry group seems interesting (even just a
classification of possible behaviors). We could not find literature on the subject.
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Thank you for your attention!
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