Asymptotics of even-even correlations in the Ising model

(joint work with Sébastien OTT)

Yvan Velenik

Université de Genève

Introduction and results

Ising model on \mathbb{Z}^{d}

Formal Hamiltonian: $\quad \mathcal{H}_{\Lambda}=-\sum_{\{i, j\} \subset \mathbb{Z}^{d}} J_{j-i} \sigma_{i} \sigma_{j}$

- ferromagnetism: $J_{x} \geq 0$ for all $x \in \mathbb{Z}^{d}$;
- symmetry: $\quad J_{x}=J_{-x}$ for all $x \in \mathbb{Z}^{d}$;
- finite-range: $\exists R<\infty$ such that $J_{x}=0$ whenever $\|x\|_{2} \geq R$;
- irreducibility: $\quad J_{x}>0$ for all $x \in \mathbb{Z}^{d}$ with $\|x\|=1$.

Ising model on \mathbb{Z}^{d}

Formal Hamiltonian: $\quad \mathcal{H}_{\Lambda}=-\sum_{\{i, j\} \subset \mathbb{Z}^{d}} J_{j-i} \sigma_{i} \sigma_{j}$

- ferromagnetism: $J_{x} \geq 0$ for all $x \in \mathbb{Z}^{d}$;
- symmetry: $\quad J_{x}=J_{-x}$ for all $x \in \mathbb{Z}^{d}$;
- finite-range: $\exists R<\infty$ such that $J_{x}=0$ whenever $\|x\|_{2} \geq R$;
- irreducibility: $\quad J_{x}>0$ for all $x \in \mathbb{Z}^{d}$ with $\|x\|=1$.

We assume that $d \geq 2$ and $\beta<\beta_{c}(d)$, and let μ_{β} be the unique Gibbs measure.

$\beta<\beta_{c}(2)$

$\beta>\beta_{c}(2)$

Decay of correlations

Let $\operatorname{Cov}_{\beta}(f, g)=\mu_{\beta}(f g)-\mu_{\beta}(f) \mu_{\beta}(g)$.
Let $[x] \in \mathbb{Z}^{d}$ be the coordinate-wise integer part of $x \in \mathbb{Z}^{d}$.

Theorem [Aizenman, Barsky, Fernández 1987]

For all $\beta<\beta_{c}(d)$ and any unit-vector \mathbf{u} in \mathbb{R}^{d}, the inverse correlation length

$$
\xi_{\beta}(\mathbf{u})=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Cov}_{\beta}\left(\sigma_{0}, \sigma_{[n \mathbf{u}]}\right)
$$

exists and is positive.

Decay of correlations

Let $\operatorname{Cov}_{\beta}(f, g)=\mu_{\beta}(f g)-\mu_{\beta}(f) \mu_{\beta}(g)$.
Let $[x] \in \mathbb{Z}^{d}$ be the coordinate-wise integer part of $x \in \mathbb{Z}^{d}$.

Theorem [Aizenman, Barsky, Fernández 1987]

For all $\beta<\beta_{c}(d)$ and any unit-vector \mathbf{u} in \mathbb{R}^{d}, the inverse correlation length

$$
\xi_{\beta}(\mathbf{u})=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Cov}_{\beta}\left(\sigma_{0}, \sigma_{[n \mathbf{u}]}\right)
$$

exists and is positive.

What about covariances of more general functions?

Asymptotics of correlations

Let f, g be two local functions and denote by θ_{x} the translation by $x \in \mathbb{Z}^{d}$.
What is the asymptotic behavior of

$$
\operatorname{Cov}_{\beta}\left(f, \theta_{[n \mathbf{n u}]} g\right)
$$

as $n \rightarrow \infty$?

Asymptotics of correlations

Let f, g be two local functions and denote by θ_{x} the translation by $x \in \mathbb{Z}^{d}$.
What is the asymptotic behavior of

$$
\operatorname{Cov}_{\beta}\left(f, \theta_{[n \mathbf{u l}]} g\right)
$$

as $n \rightarrow \infty$?

Let $\sigma_{A}=\prod_{i \in A} \sigma_{i}$. Writing

$$
f=\sum_{A \subset \operatorname{supp}(f)} \hat{f}_{A} \sigma_{A}, \quad g=\sum_{B \subset \operatorname{supp}(g)} \hat{g}_{B} \sigma_{B},
$$

yields

$$
\operatorname{Cov}_{\beta}\left(f, \theta_{[n u]} g\right)=\sum_{\substack{A \subset \operatorname{supp}(f) \\ B \subset \operatorname{supp}(g)}} \hat{f}_{A} \hat{g}_{B} \operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+n \mathbf{u}}\right)
$$

Decay of correlations

This motivates the following

Main question

What is the asymptotic behavior of

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+n \mathbf{u}}\right)
$$

for $A, B \Subset \mathbb{Z}^{d}$, as $n \rightarrow \infty$?

Decay of correlations

This motivates the following

Main question

What is the asymptotic behavior of

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+n \mathbf{u}}\right)
$$

for $A, B \Subset \mathbb{Z}^{d}$, as $n \rightarrow \infty$?

Of course, by symmetry, $\mu_{\beta}\left(\sigma_{C}\right)=0$ whenever $|C|$ is odd.
In particular, if $|A|+|B|$ is odd, then $\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right)=0$.

Decay of correlations

This motivates the following

Main question

What is the asymptotic behavior of

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+n \mathbf{u}}\right)
$$

for $A, B \Subset \mathbb{Z}^{d}$, as $n \rightarrow \infty$?

Of course, by symmetry, $\mu_{\beta}\left(\sigma_{C}\right)=0$ whenever $|C|$ is odd.
In particular, if $|A|+|B|$ is odd, then $\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right)=0$.
There are thus two cases to consider:

Odd-odd correlations
$|A|,|B|$ both odd

Even-even correlations
$|A|,|B|$ both even

Odd-odd correlations

Theorem [Campanino, Ioffe, V. 2004]

Let $d \geq 2$ and $\beta<\beta_{c}(d)$. Let $A, B \Subset \mathbb{Z}^{d}$ with $|A|$ and $|B|$ odd. For any unit-vector \mathbf{u}, there exists a constant $0<C<\infty$ (depending on A, B, \mathbf{u}, β) such that

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n \mathbf{u}]}\right)=\frac{C}{n^{(d-1) / 2}} e^{-\xi_{\beta}(\mathbf{u}) n}(1+o(1))
$$

$$
\text { as } n \rightarrow \infty
$$

Odd-odd correlations

Theorem [Campanino, Ioffe, V. 2004]

Let $d \geq 2$ and $\beta<\beta_{c}(d)$. Let $A, B \Subset \mathbb{Z}^{d}$ with $|A|$ and $|B|$ odd.
For any unit-vector \mathbf{u}, there exists a constant $0<C<\infty$ (depending on A, B, \mathbf{u}, β) such that

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n \mathbf{u}]}\right)=\frac{C}{n^{(d-1) / 2}} e^{-\xi_{\beta}(\mathbf{u}) n}(1+o(1))
$$

as $n \rightarrow \infty$.

This result has a long history. Some milestones:

- Ornstein-Zernike 1914, Zernike 1916:

$$
\begin{array}{ll}
|A|=|B|=1 & \text { non-rigorous } \\
|A|=|B|=1 & \beta \ll 1 \\
|A|,|B| \text { odd } & \beta \ll 1 \\
|A|=|B|=1 & \beta<\beta_{c}(d)
\end{array}
$$

- Abraham-Kunz 1977, Paes-Leme 1978:
- Bricmont-Fröhlich 1985, Minlos-Zhizhina 1988, 1996:
- Campanino-loffe-V. 2003:

Even-even correlations

Substantially more delicate!
The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n u]}\right)=e^{-2 \xi_{\beta}(\mathbf{u}) n(1+o(1))} .
$$

Even-even correlations

Substantially more delicate!
The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n \mathbf{u}]}\right)=e^{-2 \xi_{\beta}(\mathbf{u}) n(1+o(1))}
$$

However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp-Fisher 1971	
n^{-2}	$d=2$		
$(n \log n)^{-2}$	$d=3$	$n^{-d} \quad$ for all $d \geq 2$	
$n^{-(d-1)}$	$d \geq 4$		

(Note that both coincide with the exact computation when $d=2$.)

Even-even correlations

Substantially more delicate!
The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n \mathbf{u}]}\right)=e^{-2 \xi_{\beta}(\mathbf{u}) n(1+o(1))} .
$$

However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp-Fisher 1971	
n^{-2}	$d=2$		
$(n \log n)^{-2}$	$d=3$	$n^{-d} \quad$ for all $d \geq 2$	
$n^{-(d-1)}$	$d \geq 4$		

(Note that both coincide with the exact computation when $d=2$.)
It turns out that Polyakov was right. This was first shown in

- Bricmont-Fröhlich 1985:
- Minlos-Zhizhina 1988, 1996:
$|A|=|B|=2 \quad \beta \ll 1 \quad d \geq 4$
$|A|,|B|$ even $\quad \beta \ll 1 \quad d \geq 2$

Even-even correlations

$$
\text { Let } \equiv(n)= \begin{cases}n^{2} & \text { when } d=2 \\ (n \log n)^{2} & \text { when } d=3 \\ n^{d-1} & \text { when } d \geq 4\end{cases}
$$

Even-even correlations

Let $\equiv(n)= \begin{cases}n^{2} & \text { when } d=2, \\ (n \log n)^{2} & \text { when } d=3, \\ n^{d-1} & \text { when } d \geq 4 .\end{cases}$

Our main result is

Theorem [Ott, V. 2018]

Let $d \geq 2$ and $\beta<\beta_{\mathrm{c}}(d)$. Let $A, B \Subset \mathbb{Z}^{d}$ with $|A|$ and $|B|$ even.
For any unit vector \mathbf{u} in \mathbb{R}^{d}, there exist constants $0<C_{-} \leq C_{+}<\infty$ (depending on A, B, \mathbf{u}, β) such that, for all n large enough,

$$
\frac{C_{-}}{\equiv(n)} e^{-2 \xi_{\beta}(\mathbf{u}) n} \leq \operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n \mathbf{u}]}\right) \leq \frac{C_{+}}{\equiv(n)} e^{-2 \xi_{\beta}(\mathbf{u}) n}
$$

Heuristics

Heuristics

Let $A=\{x, y\}$ and $B+[n \mathbf{u}]=\{u, v\}$. High-temperature expansion of $\mu_{\beta}\left(\sigma_{x} \sigma_{y} \sigma_{u} \sigma_{v}\right)$ yields 3 types of configurations:

High-temperature expansion of $\mu_{\beta}\left(\sigma_{x} \sigma_{y}\right) \mu_{\beta}\left(\sigma_{u} \sigma_{v}\right)$ yields

Heuristics (and difficulties)

Now, since $\beta<\beta_{c}(d)$, one may expect the paths γ_{1} and γ_{2} to stay far from each other, so that the expectation factorizes and

Heuristics (and difficulties)

Now, since $\beta<\beta_{c}(d)$, one may expect the paths γ_{1} and γ_{2} to stay far from each other, so that the expectation factorizes and

Then, $\operatorname{Cov}_{\beta}\left(\sigma_{\mathrm{A}}, \sigma_{\mathrm{B}+[n \mathrm{nu}]}\right)$ would be dominated by the contributions of

and

Heuristics (and difficulties)

Now, since $\beta<\beta_{\mathrm{c}}(d)$, one may expect the paths γ_{1} and γ_{2} to stay far from each other, so that the expectation factorizes and

Then, $\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n u]}\right)$ would be dominated by the contributions of

Then, neglecting the interactions between γ_{1}, γ_{2} would yield

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B+[n u]}\right) \approx \mu_{\beta}\left(\sigma_{x} \sigma_{u}\right) \mu_{\beta}\left(\sigma_{y} \sigma_{v}\right)+\mu_{\beta}\left(\sigma_{x} \sigma_{v}\right) \mu_{\beta}\left(\sigma_{y} \sigma_{u}\right) \approx n^{-(d-1)} e^{-2 \xi_{\beta}(\mathbf{u}) n}
$$

which is what we want when $d \geq 4$. Assuming that the paths behave as random walk bridges and taking into account the non-intersection constraint would then yield the correct behavior also when $d=2$ or 3 ...

Problems with this argument

1. In fact,

and thus cannot be neglected!

Problems with this argument

1. In fact,

and thus cannot be neglected!
2. The paths γ_{1}, γ_{2} have long-distance (self)interactions. In particular, $\mathrm{w}\left(\gamma_{1}, \gamma_{2}\right) \neq \mathrm{w}\left(\gamma_{1}\right) \mathrm{w}\left(\gamma_{2}\right)$.

Problems with this argument

1. In fact,

and thus cannot be neglected!
2. The paths γ_{1}, γ_{2} have long-distance (self)interactions. In particular, $\mathrm{w}\left(\gamma_{1}, \gamma_{2}\right) \neq \mathrm{w}\left(\gamma_{1}\right) \mathrm{w}\left(\gamma_{2}\right)$.
3. It is not at all obvious why the non-intersection constraint should yield the same behavior as if γ_{1} and γ_{2} were random walk bridges.

Problems with this argument

To solve these problems, we use

- The random-current \& high-temperature, or the FK representations, in order to reduce to two independent objects (HT paths or FK clusters), conditioned on not intersecting:

- The Ornstein-Zernike theory (Campanino-Ioffe-V. 2003, 2008 and Ott-V. 2017), in order to approximate these objects using directed random walks on \mathbb{Z}^{d} :

Sketch of the lower bound

Sketch of the lower bound: Step 1

The first step is to prove that, for any $x, y \in A$ and $u, v \in B$ with $x \neq y$ and $u \neq v$, the following bound holds:

$$
\begin{aligned}
& \frac{\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right)}{\mu_{\beta}\left(\sigma_{x} \sigma_{u}\right) \mu_{\beta}\left(\sigma_{y} \sigma_{v}\right)} \geq \\
& \sum_{\substack{c_{1} \ngtr x, u \\
c_{2} \ni y, v}} \mathbb{1}_{\left\{c_{1} \cap c_{2}=\varnothing\right\}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1} \mid x \leftrightarrow u\right) \mathbb{P}^{\mathrm{FK}}\left(c_{y, v}=c_{2} \mid y \leftrightarrow v\right),
\end{aligned}
$$

where the sum is over pairs of disjoint FK-clusters containing, respectively x, u and y, z, and $C_{x, u}$ denotes the common cluster of x and u, and similarly for $C_{y, v}$.

Sketch of the lower bound: Step 1

The first step is to prove that, for any $x, y \in A$ and $u, v \in B$ with $x \neq y$ and $u \neq v$, the following bound holds:

$$
\begin{aligned}
& \frac{\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right)}{\mu_{\beta}\left(\sigma_{x} \sigma_{u}\right) \mu_{\beta}\left(\sigma_{y} \sigma_{v}\right)} \geq \\
& \sum_{\substack{c_{1} \ni x, u \\
c_{2} \ni y, v}} \mathbb{1}_{\left\{c_{1} \cap c_{2}=\varnothing\right\}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1} \mid x \leftrightarrow u\right) \mathbb{P}^{\mathrm{FK}}\left(c_{y, v}=c_{2} \mid y \leftrightarrow v\right),
\end{aligned}
$$

where the sum is over pairs of disjoint FK-clusters containing, respectively x, u and y, z, and $C_{x, u}$ denotes the common cluster of x and u, and similarly for $C_{y, v}$.

Note that the RHS is precisely the probability that the two clusters $C_{x, u}$ and $C_{y, v}$, sampled independently from $\mathbb{P}^{\mathrm{FK}}(\cdot \mid x \leftrightarrow u)$ and $\mathbb{P}^{\mathrm{FK}}(\cdot \mid y \leftrightarrow v)$, are disjoint.

Sketch of the lower bound: Step 1

The first step is to prove that, for any $x, y \in A$ and $u, v \in B$ with $x \neq y$ and $u \neq v$, the following bound holds:

$$
\begin{aligned}
& \frac{\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right)}{\mu_{\beta}\left(\sigma_{x} \sigma_{u}\right) \mu_{\beta}\left(\sigma_{y} \sigma_{v}\right)} \geq \\
& \sum_{\substack{c_{1} \ni x, u \\
c_{2} \ni y, v}} \mathbb{1}_{\left\{c_{1} \cap c_{2}=\varnothing\right\}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1} \mid x \leftrightarrow u\right) \mathbb{P}^{\mathrm{FK}}\left(c_{y, v}=c_{2} \mid y \leftrightarrow v\right),
\end{aligned}
$$

where the sum is over pairs of disjoint FK-clusters containing, respectively x, u and y, z, and $C_{x, u}$ denotes the common cluster of x and u, and similarly for $C_{y, v}$.

Note that the RHS is precisely the probability that the two clusters $C_{x, u}$ and $C_{y, v}$, sampled independently from $\mathbb{P}^{\mathrm{FK}}(\cdot \mid x \leftrightarrow u)$ and $\mathbb{P}^{\mathrm{FK}}(\cdot \mid y \leftrightarrow v)$, are disjoint.

Note also that the denominator in the LHS provides the main "squared OZ" behavior. The RHS can then be used to find the corrections due to the non-intersection constraint.

Sketch of the lower bound: Step 1

- Let us write

$$
\mathcal{O}(E)=\{\text { all edges in } E \text { are open }\}, \quad \mathcal{C}(E)=\{\text { all edges in } E \text { are closed }\} .
$$

Sketch of the lower bound: Step 1

- Let us write

$$
\mathcal{O}(E)=\{\text { all edges in } E \text { are open }\}, \quad \mathcal{C}(E)=\{\text { all edges in } E \text { are closed }\} .
$$

- It is well know that Ising correlation functions can be expressed in FK terms as

$$
\mu_{\beta}\left(\sigma_{c}\right)=\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{c}\right),
$$

where \mathfrak{E}_{c} is the event that all FK-clusters contain an even number of vertices of C.

Sketch of the lower bound: Step 1

- Let us write

$$
\mathcal{O}(E)=\{\text { all edges in } E \text { are open }\}, \quad \mathcal{C}(E)=\{\text { all edges in } E \text { are closed }\} .
$$

- It is well know that Ising correlation functions can be expressed in FK terms as

$$
\mu_{\beta}\left(\sigma_{c}\right)=\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{c}\right),
$$

where \mathfrak{E}_{c} is the event that all FK-clusters contain an even number of vertices of C.

- Therefore,

$$
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right)=\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right)
$$

Sketch of the lower bound: Step 1

Let us write

$$
\mathcal{O}(E)=\{\text { all edges in } E \text { are open }\}, \quad \mathcal{C}(E)=\{\text { all edges in } E \text { are closed }\} .
$$

- It is well know that Ising correlation functions can be expressed in FK terms as

$$
\mu_{\beta}\left(\sigma_{C}\right)=\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{C}\right),
$$

where \mathfrak{E}_{c} is the event that all $F K$-clusters contain an even number of vertices of C.

- Therefore,

$$
\begin{aligned}
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right) & =\mathbb{P}^{F K}\left(\mathfrak{E}_{A \cup B}\right)-\mathbb{P}^{F K}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{c}\right)+\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right)
\end{aligned}
$$

Sketch of the lower bound: Step 1

Let us write

$$
\mathcal{O}(E)=\{\text { all edges in } E \text { are open }\}, \quad \mathcal{C}(E)=\{\text { all edges in } E \text { are closed }\} .
$$

- It is well know that Ising correlation functions can be expressed in FK terms as

$$
\mu_{\beta}\left(\sigma_{C}\right)=\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{C}\right),
$$

where \mathfrak{E}_{c} is the event that all FK-clusters contain an even number of vertices of C.

- Therefore,

$$
\begin{aligned}
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right) & =\mathbb{P}^{F K}\left(\mathfrak{E}_{A \cup B}\right)-\mathbb{P}^{F K}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right)+\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right)+\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A} \cap \mathfrak{E}_{B}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right)
\end{aligned}
$$

Sketch of the lower bound: Step 1

Let us write

$$
\mathcal{O}(E)=\{\text { all edges in } E \text { are open }\}, \quad \mathcal{C}(E)=\{\text { all edges in } E \text { are closed }\} .
$$

- It is well know that Ising correlation functions can be expressed in FK terms as

$$
\mu_{\beta}\left(\sigma_{c}\right)=\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{c}\right),
$$

where \mathfrak{E}_{c} is the event that all FK-clusters contain an even number of vertices of C.

- Therefore,

$$
\begin{aligned}
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right) & =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right)+\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right)+\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A} \cap \mathfrak{E}_{B}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& \geq \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right) \quad \text { (by FKG) }
\end{aligned}
$$

Sketch of the lower bound: Step 1

Let us write

$$
\mathcal{O}(E)=\{\text { all edges in } E \text { are open }\}, \quad \mathcal{C}(E)=\{\text { all edges in } E \text { are closed }\} .
$$

- It is well know that Ising correlation functions can be expressed in FK terms as

$$
\mu_{\beta}\left(\sigma_{C}\right)=\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{C}\right),
$$

where \mathfrak{E}_{c} is the event that all $F K$-clusters contain an even number of vertices of C.

- Therefore,

$$
\begin{aligned}
\operatorname{Cov}_{\beta}\left(\sigma_{A}, \sigma_{B}\right) & =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right)+\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& =\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right)+\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A} \cap \mathfrak{E}_{B}\right)-\mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A}\right) \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{B}\right) \\
& \geq \mathbb{P}^{\mathrm{FK}}\left(\mathfrak{E}_{A \cup B} \cap \mathfrak{E}_{A}^{\mathrm{c}}\right) \quad(\text { by } \mathrm{FKG}) \\
& \geq \mathbb{P}^{\mathrm{FK}}(x \leftrightarrow u, y \leftrightarrow v, x \leftrightarrow y) .
\end{aligned}
$$

Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of clusters C_{1}, C_{2} such that $x, u \in C_{1}, y, v \in C_{2}$ and $C_{1} \cap C_{2}=\varnothing$.

$$
\begin{aligned}
\mathbb{P}^{\mathrm{FK}}(x & \leftrightarrow u, y \leftrightarrow v, x \leftrightarrow y)=\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(C_{x, u}=C_{1}, c_{y, v}=C_{2}\right) \\
& =\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{1}\right), \mathcal{C}\left(\partial C_{1}\right), \mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right)
\end{aligned}
$$

Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of clusters C_{1}, C_{2} such that $x, u \in C_{1}, y, v \in C_{2}$ and $C_{1} \cap C_{2}=\varnothing$.

$$
\begin{aligned}
\mathbb{P}^{\mathrm{FK}}(x & \leftrightarrow u, y \leftrightarrow v, x \leftrightarrow y)=\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1}, c_{y, v}=c_{2}\right) \\
& =\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{1}\right), \mathcal{C}\left(\partial C_{1}\right), \mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right) \\
& =\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{1}\right) \mid \mathcal{C}\left(\partial C_{1}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{C}\left(\partial C_{1}\right) \mid \mathcal{C}\left(\partial C_{2}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right)
\end{aligned}
$$

Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of clusters C_{1}, C_{2} such that $x, u \in C_{1}, y, v \in C_{2}$ and $C_{1} \cap C_{2}=\varnothing$.

$$
\begin{aligned}
\mathbb{P}^{\mathrm{FK}}(x & \leftrightarrow u, y \leftrightarrow v, x \leftrightarrow y)=\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=C_{1}, c_{y, v}=c_{2}\right) \\
& =\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{1}\right), \mathcal{C}\left(\partial C_{1}\right), \mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right) \\
& =\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{1}\right) \mid \mathcal{C}\left(\partial C_{1}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{C}\left(\partial C_{1}\right) \mid \mathcal{C}\left(\partial C_{2}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right)
\end{aligned}
$$

Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of clusters C_{1}, C_{2} such that $x, u \in C_{1}, y, v \in C_{2}$ and $C_{1} \cap C_{2}=\varnothing$.

$$
\begin{aligned}
\mathbb{P}^{\mathrm{FK}}(x & \leftrightarrow u, y \leftrightarrow v, x \leftrightarrow y)=\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(C_{x, u}=C_{1}, c_{y, v}=C_{2}\right) \\
& =\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{1}\right), \mathcal{C}\left(\partial C_{1}\right), \mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right) \\
& =\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{1}\right) \mid \mathcal{C}\left(\partial C_{1}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{C}\left(\partial C_{1}\right) \mid \mathcal{C}\left(\partial C_{2}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right)
\end{aligned}
$$

$$
\begin{array}{ll}
-C_{1} & -C_{2} \\
\cdots \partial C_{1} & \cdots \partial C_{2}
\end{array}
$$

Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of clusters C_{1}, C_{2} such that $x, u \in C_{1}, y, v \in C_{2}$ and $C_{1} \cap C_{2}=\varnothing$.

$$
\begin{aligned}
\mathbb{P}^{\mathrm{FK}}(x & \leftrightarrow u, y \leftrightarrow v, x \leftrightarrow y)=\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1}, c_{y, v}=c_{2}\right) \\
& =\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{1}\right), \mathcal{C}\left(\partial C_{1}\right), \mathcal{O}\left(c_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right) \\
& =\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{1}\right) \mid \mathcal{C}\left(\partial C_{1}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{C}\left(\partial C_{1}\right) \mid \mathcal{C}\left(\partial C_{2}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(c_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right) \\
& \geq \sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=C_{1}\right) \mathbb{P}^{\mathrm{FK}}\left(c_{y, v}=C_{2}\right)
\end{aligned}
$$

Sketch of the lower bound: Step 1

Next, we partition the event in the last expression according to the realizations of clusters C_{1}, C_{2} such that $x, u \in C_{1}, y, v \in C_{2}$ and $C_{1} \cap C_{2}=\varnothing$.

$$
\mathbb{P}^{\mathrm{FK}}(x \leftrightarrow u, y \leftrightarrow v, x \leftrightarrow y)=\sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1}, c_{y, v}=c_{2}\right)
$$

$$
=\sum_{C_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{1}\right), \mathcal{C}\left(\partial C_{1}\right), \mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right)
$$

$$
=\sum_{C_{1}, C_{2}} \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{1}\right) \mid \mathcal{C}\left(\partial C_{1}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{C}\left(\partial C_{1}\right) \mid \mathcal{C}\left(\partial C_{2}\right)\right) \mathbb{P}^{\mathrm{FK}}\left(\mathcal{O}\left(C_{2}\right), \mathcal{C}\left(\partial C_{2}\right)\right)
$$

$$
\geq \sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1}\right) \mathbb{P}^{\mathrm{FK}}\left(c_{y, v}=c_{2}\right)
$$

$$
=\mathbb{P}^{\mathrm{FK}}(x \leftrightarrow u) \mathbb{P}^{\mathrm{FK}}(y \leftrightarrow v) \sum_{c_{1}, c_{2}} \mathbb{P}^{\mathrm{FK}}\left(c_{x, u}=c_{1} \mid x \leftrightarrow u\right) \mathbb{P}^{\mathrm{FK}}\left(c_{y, v}=c_{2} \mid y \leftrightarrow v\right) .
$$

$$
\begin{array}{ll}
-C_{1} & -C_{2} \\
\cdots \partial C_{1} & \cdots \partial C_{2}
\end{array}
$$

Sketch of the lower bound: Step 2

- We now only need to understand the asymptotic behavior of the probability that the two clusters do not intersect.
- Under both measures $\mathbb{P}^{\mathrm{FK}}(\cdot \mid x \leftrightarrow u)$ and $\mathbb{P}^{\mathrm{FK}}(\cdot \mid y \leftrightarrow v)$, the OZ theory can be applied to approximate the cluster by a suitable directed random walk.

Sketch of the lower bound: Step 2

- We now only need to understand the asymptotic behavior of the probability that the two clusters do not intersect.
- Under both measures $\mathbb{P}^{\mathrm{FK}}(\cdot \mid x \leftrightarrow u)$ and $\mathbb{P}^{\mathrm{FK}}(\cdot \mid y \leftrightarrow v)$, the OZ theory can be applied to approximate the cluster by a suitable directed random walk.

Sketch of the lower bound: Step 2

- We now only need to understand the asymptotic behavior of the probability that the two clusters do not intersect.
- Under both measures $\mathbb{P}^{\mathrm{FK}}(\cdot \mid x \leftrightarrow u)$ and $\mathbb{P}^{\mathrm{FK}}(\cdot \mid y \leftrightarrow v)$, the OZ theory can be applied to approximate the cluster by a suitable directed random walk.

The resulting directed random walk has increments with exponential tails and thus approximates well the original cluster.

Sketch of the lower bound: Step 2

- Whenever the two "necklaces" are disjoint, the corresponding clusters are also necessarily disjoint.
\rightsquigarrow Lower bound in terms of a random walk event, with the same asymptotic behavior as non-crossing constraint.

Conclusion

Conclusion

- Another nice example of the power and versatility of the OZ theory!

Conclusion

- Another nice example of the power and versatility of the OZ theory!
- It would be nice to obtain sharp asymptotics, but this seems difficult. Maybe by developing a version of OZ applicable directly in the (double)random-current representation...

Conclusion

- Another nice example of the power and versatility of the OZ theory!
- It would be nice to obtain sharp asymptotics, but this seems difficult. Maybe by developing a version of OZ applicable directly in the (double)random-current representation...
- Extension to models with richer symmetry group seems interesting (even just a classification of possible behaviors). We could not find literature on the subject.

Thank you for your attention!

