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5 Cluster Expansion

5.1 Introduction

The cluster expansion is a powerful tool in the rigorous study of statistical me-
chanics. It was introduced by Mayer during the early stages of the study of the
phenomenon of condensation and remains widely used nowadays. In particular,
it remains at the core of the implementation of many renormalization arguments
in mathematical physics, yielding rigorous results that no other methods have yet
been able to provide.

Simply stated, the cluster expansion provides a method for studying the loga-
rithm of a partition function. We will use it in various situations, for instance to
obtain new analyticity results for the Ising model in the thermodynamic limit.

In a first application, we will obtain new results on the pressure h 7→ ψβ(h),
completing those of Chapter 3. There, we saw that the pressure is analytic in the
half space {Reh > 0}, but the techniques we used did not provide further quantita-
tive information. Here we will use the cluster expansion to compute the coefficients
of the expansion of ψβ(h)−h, in terms of the variable z = e−2h :

ψβ(h)−h = a0 +a1z +a2z2 +a3z3 + . . . , (Reh large).

In our second application, we will fix h = 0, and study the analyticity of β 7→ψβ(0).
We will obtain, when β is sufficiently small, an expansion in terms of the variable
z = tanh(β),

ψβ(0)−d log(coshβ) = b0 +b1z +b2z2 +b3z3 + . . . , (β small).

One might hope that this series converges for all β < βc(d). Unfortunately, the
method developed in this chapter will guarantee analyticity only when β < β0,
where β0 = β0(d) is some number, strictly smaller than the critical value βc(d). We
will call a regime such as β< β0 a regime of very high temperature to distinguish it
from the high temperature regime β<βc used in earlier chapters.

Similarly, we will also obtain, when β is sufficiently large, an expansion in terms
of the variable z = e−2β,

ψβ(0)−βd = c0 + c1z + c2z2 + c3z3 + . . . , (β large).
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220 Chapter 5. Cluster Expansion

Once again, this series will be guaranteed to converge at very low temperature, that
is for all β>β′

0, where β′
0 >βc(d).

Of course, the cluster expansion is not limited to the study of the pressure in
these different regimes and we will show how it can be used to extract additional
information on other quantities of interest. In particular, at very low temperatures,
we will derive a series expansion for the spontaneous magnetization and prove ex-
ponential decay of the truncated 2-point function.

We hope that this sample of applications will convince the reader that the clus-
ter expansion is a versatile tool that, even though applicable only in restricted re-
gions of the space of parameters, provides there precious information, which is
often unavailable when using other techniques.

Remark 5.1. The cluster expansion will also be used in other parts of this book. We
will use it in Chapter 6 to derive uniqueness of the infinite-volume Gibbs state at
sufficiently high temperatures for a rather large class of models and it will play a
central role in the Pirogov–Sinai theory exposed in Chapter 7. ⋄

5.2 Polymer models

The cluster expansion applies when the model under consideration has a partition
function that can be written in a particular form, already encountered earlier in
the book. For instance, remember from Section 3.7.2 that the configurations of the
Ising model at low temperature were conveniently described using extended geo-
metric objects, the contours, rather than the individual spins; namely (see (3.32)):

1. each configuration was set in one-to-one correspondence with a family of
pairwise disjoint contours;

2. once expressed in terms of contours, the Boltzmann weight split into a prod-
uct of weights associated to the contours.

Relying on this geometric representation, the Peierls argument allowed us to prove
positivity of the spontaneous magnetization at sufficiently low temperature.

Later, when studying the Ising model at high temperature, a different represen-
tation of the partition function was used. Although the objects involved were of
a different nature (especially in higher dimensions, see (3.45)), they also satisfied
some geometric compatibility condition, namely that of being pairwise disjoint.
Moreover, the Boltzmann weight again factorized as a product of the weights asso-
ciated to these objects.

The description of a system in terms of geometrical objects (rather than the
original microscopic components, such as Ising spins) turns out to be common in
equilibrium statistical mechanics; the resulting class of models, usually called poly-
mer models, is precisely the one for which the cluster expansion will be developed.
The corresponding partition functions often have a common structure that can be
exploited to provide, under suitable hypotheses, detailed information on their log-
arithm.

Consider a finite set Γ, the elements of which are called polymers and usually
denoted by γ ∈ Γ. In specific situations, polymers can be complicated objects, but
in this abstract setting we only need two main ingredients:
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1. To each polymer γ ∈ Γ is associated a weight (or activity) w(γ), which can be
a real or complex number.

2. The interaction between polymers is pairwise and is encoded in a function
δ : Γ×Γ→ R, which is assumed to be symmetric (that is, δ(γ,γ′) = δ(γ′,γ))
and to satisfy the following two conditions:

δ(γ,γ) = 0, ∀γ ∈ Γ , (5.1)

|δ(γ,γ′)| ≤ 1, ∀γ,γ′ ∈ Γ . (5.2)

Definition 5.2. The (polymer) partition function is defined by

Ξ
def=

∑
Γ′⊂Γ

{ ∏
γ∈Γ′

w(γ)
}{ ∏

{γ,γ′}⊂Γ′
δ(γ,γ′)

}
, (5.3)

where the sum is over all finite subsets of Γ.

Of course, each pair {γ,γ′} appears only once in the product. We allow Γ′ =∅, in
which case the products are, as usual, defined to be 1.

The polymers will always be geometric objects of finite size living on Zd (or,
possibly, on the dual lattice) and their interaction will be related to pairwise geo-
metric compatibility conditions between the polymers; these conditions will usu-
ally be local, that is, the compatibility of two polymers can be checked by inspecting
their “neighborhood” on Zd .

5.3 The formal expansion

The cluster expansion provides an explicit expansion for logΞ, in the form of a se-
ries. To obtain the coefficients of this expansion, we will perform a sequence of
operations on Ξ, leading to an expression of the form

Ξ= exp(· · · ) .

As a first step, the sum over Γ′ ⊂ Γ can be decomposed according to the number |Γ′|
of polymers contained in Γ′:

∑
Γ′⊂Γ

(· · ·)= 1+
∑

n≥1

∑
Γ′⊂Γ:
|Γ′|=n

(· · ·) .

For convenience, we now transform the second sum over Γ′ ⊂ Γ into a sum over or-
dered n-tuples. So let Gn = (Vn ,En) be the complete graph on Vn = {1,2, . . . ,n}. That
is, Gn is the simple undirected graph in which there is precisely one edge {i , j } ∈ En

for each pair of distinct vertices i , j ∈Vn (see Figure 2.1). We can then write

Ξ= 1+
∑

n≥1

1

n!

∑
γ1

· · ·
∑
γn

{ ∏
i∈Vn

w(γi )
}{ ∏

{i , j }∈En

δ(γi ,γ j )
}

. (5.4)

Notice that, the sum being now over all ordered n-tuples (γ1, . . . ,γn) ∈ ΓVn , we had
to introduce a factor 1

n! to avoid overcounting. Observe that only collections in
which all polymers γ1, . . . ,γn are distinct contribute to the sum, since δ(γi ,γ j ) = 0
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222 Chapter 5. Cluster Expansion

whenever γi = γ j . This means that only a finite number of terms, in this sum over
n ≥ 1, are non-zero.

The next step is the following: rather than working with a sum over the n-tuples
of ΓVn , we will work with a sum over suitable subgraphs of Gn . We write G ⊂Gn to
indicate that G is a subgraph of Gn with the same set of vertices Vn and with a set
of edges which is a subset of En . Given a graph G = (V ,E), we will often write i ∈G ,
respectively e ∈G , instead of i ∈V , respectively e ∈ E .

Subgraphs of Gn can be introduced if one uses the “+1−1” trick to expand the
product containing the interactions between the polymers (see Exercise 3.22). Let-
ting

ζ(γ,γ′) def= δ(γ,γ′)−1,

we get ∏
{i , j }∈En

δ(γi ,γ j ) =
∏

{i , j }∈En

(1+ζ(γi ,γ j )) =
∑

E⊂En

∏
{i , j }∈E

ζ(γi ,γ j ) .

Since a set E ⊂ En can be put in one-to-one correspondence with the subgraph

G ⊂Gn defined by G
def= (Vn ,E), we can interpret the sum over E ⊂ En as a sum over

G ⊂Gn . We thus obtain

Ξ= 1+
∑

n≥1

1

n!

∑
G⊂Gn

∑
γ1

. . .
∑
γn

{ ∏
i∈Vn

w(γi )
}{ ∏

{i , j }∈E
ζ(γi ,γ j )

}

= 1+
∑

n≥1

1

n!

∑
G⊂Gn

Q[G] , (5.5)

where we have introduced, for a graph G = (V ,E),

Q[G]
def=

∑
γ1

· · ·
∑
γ|V |

{∏
i∈V

w(γi )
}{ ∏

{i , j }∈E
ζ(γi ,γ j )

}
.

Let us now define the Ursell functions ϕ on ordered families (γ1, . . . ,γm) by

ϕ(γ1)
def= 1, when m = 1, and

ϕ(γ1, . . . ,γm)
def= 1

m!

∑
G⊂Gm

connected

∏
{i , j }∈G

ζ(γi ,γ j ) ,

when m ≥ 2.

Proposition 5.3.

Ξ= exp
( ∑

m≥1

∑
γ1

· · ·
∑
γm

ϕ(γ1, . . . ,γm)
∏

i∈Vm

w(γi )
)

. (5.6)

Observe that, even if Ξ is a finite sum, the resulting series in (5.6) is infinite, since a
given polymer can appear several times in the same collection, without the Ursell
function necessarily vanishing. In the next section, we will state conditions that
ensure that the series is actually absolutely convergent, which will justify the rear-
rangements done in the proof below. For the time being, however, we are only in-
terested in the structure of its coefficients, so the series in (5.6) should (temporarily)
only be considered as formal.
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Proof of Proposition 5.3: Notice that, if G ′
1, . . . ,G ′

k are the (maximal) connected
components of G , then

Q[G] =
k∏

r=1
Q[G ′

r ] .

Now, observe that Q[G] =Q[G ′] whenever G and G ′ are isomorphic 1. One can thus
replace the vertex set V ′

i of G ′
i by {1, . . . ,mi }, where mi = |V ′

i |. Therefore,

∑
G⊂Gn

Q[G] =
n∑

k=1

∑
G⊂Gn

G=(G ′
1,...,G ′

k )

k∏
r=1

Q[G ′
r ]

=
n∑

k=1

1

k !

∑
m1,...,mk

m1+···+mk=n

n!

m1! · · ·mk !

∑
G ′

1⊂Gm1
connected

· · ·
∑

G ′
k⊂Gmk

connected

k∏
r=1

Q[G ′
r ] , (5.7)

where, in the second identity, the coefficient n!/(m1! · · ·mk !) takes into account the
number of ways of partitioning Vn into k disjoint subsets of respective cardinalities
m1, . . . ,mk ≥ 1. Observe that, at least formally,

∑
n≥1

n∑
k=1

∑
m1,...,mk

m1+···+mk=n

(· · ·)=
∑
k≥1

∑
n≥k

∑
m1,...,mk

m1+···+mk=n

(· · ·)=
∑
k≥1

∑
m1,...,mk

(· · ·) , (5.8)

which leads to

Ξ= 1+
∑
k≥1

1

k !

∑
m1,...,mk

k∏
r=1

{ 1

mr !

∑
G ′

r ⊂Gmr
connected

Q[G ′
r ]

}

= 1+
∑
k≥1

1

k !

( ∑
m≥1

∑
γ1

· · ·
∑
γm

ϕ(γ1, . . . ,γm)
m∏

j=1
w(γ j )

)k
,

which is (5.6).

Let us emphasize the delicate point ignored in the above computation. In a first
step, in (5.5), Ξwas written with the help of a sum

∑
n≥1 an , where n indexes the size

of the complete graph Gn , and where the an are all equal to zero when n is sufficiently
large. In a second step (see (5.7)), each an was decomposed as an =∑n

k=1 bk,n , where
the index k denotes the number of connected components of the subgraph G ⊂ Gn .
Since an vanishes for large n, this means that important cancellations occur among
the bk,n (when summed over k). The main formal computation that requires justifi-
cation was done in (5.8), when we interchanged the summations over n and k:

∑
n≥1

an =
∑

n≥1

n∑
k=1

bk,n =
∑
k≥1

∑
n≥k

bk,n .

Namely, the interchange is allowed only if each of the series
∑

n≥k bk,n is known to
converge, and this is not guaranteed in general. ⋄

1Two graphs G = (V ,E) and G = (V ′,E ′) are isomorphic if there exists a bijection f : V → V ′ such
that an edge e = {x, y} belongs to E if and only if e′ = { f (x), f (y)} belongs to E ′.
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Proving that Ξ has a well-defined logarithm implies in particular that Ξ ̸= 0.
As we saw when studying uniqueness in the Ising model, the absence of zeros of
the partition function on a complex domain (for each Λ along a sequence Λ ⇑ Zd )
entails in fact uniqueness of the infinite-volume Gibbs measure of this model. This
indicates that guaranteeing the absolute convergence of the series for logΞ is non-
trivial in general, and the latter will usually hold only for some restricted range of
values of the parameters of the underlying model.

5.4 A condition ensuring convergence

We now impose conditions on the weights that ensure that the series in (5.6) con-
verges absolutely:

∑
k≥1

∑
γ1

· · ·
∑
γk

|ϕ(γ1, . . . ,γk )|
k∏

i=1
|w(γi )| <∞ . (5.9)

The main ingredient is the following:

Theorem 5.4. Assume that (5.2) holds and that there exists a : Γ→ R>0 such that,
for each γ∗ ∈ Γ, ∑

γ
|w(γ)|ea(γ)|ζ(γ,γ∗)| ≤ a(γ∗) . (5.10)

Then, for all γ1 ∈ Γ,

1+
∑
k≥2

k
∑
γ2

· · ·
∑
γk

|ϕ(γ1,γ2, . . . ,γk )|
k∏

j=2
|w(γ j )| ≤ ea(γ1) . (5.11)

In particular, (5.9) holds.

Remark 5.5. In this chapter, we always assume that |Γ| <∞. Nevertheless, this re-
striction is not necessary. When it is not imposed, in addition to (5.10), one has to
require that ∑

γ
|w(γ)|ea(γ) <∞ . ⋄

The series in (5.10) should remind the reader of those considered when imple-
menting Peierls’ argument, such as (3.37). Actually, verifying that these conditions
hold in a specific situation usually amounts to a similar energy-entropy argument.

⋄

Exercise 5.1. Verify that (5.11) implies (5.9).

Proof of Theorem 5.4: We fix γ1 ∈ Γ and show that, for all N ≥ 2,

1+
N∑

k=2
k

∑
γ2

· · ·
∑
γk

|ϕ(γ1,γ2, . . . ,γk )|
k∏

j=2
|w(γ j )| ≤ ea(γ1) . (5.12)

Clearly, letting N →∞ in (5.12) yields (5.11). The proof of (5.12) is done by induc-
tion over N .
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For N = 2, the only connected graph G ⊂G2 is the one with one edge connecting
1 and 2, and so ϕ(γ1,γ2) = 1

2!ζ(γ1,γ2). Therefore, the left-hand side of (5.12) is

1+2
∑
γ2

|ϕ(γ1,γ2)||w(γ2)| = 1+
∑
γ2

|ζ(γ1,γ2)||w(γ2)| ≤ ea(γ1) ,

where we used 1 ≤ ea(γ2), (5.10) and 1+x ≤ ex . This proves (5.12) for N = 2. We now
show that if (5.12) holds for N , then it also holds for N +1.

To do that, consider the left-hand side of (5.12) with N + 1 in place of N , take
some k ≤ N +1, and consider any connected graph G ⊂ Gk appearing in the sum
defining ϕ(γ1,γ2, . . . ,γk ). Let E ′ denote the non-empty set of edges of G with an
endpoint at 1. The graph G ′, obtained from G by removing 1 together with each
edge of E ′, splits into a set of connected components G ′

1, . . . ,G ′
l .

1

2

7

5

8

6

3

4

9

G ′
1

G ′
2

G ′
3

We can thus see G as obtained by (i) partitioning the set {2,3, . . . ,k} into subsets
V ′

1, . . . ,V ′
l , l ≤ k −1, (ii) associating to each V ′

i a connected graph G ′
i , and (iii) con-

necting 1 in all possible ways to at least one point in each connected component
V ′

i . Accordingly,

ϕ(γ1,γ2, . . . ,γk ) = (5.13)

1

k !

k−1∑
l=1

1

l !

∑
V ′

1,...,V ′
l

l∏
i=1

{ ∑
G ′

i :V (G ′
i )=V ′

i
connected

∏
{i ′, j ′}∈G ′

i

ζ(γi ′ ,γ j ′ )
}{ ∑

Ki⊂V ′
i

Ki ̸=∅

∏
j ′∈Ki

ζ(γ1,γ j ′ )
}

.

The next step is to specify the number of points in each V ′
i . If |V ′

i | = mi ,

∑
G ′

i :V (G ′
i )=V ′

i
connected

∏
{i ′, j ′}∈G ′

i

ζ(γi ′ ,γ j ′ ) = mi !ϕ
(
(γ j ′ ) j ′∈V ′

i

)
.

Moreover, ∑
Ki⊂V ′

i
Ki ̸=∅

∏
j ′∈Ki

ζ(γ1,γ j ′ ) =
{ ∏

j ′∈V ′
i

(
1+ζ(γ1,γ j ′ )

)}−1. (5.14)

Exercise 5.2. Assuming |1+αk | ≤ 1 for all k ≥ 1, show that

∣∣∣
n∏

k=1
(1+αk )−1

∣∣∣≤
n∑

k=1
|αk | . (5.15)
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Since (5.2) guarantees that |1+ζ| ≤ 1, (5.14) and (5.15) yield
∣∣∣

∑
Ki⊂V ′

i
Ki ̸=∅

∏
j ′∈Ki

ζ(γ1,γ j ′ )
∣∣∣≤

∑
j ′∈V ′

i

|ζ(γ1,γ j ′ )| .

We now use (5.13) to bound the sum on the left-hand side of (5.12) (with N +1 in
place of N ). The sum over the sets V ′

i will be made as in the proof of Proposition 5.3:
the number of partitions of {2,3, . . . ,k} into (V ′

1, . . . ,V ′
l ), with |V ′

i | = mi , m1+·· ·+ml =
k −1, is equal to (k−1)!

m1!···ml ! . But, since the summands are nonnegative, we can bound

N+1∑
k=2

k−1∑
l=1

∑
m1,...,ml :

m1+···+ml=k−1

(· · ·)=
N∑

l=1

N+1∑
k=l+1

∑
m1,...,ml :

m1+···+ml=k−1

(· · ·)

≤
N∑

l=1

N∑
m1=1

· · ·
N∑

ml=1

(· · ·) ,

which leaves us with

N+1∑
k=2

k
∑
γ2

· · ·
∑
γk

|ϕ(γ1,γ2, . . . ,γk )|
k∏

j=2
|w(γ j )|

≤
∑
l≥1

1

l !

l∏
i=1

{ N∑
mi=1

∑
γ′1

· · ·
∑
γ′mi

|ϕ(γ′1, . . . ,γ′mi
)|

mi∏
j ′=1

|w(γ′j ′ )|
mi∑

j ′=1

|ζ(γ1,γ′j ′ )|
}

. (5.16)

Lemma 5.6. If (5.12) holds, then, for all γ∗ ∈ Γ,

N∑
k=1

∑
γ1

· · ·
∑
γk

{ k∑
i=1

|ζ(γ∗,γi )|
}
|ϕ(γ1, . . . ,γk )|

k∏
j=1

|w(γ j )| ≤ a(γ∗) . (5.17)

Proof. We fix γ∗ ∈ Γ, and multiply both sides of (5.12) by |ζ(γ∗,γ1)| · |w(γ1)|, and
sum over γ1. Using (5.10), the right-hand side of the expression obtained can be
bounded by a(γ∗), whereas the left-hand side becomes

N∑
k=1

k
∑
γ1

· · ·
∑
γk

|ζ(γ∗,γ1)||ϕ(γ1, . . . ,γk )|
k∏

j=1
|w(γ j )| .

But clearly, for all i ∈ {2, . . . ,k},

∑
γ1

· · ·
∑
γk

|ζ(γ∗,γ1)||ϕ(γ1, . . . ,γk )|
k∏

j=1
|w(γ j )|

=
∑
γ1

· · ·
∑
γk

|ζ(γ∗,γi )||ϕ(γ1, . . . ,γk )|
k∏

j=1
|w(γ j )| ,

which proves the claim.

Using (5.17), we can bound (5.16) by
∑

l≥1
1
l ! a(γ1)l = ea(γ1) −1. This concludes

the proof of Theorem 5.4.

The determination of a suitable function a(γ) for (5.10) will depend on the
problem considered. As we will see in the applications below, a(γ) will usually be
naturally related to some measure of the size of γ.
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Example 5.7. As the most elementary application of the previous lemma, let us
consider the expansion of log(1+ z) for small |z|.

The function 1+z can be seen as a particularly simple example of polymer par-
tition function: one with a single polymer, Γ = {γ}, and a weight w(γ) = z. Indeed,
in this case, there are only two terms in the right-hand side of (5.3) (Γ′ = ∅ and
Γ′ = {γ}) and the partition function reduces to

Ξ= 1+ z .

Condition (5.10) then becomes
|z|ea ≤ a ,

where a > 0 is a constant we can choose. Since a 7→ ae−a is maximal when a = 1,
the best possible choice for a is a = 1 and the condition for convergence becomes

|z| ≤ e−1 .

Theorem 5.4 then guarantees convergence of the cluster expansion for logΞ for all
such values of z: by (5.6),

log(1+ z) = logΞ=
∑

m≥1
ϕm zm ,

where we have introduced

ϕm
def= ϕ (γ, . . . ,γ)︸ ︷︷ ︸

m copies

= 1

m!

(m
2

)
∑
k=0

(−1)k |Gm,k | ,

and Gm,k is the set of all connected subgraphs of the complete graph Gm with m
vertices and k edges.

It is instructive to compare the above result with the classical Taylor expansion

log(1+ z) =
∑

m≥1

(−1)m−1

m
zm .

First, we see that the condition in Theorem 5.4 is not optimal, since the latter series
actually converges whenever |z| < 1. Moreover, identifying the coefficients of zn in
both expansions, we obtain the following nontrivial combinatorial identity:

(m
2

)
∑
k=0

(−1)k |Gm,k | = (−1)m−1(m −1)! . ⋄

5.5 When the weights depend on a parameter

The convergence of the cluster expansion is very often used to prove analyticity of
the pressure in the thermodynamic limit. So let us assume that the weights of the
polymers depend on some complex parameter:

z 7→wz (γ) , z ∈ D ,

where D is a domain of C. When each weight depends smoothly (for example, an-
alytically) on z, it can be useful to determine whether this smoothness extends to
logΞ.
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Theorem 5.8. Assume that z 7→wz (γ) is analytic on D, for each γ ∈ Γ, and that there
exists a real weight w(γ) ≥ 0 such that

sup
z∈D

|wz (γ)| ≤w(γ) , ∀γ ∈ Γ , (5.18)

and such that (5.10) holds with w(γ) in place of w(γ). Then, (5.6) and (5.9) hold
with wz (γ) in place of w(γ), and z 7→ logΞ is analytic on D.

Proof. Let us write the expansion as logΞ=∑
n≥1 fn(z), where

fn(z)
def=

∑
γ1

· · ·
∑
γn

ϕ(γ1, . . . ,γn)
n∏

i=1
wz (γi ) .

Since |Γ| <∞, fn is a sum containing only a finite number of terms; it is therefore
analytic in D . If we can verify that the series

∑
n fn is uniformly convergent on com-

pact sets K ⊂ D , Theorem B.27 will imply that it represents an analytic function on
D . We therefore compute

sup
z∈K

∣∣∣
∑

n≥1
fn(z)−

N∑
n=1

fn(z)
∣∣∣≤ sup

z∈K

∑
n>N

| fn(z)|

≤
∑

n>N
sup
z∈K

| fn(z)|

≤
∑

n>N

∑
γ1

· · ·
∑
γn

|ϕ(γ1, . . . ,γn)|
n∏

i=1
w(γi ) . (5.19)

By our assumptions, Theorem 5.4 implies that (5.9) holds, with w(·) in place of
|w(·)|. This implies that (5.19) goes to zero when N →∞. The fact that (5.11) holds
is immediate.

5.6 The case of hard-core interactions

Up to now, we have considered fairly general interactions. But often in practice, and
in all cases treated in this book, δ takes the particularly simple form of a hard-core
interaction, that is,

δ(γ,γ′) ∈ {0,1} for all γ,γ′ ∈ Γ.

In such a case, two polymers γ and γ′ will be said to be compatible if δ(γ,γ′) = 1
and incompatible if δ(γ,γ′) = 0. Obviously, only collections of pairwise compatible
polymers yield a non-zero contribution to the partition function Ξ in (5.4).

Let us now turn to the series (5.6) for logΞ. We say that a collection {γ1, . . . ,γn}
is decomposable if it is possible to express it as a disjoint union of two non-empty
sets, in such a way that each γi in the first set is compatible with each γ j in the
second. It follows immediately from the definition of the Ursell functions that

ϕ(γ1, . . . ,γn) = 0 if {γ1, . . . ,γn} is decomposable.

In particular, the non-zero contributions to logΞ in (5.6) therefore come from the
non-decomposable collections. An unordered, non-decomposable collection X =
{γ1, . . . ,γn} is called a cluster. Note that X is actually a multiset, that is, the same
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polymer can appear multiple times. We denote by nX (γ) the number of times the
polymer γ ∈ Γ appears in X . We can write

logΞ=
∑

n≥1

∑
γ1

· · ·
∑
γn

ϕ(γ1, . . . ,γn)
n∏

i=1
w(γi ) =

∑
X
Ψ(X ) ,

where the sum is over all clusters of polymers in Γ and, for a cluster X = {γ̃1, . . . , γ̃n},

Ψ(X )
def=

{∏
γ∈Γ

1

nX (γ)!

}{ ∑
G⊂Gn

connected

∏
{i , j }∈G

ζ(γ̃i , γ̃ j )
} n∏

i=1
w(γ̃i ) . (5.20)

Indeed, given a cluster X = {γ̃1, . . . , γ̃n}, there are n!∏
γ∈ΓnX (γ)! distinct ways of assign-

ing the polymers γ̃1, . . . , γ̃n to the summation variables γ1, . . . ,γn above.

5.7 Applications

The cluster expansion can be applied in many situations. Our main systematic use
of it will be in Chapter 7, when developing the Pirogov–Sinai theory. We will also
use it to obtain a uniqueness criterion for infinite-volume Gibbs measures, in Sec-
tion 6.5.4.

Before that, we apply it in various ways to the Ising model (and to the corre-
sponding nearest-neighbor lattice gas). We will see that to different regions of the
phase diagram correspond different well-suited polymer models. The cluster ex-
pansion can then be used to extract useful information on the model for parame-
ters in these regions.

When checking Condition (5.10), we will see that the regions in which the clus-
ter expansion converges for those polymer models are all far from the point (β,h) =
(βc,0):

large h > 0 (Section 5.7.1)

large h < 0 (Section 5.7.1)

βc

large β (Section 5.7.4)

small β (Section 5.7.3)

h

β

5.7.1 The Ising model in a strong magnetic field

Consider the Ising model with a complex magnetic field h ∈ C, at an arbitrary in-
verse temperature β ≥ 0. The Lee–Yang Circle theorem proved in Chapter 3 yields

existence and analyticity of the pressure in the half planes H+ def= {h ∈C : Reh > 0}

and H− def= {h ∈C : Reh < 0}. Here, we will use the cluster expansion to obtain a
weaker result, namely that analyticity holds in the regions {h ∈C : Reh > x0 > 0}
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and {h ∈C : Reh <−x0 < 0} (see below for the value of x0). Although theses regions
are proper subsets of the half-planes H+ and H−, the convergent expansion pro-
vides a wealth of additional information on the pressure in these regions, not pro-
vided by the Lee–Yang approach.

We will consider the case Reh > 0. As seen in Chapter 3, when h ∈ R, the pres-
sure does not depend on the boundary condition used in the thermodynamic limit,
and we can thus choose the most convenient one. In this section, this turns out to
be the + boundary condition. The first step is to define a polymer model that is well
suited for the analysis of the Ising model with a large magnetic field.

When the magnetic field h > 0 is large, there is a very strong incentive for spins
to take the value +1. It is therefore natural to describe configurations by only keeping
track of the negative spins. ⋄

We emphasize the role of the negative spins by writing the Hamiltonian as fol-
lows:

HΛ;β,h =−β
∑

{i , j }∈E b
Λ

σiσ j −h
∑
i∈Λ

σi

=−β|E b
Λ|−h|Λ|−β

∑

{i , j }∈E b
Λ

(σiσ j −1)−h
∑
i∈Λ

(σi −1) . (5.21)

Let ω ∈Ω+
Λ. Introducing the set

Λ−(ω)
def= {i ∈Λ : ωi =−1} , (5.22)

we can write

HΛ;β,h(ω) =−β|E b
Λ|−h|Λ|+2β|∂eΛ

−(ω)|+2h|Λ−(ω)| ,

where we remind the reader that ∂e A
def= {

{i , j } : i ∼ j , i ∈ A, j ̸∈ A
}
. Notice that

HΛ;β,h has a unique ground state, namely the constant configuration η+ (in which
all spins equal +1), for whichΛ−(η+) =∅ and

HΛ;β,h(η+) =−β|E b
Λ|−h|Λ| .

We can then write the partition function by emphasizing that configurationsωwith
Λ−(ω) ̸=∅ represent deviations from the ground state:

Z+
Λ;β,h = eβ|E

b
Λ |+h|Λ| ∑

Λ−⊂Λ
e−2β|∂eΛ

−|−2h|Λ−|

= eβ|E
b
Λ |+h|Λ|

{
1+

∑
Λ−⊂Λ:
Λ− ̸=∅

e−2β|∂eΛ
−|−2h|Λ−|

}
.

Let us declare two vertices i , j ∈Λ− to be connected if d1(i , j )
def= ∥ j −i∥1 = 1. We can

then decomposeΛ− into maximal connected components (see Figure 5.1):

Λ− = S1 ∪·· ·∪Sn .
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Figure 5.1: A configuration of the Ising model. Each connected component
of the shaded area delimits one of the polymers S1, . . . ,S17.

By definition, d1(Si ,S j )
def= inf

{
d1(k, l ) : k ∈ Si , l ∈ S j

} > 1 if i ̸= j . The compo-
nents Si play the role of the polymers in the present application. Since |∂eΛ

−| =∑n
i=1 |∂e Si | and |Λ−| =∑n

i=1 |Si |, we can write

Z+
Λ;β,h = eβ|E

b
Λ |+h|Λ|ΞLF

Λ;β,h , (5.23)

where the large-field polymer partition function is

ΞLF
Λ;β,h

def= 1+
∑

n≥1

1

n!

∑
S1⊂Λ

· · ·
∑

Sn⊂Λ

{ n∏
i=1

wh(Si )
}{ ∏

1≤i< j≤n
δ(Si ,S j )

}
. (5.24)

Each sum
∑

Si⊂Λ is over non-empty connected subsets of Λ (from now on, all sets
denoted by the letter S, with or without a subscript, will be considered as non-
empty and connected), the weights are

wh(Si )
def= e−2β|∂e Si |−2h|Si | ,

and the interactions are of hard-core type:

δ(Si ,S j )
def=

{
1 if d1(Si ,S j ) > 1,

0 otherwise.

We will now show that there exists a function a(S) ≥ 0 such that (5.10) holds
when Reh is taken sufficiently large. In the present context, this condition be-
comes

∀S∗ ⊂Λ ,
∑

S⊂Λ
|wh(S)|ea(S)|ζ(S,S∗)| ≤ a(S∗) , (5.25)

where we remind the reader that ζ(S,S∗)
def= δ(S,S∗)−1. Observe that ζ(S,S∗) ̸= 0 if

and only if S ∩ [S∗]1 ̸=∅, where

[S∗]1
def=

{
j ∈Zd : d1( j ,S∗) ≤ 1

}
.
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Therefore, the sum in (5.25) can be bounded by
∑

S⊂Λ
|wh(S)|ea(S)|ζ(S,S∗)| ≤ |[S∗]1| max

j∈[S∗]1

∑
S∋ j

|wh(S)|ea(S) ,

where now the sum over S ∋ j is an infinite sum over all finite connected subsets of
Zd that contain the point j . Let us define, for all S,

a(S)
def= |[S]1| .

Since both the weights and a(·) are invariant under translations,

max
j∈[S∗]1

∑
S∋ j

|wh(S)|e |[S]1| =
∑
S∋0

|wh(S)|e |[S]1| .

Therefore, guaranteeing that
∑
S∋0

|wh(S)|e |[S]1| ≤ 1 (5.26)

ensures that (5.25) is satisfied. The weightwh(S) contains two terms: a surface term
e−2β|∂e S|, and a volume term e−2h|S|. Observe that e |[S]1| is also a volume term, since

|S| ≤ |[S]1| ≤ (2d +1)|S| .

We therefore see that, in order for the series in (5.26) to converge and be smaller
or equal to 1, the real part of the magnetic field will need to be taken sufficiently
large for e−2Reh|S| to compensate e(2d+1)|S|. It will also be necessary to compensate
for the number of sets S ∋ 0 as a function of their size, since the latter also grows
exponentially fast with |S|. The surface term, on the other hand, will be of no help
and will be simply bounded by 1. So, grouping the sets S ∋ 0 by size,

∑
S∋0

|wh(S)|e |[S]1| =
∑
k≥1

e−2kReh
∑
S∋0
|S|=k

e−2β|∂e S|e |[S]1|

≤
∑
k≥1

e−(2Reh−2d−1)k #{S ∋ 0 : |S| = k} .

Exercise 5.3. Using Lemma 3.38, show that

#{S ∋ 0 : |S| = k} ≤ (2d)2k . (5.27)

Using (5.27), we get ∑
S∋0

|wh(S)|e |[S]1| ≤ η(Reh,d) , (5.28)

where η(x,d)
def= ∑

k≥1 e−(2x−2d−1−2log(2d))k . If we define

x0 = x0(d)
def= inf

{
x > 0 : η(x,d) ≤ 1

}

and let
H+

x0

def= {h ∈C : Reh > x0} ,

then, for all h ∈ H+
x0

, the cluster expansion

logΞLF
Λ;β,h =

∑
n≥1

∑
S1⊂Λ

· · ·
∑

Sn⊂Λ
ϕ(S1, . . . ,Sn)

n∏
i=1

wh(Si )
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converges absolutely. As seen in Section 5.6, the contributions to the expansion
come from the clusters X = {S1, . . . ,Sn}. We define the support of X = {S1, . . . ,Sn} by

X
def= S1 ∪·· ·∪Sn . With these notations,

∑
n≥1

∑
S1⊂Λ

· · ·
∑

Sn⊂Λ
ϕ(S1, . . . ,Sn)

n∏
i=1

wh(Si ) =
∑

X : X⊂Λ
Ψ(X ) ,

whereΨ(·) was defined in (5.20).
We will now see how to use this to extract the volume and surface contributions

to the pressure in Λ. First, notice that, when defining x0 above, we have actually
guaranteed that the sum in (5.28) converges even if the sum is over all connected
subsets S ∋ 0 (not only over those contained in Λ). This allows us to bound series
containing clusters of all sizes whose support includes a given vertex: using Theo-
rem 5.4 for the terms n ≥ 2,

∑

X : X∋i

|Ψ(X )| ≤
∑

n≥1
n

∑
S1∋i

∑
S2

· · ·
∑
Sn

|ϕ(S1, . . . ,Sn)|
n∏

k=1
|wh(Sk )|

≤
∑

S1∋i
|wh(S1)|e |[S1]1| ≤ η(Reh,d) ≤ 1. (5.29)

We can then rearrange the terms of the cluster expansion in Λ as follows. Since
1
|X |

∑
i∈Λ1{X∋i } = 1 for any X ⊂Λ,

∑

X : X⊂Λ
Ψ(X ) =

∑
i∈Λ

∑
X :

i∈X⊂Λ

1

|X |
Ψ(X )

=
∑
i∈Λ

{∑
X :

i∈X

1

|X |
Ψ(X )−

∑
X :

i∈X ̸⊂Λ

1

|X |
Ψ(X )

}
. (5.30)

The difference between the two series is well defined, since both are absolutely con-
vergent. Notice that both of them contain clusters of unbounded sizes. By trans-
lation invariance, the first sum over X in the right-hand side of (5.30) does not de-
pend on i , and thus yields a constant contribution. The second sum is a boundary
term. Indeed, whenever i ∈ X ̸⊂Λ, there must exist at least one component Sk ∈ X
which intersects the boundary of Λ: X ∩∂exΛ ̸=∅. Therefore, using (5.29) for the
second inequality,

∣∣∣
∑
i∈Λ

∑
X :

i∈X ̸⊂Λ

1

|X |
Ψ(X )

∣∣∣≤ |∂exΛ| max
j∈∂exΛ

∑

X : X∋ j

|Ψ(X )| ≤ |∂exΛ| .

We thus obtain

1

|Λ| logZ+
Λ;β,h =β

|E b
Λ|

|Λ| +h +
∑

X : X∋0

1

|X |
Ψ(X )+ O(|∂exΛ|)

|Λ| . (5.31)

We now fix h ∈ H+
x0

and take the thermodynamic limit in (5.31) along
the sequence of boxes B(n). In this limit, the boundary term vanishes and
|E b

B(n)
|/|B(n)|→ d , yielding

ψβ(h) =βd +h +
∑

X : X∋0

1

|X |
Ψ(X ) , Reh > x0 . (5.32)



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

234 Chapter 5. Cluster Expansion

Remark 5.9. Inserting (5.32) into (5.31), we can write, for any fixed regionΛ,

Z+
Λ;β,h = eψβ(h)|Λ|+O(|∂exΛ|) , (5.33)

which provides a direct access to the finite-volume corrections to the pressure (the
boundary term can of course be written down explicitly, as was done above). Thus,
the cluster expansion provides a tool to study systematically finite-size effects, at
least in perturbative regimes. This plays a particularly important role when extract-
ing information about thermodynamic behavior from (finite-volume) numerical
simulations. Such a decomposition will also be used repeatedly in Chapter 7. ⋄

The cluster expansion of the pressure, in (5.32), describes the contributions to
the pressure when Reh is large. Namely, the termβd+h corresponds to the energy
density of the ground state η+:

lim
n→∞

−HB(n);β,h(η+)

|B(n)| =βd +h .

The contributions due to the excitations away from η+ are added successively by
considering terms of the series associated to larger and larger clusters. The contri-
bution of a cluster X = {S1, . . . ,Sn} is of order e−2h(|S1|+···+|Sn |). Thanks to the abso-
lute summability of the series (5.32), we can regroup all terms coming from clusters
contributing to the same order e−2nh , n ≥ 1. In this way, we obtain an absolutely
convergent series for ψβ(h)−βd −h in the variable e−2h .

Lemma 5.10. When h ∈ H+
x0

, the pressure of the Ising model on Zd satisfies, with

z = e−2h ,
ψβ(h)−βd −h = a1z +a2z2 +a3z3 +·· · , (5.34)

where

a1 = e−4dβ ,

a2 = de−(8d−4)β− ( 1
2 +d)e−8dβ .

Proof. As pointed out above, the contribution of a cluster X = {S1, . . . ,Sn} is of or-
der e−2h(|S1|+···+|Sn |). The associated combinatorial factor can be read from (5.20)
and (5.32), namely

1

|X |︸︷︷︸
A

∏
S∈Γ

1

nX (S)!
︸ ︷︷ ︸

B

{ ∑
G⊂Gn

connected

∏
{i , j }∈G

ζ(Si ,S j )

︸ ︷︷ ︸
C

} n∏
i=1

wh(Si ) ,

where Γ is here the set of all connected components in Zd . The only cluster con-
tributing to a1 is the cluster composed of the single polymer {0}. In this case, A = 1,
B = 1 and C = 1; this yields the first coefficient since ∂e {0} = 2d .

There are two types of clusters contributing to a2: the clusters composed of a
single polymer of size 2 containing 0, and the clusters made of two polymers of size
1, at least one of which is {0}.

Let us first consider the former: there are exactly 2d polymers of size 2 contain-
ing the origin and, for each such polymer S, ∂e S = 2(2d −1), A = 1

2 , B = 1 and C = 1;
this yields a contribution

2d · 1

2
·e−2(2d−1)2β = de−(8d−4)β .
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Let us now turn to the clusters made up of two polymers of size 1, at least one of
which is {0}. The first possibility is that both polymers are {0}, and therefore A = 1,
B = 1

2 and C =−1; this yields the contribution

− 1
2 e−2·4dβ =− 1

2 e−8dβ .

The second possibility is that X = {S1,S2} = {{0}, {i }}, with i ∼ 0. There are 2d ways
of choosing i , and for each of those, A = 1

2 , B = 1 and C = −1; we thus obtain a
contribution of

2d · (− 1
2 ) ·e−2·4dβ =−de−8dβ .

It is of course possible to compute the coefficients to arbitrary order, but the com-
putations become tricky when the order gets large.

Exercise 5.4. Show that

a3 = ((2d +1)d + 1
3 )e−12d β−4d 2e−(12d−4)β+d(2d −1)e−(12d−8)β .

Remark 5.11. The expansion obtained in (5.34) converges when |z| < e−2x0 . Re-
member that the Lee–Yang theorem (Theorem 3.43) implies analyticity of the pres-
sure (as a function of z) in the whole open unit disk U = {z ∈ C : |z| < 1}. By the
uniqueness of the Taylor coefficients, this means that the series in (5.34) converges
not only for Reh > x0, but for all Reh > 0. ⋄

Using the + boundary condition was quite convenient, but the same analysis
could have been done with any other boundary condition, with slight changes, and
would have led to the same expansion (5.32), only the boundary term in (5.30) be-
ing affected by the choice of boundary condition.

Exercise 5.5. Prove that last statement. What changes must be made if one uses
non-constant boundary conditions? Conclude that, when |Reh| is large, the ther-
modynamic limit for the pressure exists for arbitrary boundary conditions.

To summarize, we have seen that considering the Ising model with Reh > 0
large allows one to see the regions of − spins as perturbations of the ground-state
η+. These perturbations are under control whenever the cluster expansion con-
verges. This led us to a series expansion for the pressure of the model in the variable
e−2h .

5.7.2 The virial expansion for the lattice gas

(In order for him to get motivation and notation for the material in this section, we
strongly recommend the reader to have a look at Chapter 4.)

We have seen, in Section 4.8, that the pressure pβ(µ) of the nearest-neighbor
lattice gas is analytic everywhere except at µ∗, where it has a discontinuous deriva-
tive if the temperature is sufficiently low. To express the pressure as a function of

the particle density ρ ∈ [0,1], we inverted the relation ρ = ∂pβ
∂µ , to obtain µβ =µβ(ρ),

and defined p̃β(ρ)
def= pβ(µβ(ρ)). The latter function was shown to be analytic on the

gas branch (0,ρg ), constant on the coexistence plateau [ρg ,ρl ], and again analytic
on the liquid branch (ρl ,1) (see Figure 4.11 and Exercise 4.10).
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In this section, we go one step further. We will consider the behavior of the
model on the gas branch, for small values of the density, and obtain a representa-
tion of p̃β as a convergent series, called the virial expansion:

βp̃β(ρ) = b1ρ+b2ρ
2 +b3ρ

3 +·· · (ρ small) ,

with (in principle) explicit expressions for the virial coefficients bk , k ≥ 1.

The canonical lattice gas at low density corresponds, in the grand canonical
ensemble, to large negative values of the chemical potential µ (remember Exer-
cise 4.6). We have also seen in Section 4.8 that the nearest-neighbor lattice gas can
be mapped, via ηi 7→ 2ηi −1, to the Ising model with an inverse temperatureβ′ = 1

4β

and magnetic field h′ = β
2 (2d +µ); in particular, their pressures are related by

βpβ(µ) =ψβ′ (h′)+ βµ
2 + βκ

8 . (5.35)

Since a large negative chemical potential corresponds to a large negative magnetic
field, we can derive the virial expansion from the results for the Ising model at large
values of Reh which were obtained in the previous section. Namely, using the
symmetry ψβ(−h) =ψβ(h) and using the expansion (5.34), in terms of the variable

z ′ = e2h′
, with Reh′ <−x0:

ψβ′ (h′) =β′d −h′+a1z ′+a2z ′2 +a3z ′3 + . . . (5.36)

(Remember that each an should be used with β′ instead of β.) This gives

βpβ(µ) =
∑

n≥1
an z ′n , (5.37)

which is called the Mayer expansion. The Mayer series is absolutely convergent

and can therefore be differentiated term by term with respect to µ. Since ∂z ′n
∂µ =

nβz ′n , this yields

ρ =
∂pβ
∂µ

=
∑

n≥1
nan z ′n def=

∑
n≥1

ãn z ′n def= φ(z ′) .

We will obtain the virial expansion by inverting this last expression, obtaining z ′ =
φ−1(ρ), and injecting the result into (5.37). Since dφ

dz (0) = a1 = e−4dβ > 0, the ana-
lytic Implicit Function Theorem (Theorem B.28) implies that φ can indeed be in-
verted on a small disk D ⊂ C centered at the origin, and the inverse is analytic on
that disk. We write the Taylor expansion of the inverse by φ−1(ρ) = ∑

k ckρ
k . As-

suming that the coefficients ck are known (they will be computed below), we can
write down the virial expansion. Namely,

βp̃β(ρ) =
∑

n≥1
an{φ−1(ρ)}n

=
∑

n≥1
an

∑
k1≥1

· · ·
∑

kn≥1

n∏
i=1

cki ρ
ki

=
∑

n≥1
an

∑
m≥n

∑
k1,...,kn≥1

k1+···+kn=m

n∏
i=1

cki ρ
ki =

∑
m≥1

b̃mρ
m ,
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where

b̃m
def=

m∑
n=1

an
∑

k1,...,kn≥1
k1+···+kn=m

n∏
i=1

cki .

A similar computation can be used in the following exercise.

Exercise 5.6 (Computing the Taylor coefficients of an inverse function). Let φ(z) =∑
k≥1 ãk zk be convergent in a neighborhood of z = 0, with ã1 ̸= 0 (in particular, φ

is invertible in a neighborhood of z = 0). Write its compositional inverse φ−1 as
φ−1(z) =∑

k≥1 ck zk . Show that c1 = ã−1 and that, for all m ≥ 2,

m∑
n=1

ãn
∑

k1,...,kn≥1
k1+···+kn=m

n∏
i=1

cki = 0.

Using this, compute the first few coefficients of φ−1:

c2 =− ã2

ã3
1

, c3 = 2
ã2

2

ã5
1

− ã3

ã4
1

, etc.

As can be verified, using the coefficients ak computed in Lemma 5.10,

b̃1 = 1, b̃2 =−a2

a2
1

= 1
2 +d −deβ , etc.

We have thus shown

Theorem 5.12. At low densities, the pressure of the nearest-neighbor lattice gas sat-
isfies

βp̃β(ρ) = ρ+ ( 1
2 +d −deβ)ρ2 +O(ρ3) .

5.7.3 The Ising model at high temperature (h = 0)

In this section, we consider again the pressure of the Ising model but in another
regime: h = 0 and β≪ 1. In the latter, thermal fluctuations are so strong that the
spins behave nearly independently from each other.

We choose the free boundary condition, as it is the most convenient one in the
high-temperature regime. Proceeding as in Section 3.7.3, we express the partition
function as in Exercise 3.23:

Z∅
Λ;β,0 = 2|Λ|(coshβ)|EΛ|

∑
E∈Eeven

Λ

(tanhβ)|E | , (5.38)

where the sum is over all subsets of edges E ⊂ EΛ such that the number of edges of
E incident to each vertex i ∈Λ is even.

Each set E ∈ Eeven
Λ can be identified with a graph, by simply considering it to-

gether with the endpoints of each of its edges. This graph can be decomposed into
(maximal) connected components, which play the role of polymers. In terms of
edges, this decomposition can be written E = E1 ∪·· ·∪En , so that we obtain

Z∅
Λ;β,0 = 2|Λ|(coshβ)|EΛ|ΞHT

Λ;β,0 ,
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with

ΞHT
Λ;β,0

def= 1+
∑

n≥1

1

n!

∑
E1⊂EΛ

· · ·
∑

En⊂EΛ

{ n∏
i=1

(tanhβ)|Ei |
} ∏

1≤i< j≤n
δ(Ei ,E j ) ,

where Ei ∈Eeven
Λ , for all i , and

δ(Ei ,E j )
def=

{
1 if Ei and E j have no vertex in common,

0 otherwise,

is again of hard-core type.

The above representation is well suited to the high-temperature regime, since
the weight (tanhβ)|Ei |, associated to a polymer Ei , decays fast when β is small. ⋄

Proceeding as in Section 5.7.1, we can show that the conditions for the con-
vergence of the cluster expansion are satisfied when β is sufficiently small, thus
proving that the pressure behaves analytically at high temperature:

Theorem 5.13. There exists r0 > 0 such that β 7→ ψβ(0) is analytic in the disk{
β ∈C : |β| < r0

}
.

Exercise 5.7. Prove Theorem 5.13, and compute the first few terms of the expansion
of ψβ(0)−d log(coshβ)− log2 as a power series in the variable z = tanhβ.

Remark 5.14. Even though we have only considered analyticity of the pressure as
a function of β here, it is possible to extract a lot of additional information on the
model in this regime. In Section 6.5.4, we will use a variant of the above approach
to prove uniqueness of the infinite volume Gibbs measure at all sufficiently high
temperatures, for a large class of models. ⋄

It follows from the results of Chapter 3 that h 7→ ψβ(h) is continuously differ-
entiable at h = 0 when β < βc(d). In the next exercise, the reader is asked to adapt
the high-temperature representation to show that it is in fact analytic in a neigh-
borhood of h = 0, at least when β is sufficiently small.

Exercise 5.8. Show that there exists β0 = β0(d) > 0 such that, for all 0 ≤ β ≤ β0,
h 7→ψβ(h) is analytic at h = 0.

5.7.4 The Ising model at low temperature (h = 0)

We now consider the Ising model on Zd , d ≥ 2, at very low temperature and in the
absence of a magnetic field. Our goals, in this regime, are (i) to establish analyticity
of the pressure β 7→ ψβ(0), (ii) to derive an explicit series expansion for the mag-
netization and (iii) to prove exponential decay of the truncated 2-point correlation
function 〈σi ;σ j 〉+β,0 as ∥i − j∥2 →∞.

We know from Section 3.7.2 that, when h = 0 and β is large, the relevant objects
for the description of configurations are the contours separating the regions of +
and − spins. In dimension 2, we used the deformation rule of Figure 3.11. Since
that deformation was specific to d = 2, we will here define contours in a slightly
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different manner. The description will be used in any dimension d ≥ 2, in a large
boxΛ, with either + or − boundary condition.

We again write the Hamiltonian in a way that emphasizes the role played by
pairs of neighboring spins with opposite signs:

HΛ;β,0 =−β|E b
Λ|−β

∑

{i , j }∈E b
Λ

(σiσ j −1) . (5.39)

We consider the + boundary condition in a region Λ⋐ Zd . Given ω ∈Ω+
Λ, we use

againΛ−(ω) to denote the set of vertices i at whichωi =−1. Rather thanΛ−(ω) itself
(which was relevant when considering a large magnetic field), we will be interested
only in its boundary.

We associate to each i ∈Zd the closed unit cube of Rd centered at i :

Si
def= i + [− 1

2 , 1
2 ]d ,

and let

M (ω)
def=

⋃
i∈Λ−(ω)

Si . (5.40)

We can then consider the (maximal) connected components of ∂M (ω) (here, the
boundary ∂ is in the sense of the Euclidean topology of Rd ):

Γ′(ω)
def= {γ1, . . . ,γn} .

Each γi is called a contour of ω. (Note that when d = 2, this notion slightly dif-
fers from the one used in Chapter 3.) In d = 2 (see Figure 3.10), contours can be
identified with connected sets of dual edges. In higher dimensions, contours are
connected sets of plaquettes, which are the (d −1)-dimensional faces of the d-di-
mensional hypercubes Si , i ∈ Zd . The number of plaquettes contained in γi will
be denoted |γi |. Observe that there is a one-to-one mapping between the plaque-
ttes of ∂M (ω) and the edges of ∂eΛ

−(ω) (associating to a plaquette the unique edge
crossing it), and so |∂eΛ

−(ω)| =∑n
i=1 |γi |. We can thus write

Z+
Λ;β,0 = eβ|E

b
Λ |

∑
ω∈Ω+

Λ

∏
γ∈Γ′(ω)

wβ(γ) ,

where

wβ(γ)
def= e−2β|γ| . (5.41)

The final step is to transform the summation overω into a summation over families

of contours. To this end, we introduce a few notions. Let ΓΛ
def= {

γ ∈ Γ′(ω) : ω ∈Ω+
Λ

}

denote the set of all possible contours inΛ.
A collection of contours Γ′ ⊂ ΓΛ is admissible if there exists a configuration ω ∈

Ω+
Λ such that Γ′(ω) = Γ′. We say that Λ ⊂ Zd is c-connected if Rd \

⋃
i∈ΛSi is a

connected subset of Rd .

Exercise 5.9. Assuming that Λ is c-connected, show that a collection Γ′ =
{γ1, . . . ,γn} ⊂ ΓΛ is admissible if and only if its contours are pairwise disjoint:
γi ∩γ j =∅ for all i ̸= j . Why is this not necessarily true whenΛ is not c-connected?
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Therefore, provided thatΛ be c-connected,

Z+
Λ;β,0 = eβ|E

b
Λ |ΞLT

Λ;β,0 , (5.42)

where

ΞLT
Λ;β,0

def=
∑

Γ′⊂ΓΛ
admiss.

∏
γ∈Γ′

wβ(γ)

= 1+
∑

n≥1

1

n!

∑
γ1∈ΓΛ

· · ·
∑

γn∈ΓΛ

{ n∏
i=1

wβ(γi )
} ∏

1≤i< j≤n
δ(γi ,γ j ) ,

with interactions which are once again of hard-core type:

δ(γi ,γ j )
def=

{
1 if γi ∩γ j =∅ ,

0 otherwise.
(5.43)

The above representation of the Ising model is adapted to the low temperature
regime, since the weight wβ(γi ) = e−2β|γi | associated toγi , decays fast whenβ is large.
This observation was, of course, at the core of Peierls’ argument. ⋄

For the rest of the section, we will allow β to take complex values. We first verify

that (5.10) holds with a(γ)
def= |γ|.

Exercise 5.10. Prove that there exists x0 = x0(d) > 0 such that, for all β satisfying
Reβ> x0 and for each γ∗ ∈ ΓΛ,

∑
γ
|wβ(γ)|e |γ| |ζ(γ,γ∗)| ≤ |γ∗| . (5.44)

Hint: Use Lemma 3.38 to count the number of contours γ whose support contains a
fixed point.

Pressure

Observe that, when d = 2, the analyticity of β 7→ψβ(0) for large β can be deduced
directly from the analyticity at small values of β (Theorem 5.13 above), using the
duality transformation described in Section 3.10.1. However, there is no analogous
transformation in d ≥ 3.

We leave it as an exercise to provide the details of the proof of the following
result:

Theorem 5.15. (d ≥ 2). There exists x0 = x0(d) > 0 such that β 7→ψβ(0), is analytic
on

{
β ∈C : Reβ> x0

}
. Moreover,

ψβ(0) =βd +e−4dβ+de−4(2d−1)β+O(e−8dβ) .

Magnetization and decay of the truncated 2-point function

We now move on to the study of correlation functions at low temperature.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

5.7. Applications 241

Let Λ ⋐ Zd be c-connected, and A ⊂ Λ. Remembering that σA
def= ∏

i∈Aσi , we
will express the correlation function

〈σA〉+Λ;β,0 =
∑

ω∈Ω+
Λ

σA(ω)
e−HΛ;β,0(ω)

Z+
Λ;β,0

in a form suitable for an analysis based on the cluster expansion. The denominator,
Z+
Λ;β,0, can be expressed using (5.42). To do the same for the numerator, we start

with ∑
ω∈Ω+

Λ

σA(ω)e−HΛ;β,0(ω) = eβ|E
b
Λ |

∑
ω∈Ω+

Λ

σA(ω)
∏

γ∈Γ′(ω)

wβ(γ) .

Let ω ∈ Ω+
Λ and let γ ∈ Γ′(ω) be one of its contours. Consider the configuration

ωγ ∈Ω+
Λ which has γ as its unique contour: Γ′(ωγ) = {γ}. The interior of γ is defined

by (see Figure 5.2)

Intγ
def= {

i ∈Λ : ωγi =−1
}=Λ−(ωγ) .

Figure 5.2: The interior of a (here two-dimensional) contour: the interior is
the set of all black vertices.

The important observation is that, for any ω ∈Ω+
Λ,

ωi = (−1)#{γ∈Γ′(ω): i∈Intγ} ,

that is, the sign of the spin at the vertex i is equal to +1 if and only if there is an even
number of contours surrounding i (in the sense that i belongs to their interior). It
follows from this observation that

σA(ω) = (−1)
∑

i∈A #{γ∈Γ′(ω) : i∈Intγ} =
∏

γ∈Γ′(ω)

(−1)#{i∈A : i∈Intγ} .

We therefore get

σA(ω)
∏

γ∈Γ′(ω)

wβ(γ) =
∏

γ∈Γ′(ω)

wA
β (γ) ,

where

wA
β (γ)

def= (−1)#{i∈A : i∈Intγ}wβ(γ) .
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We conclude that

〈σA〉+Λ;β,0 =
∑
Γ′⊂ΓΛ,admiss.

∏
γ∈Γ′ wA

β
(γ)

∑
Γ′⊂ΓΛ,admiss.

∏
γ∈Γ′ wβ(γ)

≡
ΞLT,A
Λ;β,0

ΞLT
Λ;β,0

. (5.45)

Now, the polymer partition functions in the numerator and denominator in (5.45)
differ only in the weight associated to contours that surround vertices in A. When
Reβ > x0 (see Exercise 5.10), the cluster expansion for logΞLT

Λ;β,0 converges and,

since |wA
β

(γ)| = |wβ(γ)| for all γ, the same holds for logΞLT,A
Λ;β,0. We thus obtain

〈σA〉+Λ;β,0 = exp
{
logΞLT,A

Λ;β,0 − logΞLT
Λ;β,0

}

= exp
{ ∑

X : X⊂Λ
ΨA
β (X )−

∑

X : X⊂Λ
Ψβ(X )

}
,

where the sums in the rightmost expression are over clusters of contours in Λ and
Ψβ(X ) and ΨA

β
(X ) are defined as in (5.20) with weights w given by wβ and wA

β
re-

spectively, and the support X of a cluster X = {γ1, . . . ,γn} is defined as
⋃n

k=1γk (of

course, X ⊂Λ means that, as subsets of Rd , X ⊂⋃
i∈ΛSi ). In particular, the contri-

butions to both sums of all clusters containing no contour γ surrounding a vertex
of A cancel each other, and we are left with

〈σA〉+Λ;β,0 = exp
{ ∑

X∼A:
X⊂Λ

(ΨA
β (X )−Ψβ(X ))

}
,

where X ∼ A means that X contains at least one contour γ such that A ∩ Intγ ̸=∅.
We leave it as an exercise to show that one can letΛ ↑Zd in the above expression:

Exercise 5.11. (d ≥ 2) Prove that

〈σA〉+β,0 = exp
{ ∑

X∼A

(
ΨA
β (X )−Ψβ(X )

)}
, (5.46)

provided that Reβ is sufficiently large.

We now turn to two applications of this formula.

Magnetization at very low temperatures. In Section 3.7.2, we used Peierls’ argu-
ment to obtain a lower bound on 〈σ0〉+β,0 that tends to 1 as β→∞. We can use the

cluster expansion to obtain an explicit expansion in e−2β for 〈σ0〉+β,0, valid for large

enough values of β. Namely, an application of (5.46) with A = {0} yields

〈σ0〉+β,0 = exp
{ ∑

X∼{0}

(
Ψ{0}
β

(X )−Ψβ(X )
)}

, (5.47)

where the condition X ∼ {0} now reduces to the requirement that at least one of
the contours γ in X surrounds 0. It is then a simple exercise, proceeding as in the
previous sections, to obtain the desired expansion.

Exercise 5.12. (d ≥ 2) Prove that, for all sufficiently large values of β,

〈σ0〉+β,0 = 1−2e−4dβ−4de−(8d−4)β+O(e−8dβ) .
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Decay of the truncated 2-point function. As we saw in Exercises 3.23 and 3.24,
the correlations of the Ising model decay exponentially fast at sufficiently high tem-
perature (small β)

〈σiσ j 〉β,0 ≤ e−cHT (β)∥ j−i∥1 , ∀i , j ∈Zd .

In contrast, we know that at low temperature, β>βc, the correlations do not decay
anymore since, by the GKS inequalities, uniformly in i and j ,

〈σiσ j 〉+β,0 ≥ 〈σi 〉+β,0〈σ j 〉+β,0 = (〈σ0〉+β,0)2 > 0. (5.48)

Here, we will study the truncated 2-point function, which is the name usually given
in physics to the covariance between the random variables σi and σ j , in the Gibbs
state 〈·〉+

β,0:

〈σi ;σ j 〉+β,0
def= 〈σiσ j 〉+β,0 −〈σi 〉+β,0〈σ j 〉+β,0 .

Theorem 5.16. (d ≥ 2) There exist 0 < β0 <∞, c > 0 and C <∞ such that, for all
β≥β0,

0 ≤ 〈σi ;σ j 〉+β,0 ≤C e−cβ∥ j−i∥1 , ∀i , j ∈Zd . (5.49)

This result shows that, at least at low enough temperatures, the correlation length
of the Ising model on Zd , d ≥ 2, is finite (and actually tends to 0 as β ↑ ∞). In
particular, the spins are only weakly correlated, even though there is long-range
order.

Proof. The first inequality is just (5.48), so we only prove the second one. Let us

write Ψ̃A
β

(X )
def=ΨA

β
(X )−Ψβ(X ). On the one hand, by (5.47),

〈σi 〉+β,0〈σ j 〉+β,0 = exp
{ ∑

X∼{i }
Ψ̃{i }
β

(X )+
∑

X∼{ j }
Ψ̃

{ j }
β

(X )
}

.

On the other hand, by the general formula (5.46),

〈σiσ j 〉+β,0 = exp
{ ∑

X∼{i , j }
Ψ̃

{i , j }
β

(X )
}

.

Clusters X ∼ {i , j } can be split into three disjoint classes:

Ci
def= {

X : X ∼ {i } but X ̸∼ { j }
}
, C j

def= {
X : X ∼ { j } but X ̸∼ {i }

}
,

Ci , j
def= {

X : X ∼ {i } and X ∼ { j }
}

.

Observe now that Ψ{i , j }
β

(X ) =Ψ{i }
β

(X ) for all X ∈ Ci , and Ψ{i , j }
β

(X ) =Ψ{ j }
β

(X ) for all

X ∈C j . This implies that

〈σiσ j 〉+β,0 = exp
{ ∑

X∼{i }
Ψ̃{i }
β

(X )+
∑

X∼{ j }
Ψ̃

{ j }
β

(X )

+
∑

X∈Ci , j

(
Ψ̃

{i , j }
β

(X )− Ψ̃{i }
β

(X )− Ψ̃{ j }
β

(X )
)}

= 〈σi 〉+β,0〈σ j 〉+β,0 exp
{ ∑

X∈Ci , j

(
Ψ̃

{i , j }
β

(X )− Ψ̃{i }
β

(X )− Ψ̃{ j }
β

(X )
)}

.
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Now, for all A, |Ψ̃A
β

(X )| ≤ 2|Ψβ(X )|, and therefore

〈σiσ j 〉+β,0 ≤ 〈σi 〉+β,0〈σ j 〉+β,0 exp
{

6
∑

X∈Ci , j

|Ψβ(X )|
}

.

The conclusion will thus follow once we prove that
∑

X∈Ci , j

|Ψβ(X )| ≤C ′e−cβ∥ j−i∥1 , ∀i , j ∈Zd ,

for some constants c > 0 and C ′ <∞. To prove this claim, assumeβ≥ 2x0. By (5.29),
for any vertex v ∈Rd , since |X | ≤∑

γ∈X |γ|,
∑

X : X∋v

|Ψβ(X )|eβ|X | ≤
∑

X : X∋v

|Ψβ/2(X )| ≤ 1.

This implies that, for any R > 0,

∑
X :

X∋v, |X |≥R

|Ψβ(X )| ≤ e−βR
∑

X : X∋v

|Ψβ(X )|eβ|X | ≤ e−βR .

Therefore, since each X ∈Ci , j satisfies |X | ≥ ∥ j − i∥1,

∑
X∈Ci , j

|Ψβ(X )| ≤
∑

R≥∥ j−i∥1

Rd
∑
X :

X∋v, |X |=R

|Ψβ(X )|

≤
∑

R≥∥ j−i∥1

Rd e−βR ≤C ′e−cβ∥ j−i∥1 ,

uniformly in i , j ∈Zd , for some c = c(d) > 0 and all β large enough.

5.8 Bibliographical references

The cluster expansion is one of the oldest tools of statistical mechanics. As already
mentioned in Section 4.12.3, Mayer [236] started using it systematically in his anal-
ysis leading to the coefficients of the virial expansion of the pressure of a real gas.
Groeneveld [153] was one of the first to provide a rigorous proof of its convergence.

Nowadays, there exist various approaches to the problem of convergence of the
expansion, all leading more or less to the same conclusions. Adopting one is essen-
tially a matter of personal taste. The proof of convergence we gave in Section 5.4
was taken from Ueltschi [335], since it is pretty straightforward and keeps the com-
binatorics elementary.

Some standard references on the subject include the following papers. Polymer
models were introduced for the first time by Gruber and Kunz [155]. Kotecký and
Preiss [196] gave the first inductive proof of the convergence of the cluster expan-
sion, similar to the one used in Theorem 5.4. An interesting alternative approach,
where the expansion is obtained as the result of a multi-variable Taylor expansion,
was proposed by Dobrushin in [82]. A pedagagical description of the tree-graph ap-
proach that originated with the work of Penrose [269] can be found in Pfister [270];
see also the paper of Fernández and Procacci [103], where several of these methods
are compared.


