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2 The Curie–Weiss Model

In statistical mechanics, a mean-field approximation is often used to approximate
a model by a simpler one, whose global behavior can be studied with the help of
explicit computations. The information thus extracted can then be used as an in-
dication of the kind of properties that can be expected from the original model. In
addition, this approximation turns out to provide quantitatively correct results in
sufficiently high dimensions.

The Ising model, which will guide us throughout the book, is a classical example
of a model with a rich behavior but with no explicit solution in general (the excep-
tions being the one-dimensional model, see Section 3.3, and the two-dimensional
model when h = 0). In this chapter, we consider its mean-field approximation, in
the form of the Curie–Weiss model. Although it is an over-simplification of the Ising
model, the Curie–Weiss model still displays a phase transition, with distinct be-
haviors at high and low temperature. It will also serve as an illustration of various
techniques and show how the probabilistic behavior is intimately related to the an-
alytic properties of the thermodynamic potentials (free energy and pressure) of the
model.

2.1 The mean-field approximation

Consider a system of Ising spins living on Zd , described by the Ising Hamiltonian
defined in (1.44). In that model, the spin ωi located at vertex i interacts with the
rest of the system via its neighbors. The contribution to the total energy coming
from the interaction of ωi with its 2d neighbors can be written as

−β
∑

j : j∼i
ωiω j =−2dβωi ·

1

2d

∑
j : j∼i

ω j . (2.1)

Written this way, one can interpret the contribution of ωi to the total energy as an
interaction of ωi with a local magnetization density, produced by the average of its
2d nearest neighbors:

1

2d

∑
j : j∼i

ω j .

Of course, this magnetization density is local and varies from one point to the other.
The mean-field approximation consists in assuming that each local magnetization

57



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

58 Chapter 2. The Curie–Weiss Model

density can be approximated by the global magnetization density,

1

N

N∑
j=1

ω j ,

where N is the number of spins in the system. The mean-field approximation of the
Ising model thus amounts to do the following transformation on the Hamiltonian
(1.44) (up to a multiplicative constant that will be absorbed in β):

Replace −β
∑
i∼ j

ωiω j by − dβ

N

∑
i , j
ωiω j .

The term involving the magnetic field, on the other hand, remains unchanged. This
leads to the following definition.

Definition 2.1. The Curie–Weiss Hamiltonian for a collection of spins ω =
(ω1, . . .ωN ) at inverse temperature β and with an external magnetic field h is defined
by

H CW
N ;β,h(ω)

def= −dβ

N

N∑
i , j=1

ωiω j −h
N∑

i=1
ωi . (2.2)

In contrast to those of the Ising model, the interactions of the Curie–Weiss model
are global: each spin interacts with all other spins in the same way, and the relative
positions of the spins can therefore be ignored. Actually, due to this lack of geome-
try, one may think of this model as defined on the complete graph with N vertices,
which has an edge between any pair of distinct vertices:

Figure 2.1: The complete graph with 12 vertices. In the Curie–Weiss model,
all spins interact: a pair of spins living at vertices i , j contributes to the total

energy by an amount −dβ
N ωiω j .

We denote by ΩN
def= {±1}N the set of all possible configurations of the Curie–

Weiss model. The Gibbs distribution onΩN is written

µCW
N ;β,h(ω)

def= e
−H CW

N ;β,h (ω)

Z CW
N ;β,h

, where Z CW
N ;β,h

def=
∑

ω∈ΩN

e
−H CW

N ;β,h (ω)
.

As mentioned in the introduction, the expectation (or average) of an observable
f :ΩN →R under µCW

N ;β,h will be denoted by 〈 f 〉CW
N ;β,h .

Our aim, in the rest of the chapter, is to show that the Curie–Weiss model ex-
hibits paramagnetic behavior at high temperature and ferromagnetic behavior at
low temperature.
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2.2 The behavior for large N when h = 0

We will first study the model in the absence of a magnetic field. The same heuristic
arguments given in Section 1.4.3 for the Ising model also apply here. For instance,
when h = 0, the Hamiltonian is invariant under the global spin flip ω 7→ −ω (which
changes each ωi into −ωi ), which implies that the magnetization density

mN
def= MN

N
, where MN

def=
N∑

i=1
ωi ,

has a symmetric distribution: µCW
N ;β,0(mN =−m) =µCW

N ;β,0(mN =+m). In particular,

〈mN 〉CW
N ;β,0 = 0. (2.3)

As discussed in Section 1.4.3, we expect that the spins should be essentially inde-
pendent when β is small, but that, when β is large, the most probable configura-
tions should have most spins equal and thus be close to one of the two ground
states, in which all spins are equal. The following theorem confirms these predic-
tions.

Theorem 2.2. (h = 0) Let βc =βc(d)
def= 1

2d . Then, the following holds.

1. When β≤ βc, the magnetization concentrates at zero: for all ϵ> 0, there exists
c = c(β,ϵ) > 0 such that, for large enough N ,

µCW
N ;β,0

(
mN ∈ (−ϵ,ϵ)

)≥ 1−2e−cN .

2. When β > βc, the magnetization is bounded away from zero. More precisely,
there exists m∗,CW(β) > 0, called the spontaneous magnetization, such that,
for all small enough ϵ> 0, there exists b = b(β,ϵ) > 0 such that if

J∗(ϵ)
def= (−m∗,CW(β)−ϵ,−m∗,CW(β)+ϵ)∪ (

m∗,CW(β)−ϵ,m∗,CW(β)+ϵ) ,

then, for large enough N ,

µCW
N ;β,0

(
mN ∈ J∗(ϵ)

)≥ 1−2e−bN .

βc is called the inverse critical temperature or inverse Curie temperature

In other words, when N is large,

∀β≤βc , mN ≃ 0 with high probability,

whereas

∀β>βc , mN ≃
{
+m∗,CW(β) with probability close to 1

2 ,

−m∗,CW(β) with probability close to 1
2 .

This behavior is understood easily by simply plotting the distribution of mN :
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−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1

Figure 2.2: The distribution of the magnetization of the Curie–Weiss model,
µCW

N ;β,0(mN = ·), with N = 100 spins, when h = 0, plotted using (2.9) below.

At high temperature (on the left, 2dβ = 0.8), mN concentrates around zero. At
low temperature (on the right, 2dβ= 1.2), the distribution of mN becomes bimodal,
with two peaks near ±m∗,CW(β). In both cases, 〈mN 〉CW

N ;β,0 = 0. The width of the

peaks in the above pictures tends to 0 when N →∞, which means that

lim
N→∞

µCW
N ;β,0(mN ∈ ·) =

{
δ0(·) if β≤βc ,
1
2

(
δ+m∗,CW(β)(·)+δ−m∗,CW(β)(·)

)
if β>βc ,

where δm is the Dirac mass at m (that is, the probability measure on [−1,1] such
that δm(A) = 1 or 0, depending on whether A contains m or not.)

Remark 2.3. We emphasize that, when β > βc and N is large, the above results say
that the typical values of the magnetization observed when sampling a configura-
tion are close to either +m∗,CW(β) or −m∗,CW(β). Of course, this does not contradict
the fact that it is always zero on average: 〈mN 〉CW

N ;β,0 = 0. The proper interpretation

of the latter average comes from the Law of Large Numbers. Namely, let us fix N
and sample an infinite sequence of independent realizations of the magnetization
density: m(1)

N ,m(2)
N , . . ., each distributed according to µCW

N ;β,0. Then, by the Strong

Law of Large Numbers, the empirical average over the n first samples converges
almost surely to zero as n →∞:

m(1)
N +·· ·+m(n)

N

n
−→〈mN 〉CW

N ;β,0 = 0.

There is another natural Law of Large numbers that one might be interested in
this context. When β= 0, the random variables

σi (ω)
def= ωi

are independent Bernoulli random variables of mean 0, which also satisfy a Law
of Large Numbers: their empirical average 1

N

∑N
i=1σi converges to 〈σ1〉CW

N ;0,0 = 0 in
probability. One might thus wonder whether this property survives the introduc-
tion of an interaction between the spins: β> 0. Since 1

N

∑N
i=1σi = mN , Theorem 2.2

shows that this is the case if and only if β≤βc. ⋄
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To the inverse critical temperature βc corresponds the critical temperature Tc =
1
βc

. The range T > Tc (that is, β < βc) is called the supercritical regime, while the
range T < Tc (that is, β > βc) is the subcritical regime, also called the regime of
phase coexistence . The value T = Tc corresponds to the critical regime. The result
above shows that the Curie–Weiss model is not ordered in this regime; it can be
shown, however, that the magnetization possesses peculiar properties at Tc, such
as non-Gaussian fluctuations.

The Curie–Weiss model possesses a remarkable feature, which makes its analy-
sis much easier than that of the Ising model on Zd : since

N∑
i , j=1

ωiω j =
( N∑

i=1
ωi

)2
≡ M 2

N ,

the Hamiltonian H CW
N ;β,0 is entirely determined by the magnetization density:

H CW
N ;β,0 =−dβm2

N N . (2.4)

This property will make it possible to compute explicitly the thermodynamic po-
tentials (and other quantities) associated to the Curie–Weiss model.

The thermodynamic potential that plays the central role in the study of the
Curie–Weiss model is the free energy:

Definition 2.4. Let e(m)
def= −dm2 and

s(m)
def= −1−m

2
log

1−m

2
− 1+m

2
log

1+m

2
.

Then
f CW
β (m)

def= βe(m)− s(m) (2.5)

is called the free energy of the Curie–Weiss model.

The claims of Theorem 2.2 will be a direct consequence of the following propo-
sition, which shows the role played by the free energy in the asymptotic distribution
of the magnetization.

Proposition 2.5. For any β,

lim
N→∞

1

N
log Z CW

N ;β,0 =− min
m∈[−1,1]

f CW
β (m) . (2.6)

Moreover, for any interval J ⊂ [−1,1],

lim
N→∞

1

N
logµCW

N ;β,0(mN ∈ J ) =− inf
m∈J

I CW
β (m) , (2.7)

where
I CW
β (m)

def= f CW
β (m)− min

m̃∈[−1,1]
f CW
β (m̃) . (2.8)

One can write (2.7) roughly as follows:

For large N , µCW
N ;β,0(mN ∈ J ) ≃ exp

(
−{

inf
m∈J

I CW
β (m)

}
N

)
.
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(In the language of large deviations theory, I CW
β

is called a rate function.) Notice

that I CW
β

≥ 0 and

min
m∈[−1,1]

I CW
β (m) = 0.

Thus, if J ⊂ [−1,1] is such that I CW
β

is uniformly strictly positive on J,

inf
m∈J

I CW
β (m) > 0,

thenµCW
N ;β,0(mN ∈ J ) converges to zero exponentially fast when N →∞, meaning that

the magnetization is very likely to take values outside J . This shows that the typical
values of the magnetization correspond to the regions where I CW

β
vanishes. ⋄

Proof of Proposition 2.5: Observe that for a fixed N , mN is a random variable taking
values in the set

AN
def=

{
−1+ 2k

N : k = 0, . . . , N
}
⊂ [−1,1] .

Let J ⊂ [−1,1] be an interval. Then,

µCW
N ;β,0(mN ∈ J ) =

∑
m∈J∩AN

µCW
N ;β,0(mN = m) .

Since there are exactly
( N

1+m
2 N

)
configurations ω ∈ΩN which have mN (ω) = m, one

can express explicitly the distribution of mN using (2.4):

µCW
N ;β,0(mN = m) =

∑
ω∈ΩN :

mN (ω)=m

e
−H CW

N ;β,0(ω)

Z CW
N ;β,0

= 1

Z CW
N ;β,0

(
N

1+m
2 N

)
edβm2N . (2.9)

In the same way,

Z CW
N ;β,0 =

∑
m∈AN

(
N

1+m
2 N

)
edβm2N . (2.10)

Since we are interested in its behavior on the exponential scale and since it is a sum
of only |AN | = N + 1 positive terms, Z CW

N ;β,0 can be estimated by keeping only its

dominant term:

max
m∈AN

(
N

1+m
2 N

)
edβm2N ≤ Z CW

N ;β,0 ≤ (N +1) max
m∈AN

(
N

1+m
2 N

)
edβm2N .

To study the large N behavior of the binomial factors, we use Stirling’s Formula. The
latter implies the existence of two constants c−,c+ > 0 such that, for all m ∈AN ,

c−N−1/2eN s(m) ≤
(

N
1+m

2 N

)
≤ c+eN s(m) . (2.11)

Exercise 2.1. Verify (2.11).

We can thus compute an upper bound as follows:

Z CW
N ;β,0 ≤ c+(N +1)exp

(
N max

m∈AN

{dβm2 + s(m)}
)

≤ c+(N +1)exp
(−N min

m∈[−1,1]
f CW
β (m)

)
,
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which yields

limsup
N→∞

1

N
log Z CW

N ;β,0 ≤− min
m∈[−1,1]

f CW
β (m) .

For the lower bound, we first use the continuity of m 7→ {dβm2 + s(m)} on [−1,1]
and consider some m′ ∈ [−1,1] for which f CW

β
(m′) = minm f CW

β
(m). Fix ϵ > 0, and

choose some m ∈ AN such that | f CW
β

(m)− f CW
β

(m′)| ≤ ϵ, which is always possible

once N is large enough. We then have

Z CW
N ;β,0 ≥ c−N−1/2 exp

{−N ( f CW
β (m′)+ϵ)

}
.

This yields

liminf
N→∞

1

N
log Z CW

N ;β,0 ≥− min
m∈[−1,1]

f CW
β (m)−ϵ .

Since ϵ was arbitrary, (2.6) follows.
A similar computation can be done for the sum over m ∈ J ∩AN ,

lim
N→∞

1

N
log

∑
m∈J∩AN

(
N

1+m
2 N

)
edβm2N =− inf

m∈J
f CW
β (m) ,

and we get (2.7).

Proof of Theorem 2.2. As discussed after the statement of Proposition 2.5, we must
locate the zeros of I CW

β
. Since the latter is smooth and I CW

β
≥ 0, the zeros correspond

to the solutions of
∂I CW
β

∂m = 0. After a straightforward computation, we easily see that
this condition is equivalent to the mean-field equation:

tanh(2dβm) = m . (2.12)

Since limm→±∞ tanh(βm) =±1, there always exists at least one solution and, as an
analysis of the graph of m 7→ tanh(βm) shows (see below), the number of solutions
of (2.12) depends on whether 2dβ is larger or smaller than 1, that is, whether β is
larger or smaller than βc.

On the one hand, when β ≤ βc, (2.12) has a unique solution, given by m = 0.
On the other hand, when β > βc, there are two additional non-trivial solutions,
+m∗,CW(β) and −m∗,CW(β) (which depend on β):

m

β≤βc:

m

β>βc:

p−m∗,CW

p
+m∗,CW

p

The trivial solution m = 0 is a local maximum of I CW
β

, whereas +m∗,CW(β) and

−m∗,CW

β
are global minima (see Figure 2.3).



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

64 Chapter 2. The Curie–Weiss Model

m
0

I CW
β

(m)

p p

β≤βc:

m

I CW
β

(m)

p pp
−m∗,CW

p
+m∗,CW

β>βc:

Figure 2.3: The rate function of the Curie–Weiss model. The values taken
by the magnetization density of a very large system lie in a neighborhood of
the points m at which I CW

β
vanishes, with probability very close to 1, as seen

in Figure 2.2. In the supercritical and critical phases (β ≤ βc), there exists a
unique global minimum m = 0. In the subcritical phase (β > βc), there exist
two non-zero typical values ±m∗,CW(β): there is a phase transition at βc.

Combined with (2.7), this analysis proves the theorem.

Remark 2.6. One clearly sees from the graphical characterization of m∗,CW(β) that

m∗,CW(β) ↓ 0 as β ↓βCW
c . (2.13)

A more quantitative analysis is provided in Section 2.5.3. ⋄
The above analysis revealed that the typical values of the magnetization of the

model are those near which the function I CW
β

vanishes. Since I CW
β

differs from f CW
β

only by a constant, this means that the typical values of the magnetization are those
that minimize the free energy, a property typical of the thermodynamic behavior
studied in Section 1.1.5 (when letting a system exchange energy with a heat reser-
voir), or as was already derived non-rigorously in Section 1.3.1.

The bifurcation of the typical values taken by the magnetization in the Curie–
Weiss model at low temperature originated in the appearance of two global minima
in the free energy. On the one hand, e(m) = −dm2 is the energy density associ-
ated to configurations of magnetization density m; it is minimal when m = +1 or
−1 (all spins equal). On the other hand, s(m) is the entropy density, which mea-
sures the number of configurations with a magnetization density m; it is maximal
at m = 0 (equal proportions of + and − spins). Since βe(m) and s(m) are both con-
cave, the convexity/concavity properties of their difference depend on the temper-
ature. When β is small, entropy dominates and f CW

β
(m) is strictly convex. When

β is large, energy starts to play a major role by favoring configurations with small
energy: f CW

β
(m) is not convex and has two global minima.

As already mentioned in Chapter 1, this interplay between energy and entropy
is fundamental in the mechanism leading to phase transition.

Remark 2.7. The non-convex free energy observed at low temperature in the Curie–
Weiss model is a consequence of the lack of geometry in the model. As will be seen
later, the free energy of more realistic systems (such as the Ising model on Zd , or
the lattice gas of Chapter 4) is always convex. ⋄
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Exercise 2.2. Let ζ : N→ R>0. Consider the following modification of the Curie–
Weiss Hamiltonian (with h = 0):

H̃N ;β,0(ω)
def= − β

ζ(N )

N∑
i , j=1

ωiω j .

Denote by µ̃N ;β the corresponding Gibbs distribution. Show that the following holds.

1. If limN→∞
ζ(N )

N =∞, then mN tends to 0 in probability for all β≥ 0.

2. If limN→∞
ζ(N )

N = 0, then |mN | tends to 1 in probability for all β> 0.

This shows that the only scaling leading to a nontrivial dependence inβ is when ζ(N )
is of the order of N .

2.3 The behavior for large N when h ̸= 0

In the presence of an external magnetic field h, the analysis is similar. The relevant
thermodynamic potential associated to the magnetic field is the pressure.

Theorem 2.8. The pressure

ψCW
β (h)

def= lim
N→∞

1

N
log Z CW

N ;β,h .

exists and is convex in h. Moreover, it equals the Legendre transform of the free
energy:

ψCW
β (h) = max

m∈[−1,1]
{hm − f CW

β (m)} . (2.14)

Proof. We start by decomposing the partition function as in (2.10):

Z CW
N ;β,h =

∑
m∈AN

∑
ω∈ΩN :

mN (ω)=m

e
−H CW

N ;β,h (ω) =
∑

m∈AN

(
N

1+m
2 N

)
e(hm+dβm2)N .

We can then proceed as in the proof of Theorem 2.2. For example,

Z CW
N ;β,h ≤ c+(N +1)p

N
exp

{
N max

m∈[−1,1]
{hm − f CW

β (m)}
}

.

A lower bound of the same type is not difficult to establish, yielding (2.14) in the
limit N →∞. As shown in Appendix B.2.3, a Legendre transform is always convex.

We first investigate the behavior of the pressure as a function of the magnetic
field and later apply it to the study of the typical values of the magnetization density.

Again, since hm − f CW
β

(m) is smooth (analytic, in fact) in m, we can find the

maximum in (2.14) by explicit differentiation. Before that, let us plot the graph of
m 7→ hm − f CW

β
(m) for different values of h (here, at low temperature):
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h < 0: h = 0: h > 0:

mCW
β

(h)mCW
β

(h)

When h ̸= 0, the supremum of hm− f CW
β

(m) is attained at a unique point which

we denote by mCW
β

(h). This point can be computed by solving ∂
∂m {hm− f CW

β
(m)} = 0,

which is equivalent to
∂ f CW

β

∂m = h, and can be written as the modified mean-field
equation:

tanh(2dβm +h) = m . (2.15)

Again, this equation always has at least one solution. Let βc(= 1/2d) denote the
inverse critical temperature introduced before. When β< βc, the solution to (2.15)
is unique. When β > βc, there can be more than one solution, depending on h; in
every case, mCW

β
(h) is the largest (resp. smallest) one if h > 0 (resp. h < 0).

Preliminary Draft, July 1, 2022 — © S. Friedli and Y. Velenik
www.unige.ch/math/folks/velenik/smbook

m

β≤βc:

m

β>βc, h > 0:

p
+mCW

β
(h)

p

−h
2dβ

Figure 2.4: Equation (2.15) has a unique solution when β ≤ βc (left), but up
to 3 different solutions when β > βc (right) and one must choose the largest
(resp. smallest) one when h > 0 (resp. h < 0).

On the one hand, a glance at the above graph shows that, when β≤βc,

lim
h↑0

mCW
β (h) = lim

h↓0
mCW
β (h) = 0. (2.16)

On the other hand, when β>βc,

lim
h↑0

mCW
β (h) =−m∗,CW(β) <+m∗,CW(β) = lim

h↓0
mCW
β (h) . (2.17)
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h h h

Figure 2.5: The magnetization h 7→ mCW
β

(h) for β < βc (on the left), β = βc

(center) and β> βc (on the right). These pictures were made by a numerical
study of the solutions of (2.15).

Exercise 2.3. Show that h 7→ mCW
β

(h) is analytic on (−∞,0) and on (0,∞).

Exercise 2.4. Using (2.14), show that the pressure can be written explicitly as

ψCW
β (h) =−dβmCW

β (h)2 + logcosh
(
2dβmCW

β (h)+h
)+ log2.

Conclude, in particular, that it is analytic on (−∞,0) and (0,+∞).

β

mCW
β

(h)

h

Figure 2.6: The graph of (β,h) 7→ mCW
β

(h). At fixed β > 0, one observes the

curves h 7→ mCW
β

(h) of Figure 2.5; in particular these are discontinuous when

β>βc.

Using the terminology of Section 1.4.1, we thus see that the Curie–Weiss model
provides a case in which paramagnetism is observed at high temperature and fer-
romagnetism at low temperature.

We then move on to the study of the pressure, by first considering non-zero
magnetic fields: h ̸= 0. In this case, we can express ψCW

β
(h) using the Legendre

transform:
ψCW
β (h) = h ·mCW

β (h)− f CW
β (mCW

β (h)) ,

from which we deduce, using Exercise 2.3 and the analyticity of m 7→ f CW
β

(m) on

(−1,1), that h 7→ψCW
β

(h) is analytic on (−∞,0)∪ (0,∞). Differentiating with respect
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to h yields, when h ̸= 0,

∂ψCW
β

∂h
(h) = mCW

β (h) . (2.18)

To study the behavior at h = 0, we first notice that since ψCW
β

is convex, Theorem

B.28 guarantees that its one-sided derivative,
∂ψβ
∂h+

∣∣
h=0 (resp.

∂ψβ
∂h−

∣∣
h=0) exists and is

right-continuous (resp. left-continuous). If β≤βc, (2.16) gives

∂ψCW
β

∂h−
∣∣
h=0 = lim

h→0−

∂ψCW
β

∂h
= lim

h→0−
mCW
β (h)

= 0

= lim
h→0+

mCW
β (h) = lim

h→0+

∂ψCW
β

∂h
=
∂ψCW

β

∂h+
∣∣
h=0 .

As a consequence, ψCW
β

is differentiable at h = 0. Assume then that β>βc. By (2.18)

and (2.17), the same argument yields

∂ψCW
β

∂h−
∣∣
h=0 =−m∗,CW(β) < 0 < m∗,CW(β) =

∂ψCW
β

∂h+
∣∣
h=0 ,

and so ψCW
β

is not differentiable at h = 0.

h h h

Figure 2.7: The pressureψCW
β

(h) of the Curie–Weiss model with the same val-

ues of β as in Figure 2.5.

Finally, we let the reader verify that, when h ̸= 0, the magnetization density mN

concentrates exponentially fast on mCW
β

(h).

Exercise 2.5. Adapting the analysis of the case h = 0, show that an expression of the
type (2.7) holds:

lim
N→∞

1

N
logµCW

N ;β,h

(
mN ∈ J

)=− inf
m∈J

I CW
β,h(m) , (2.19)

with
I CW
β,h(m)

def= f CW
β (m)−hm − min

m̃∈[−1,1]

(
f CW
β (m̃)−hm̃

)
.

Show that, when h ̸= 0, the rate function I CW
β,h(m) has a unique global minimum at

mCW
β

(h), for all β> 0 (see the figure below).
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m

I CW
β,h(m)

p pp
mCW
β

(h)

h < 0:

m

I CW
β,h(m)

p pp
mCW
β

(h)

h > 0:

Figure 2.8: The rate function of the Curie–Weiss model with a magnetic field
h ̸= 0 has a unique global minimum at mCW

β
(h).

2.4 Bibliographical references

The Curie–Weiss model, as it is described in this chapter, has been introduced inde-
pendently by many people, including Temperley [328], Husimi [167] and Kac [183].
There exist numerous mathematical treatments where the interested reader can get
much more information, such as Ellis’ book [100].

In our study of the van der Waals model of a gas in Section 4.9, we will reinter-
pret the Curie–Weiss model as a model of a lattice gas. There, we will derive, in a
slightly different language, additional information on the free energy, the pressure
and the relationship between these two quantities.

2.5 Complements and further reading

2.5.1 The “naive” mean-field approximation.

This approximation made its first appearance in the early 20th century work of
Pierre-Ernest Weiss, based on earlier ideas of Pierre Curie, in which the method
now known as mean-field theory was developed. The latter is somewhat different
from what is done in this chapter, but leads to the same results.

Namely, consider the nearest-neighbor Ising model on Λ ⋐ Zd . The distribu-
tion of the spin at the origin, conditionally on the values taken by its neighbors, is
given by

µΛ;β,h(σ0 =±1 |σ j =ω j , j ̸= 0) = 1

Z
exp

{±(
β

∑
j∼0

ω j +h
)}

,

where Z
def= 2cosh(β

∑
j∼0ω j +h) is a normalization factor. The naive mean-field

approximation corresponds to assuming that each of the neighboring spinsω j can
be replaced by its mean value m. This yields the following distribution

ν(σ0 =±1)
def= 1

Z ′ exp
{±(2dβm +h)

}
,

with the normalization Z ′ def= 2cosh(2dβm +h). The expected value of σ0 under ν
is equal to tanh(2dβm +h). However, for this approximation to be self-consistent,
this expected value should also be equal to m. This yields the following consistency
condition:

m = tanh(2dβm +h) ,
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which is precisely (2.15). Notice that the approximation made above, replacing
each ω j by m, seems reasonable in large dimensions, where the average of the 2d
nearest-neighbor spins is expected to already have a value close to the expected
magnetization m.

2.5.2 Alternative approaches to analyze the Curie–Weiss model.

Our analysis of the Curie–Weiss model was essentially combinatorial. We briefly
describe two other alternative approaches, whose advantage is to be more readily
generalizable to more complex models.

The Hubbard–Stratonovich transformation

The first alternative approach has a more analytic flavor; it relies on the Hubbard–
Stratonovich transformation [322, 166].

Observe first that, for any α> 0, a simple integration yields

exp
{
αx2}= 1p

πα

∫ ∞

−∞
exp

{
− y2

α
+2y x

}
dy . (2.20)

This can be used to express the interactions among spins in the Boltzmann weight
as

exp
{dβ

N

( N∑
i=1

ωi
)2

}
=

√
N

πdβ

∫ ∞

−∞
exp

{
− N

dβ
y2 +2y

N∑
i=1

ωi

}
dy .

The advantage of this reformulation is that the quadratic term in the spin variables
has been replaced by a linear one. As a consequence, the sum over configurations,
in the partition function, can now be performed as in the previous subsection:

Z CW
N ;β,h =

∑
ω∈ΩN

e
−H CW

N ;β,h (ω) =
√

N

πdβ

∫ ∞

−∞
e−N y2/dβ

N∏
i=1

∑
ωi=±1

exp
{
(2y +h)ωi

}
dy

=
√

N

πdβ

∫ ∞

−∞
e−Nϕβ,h (y) dy ,

where

ϕβ,h(y)
def= y2/dβ− log(2cosh(2y +h)) .

Exercise 2.6. Show that

lim
N→∞

p
N

∫ ∞

−∞
e−N (ϕβ,h (y)−miny ϕβ,h (y)) dy > 0.

Hint: Use second-order Taylor expansions of ϕβ,h around its minima.

We then obtain

ψCW
β (h) = lim

N→∞
1

N
log Z CW

N ;β,h =−min
y
ϕβ,h(y) ,

and leave it as an exercise to check that this expression coincides with the one given

in Exercise 2.4 (it might help to minimize over m
def= y/dβ).
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Stein’s methods for exchangeable pairs

The second alternative approach we mention, which is more probabilistic, relies on
Stein’s method for exchangeable pairs. We only describe how it applies to the Curie–
Weiss model and refer the reader to Chatterjee’s paper [66] for more information.

We start by defining a probability measure P on ΩN ×ΩN by sampling (ω,ω′)
as follows: (i) ω is sampled according to the Gibbs distribution µCW

N ;β,h ; (ii) an index

I ∈ {1, . . . , N } is sampled uniformly (with probability 1
N ); (iii) we set ω′

j = ω j , for all

j ̸= I , and then let ω′
I be distributed according to µCW

N ;β,h , conditionally on the other

spins ω j , j ̸= I . That is, ω′
I =+1 with probability

exp
(
2dβm̌I +h

)

exp
(
2dβm̌I +h

)+exp
(−2dβm̌I −h

) ,

where

m̌i = m̌i (ω)
def= 1

N

∑
j ̸=i

ω j .

The reader can easily check that the pair (ω,ω′) is exchangeable:

P
(
(ω,ω′)

)= P
(
(ω′,ω)

)
for all (ω,ω′) ∈ΩN ×ΩN .

Let F (ω,ω′) def= ∑N
i=1(ωi −ω′

i ). The pairs (ω,ω′) with P
(
(ω,ω′)

) > 0 differ on at most
one vertex, and so |F (ω,ω′)| ≤ 2. Denoting by E the expectation with respect to P ,
let

f (ω)
def= E

[
F (ω,ω′)

∣∣ ω]= 1

N

N∑
i=1

{
ωi − tanh

(
2dβm̌i (ω)+h

)}
.

Again, for a pair (ω,ω′) with non-zero probability,

| f (ω)− f (ω′)| ≤ 2+4dβ

N
.

(We used | tanh x − tanh y | ≤ |x − y |.) The next crucial observation is the following:
for any function g onΩN ,

E
(

f (ω)g (ω)
)= E

(
F (ω,ω′)g (ω)

)= E
(
F (ω′,ω)g (ω′)

)=−E
(
F (ω,ω′)g (ω′)

)
.

We used the tower property of conditional expectation in the first identity and ex-
changeability in the second. Combining the first and last identities,

E
[

f (ω)g (ω)
]= 1

2 E
[
F (ω,ω′)(g (ω)− g (ω′))

]
.

In particular, since each element of the pair (ω,ω′) has distribution µCW
N ;β,h , and

since E [ f ] = 0,

VarCW
N ;β,h( f ) = E [ f (ω)2] = 1

2 E
[
F (ω,ω′)( f (ω)− f (ω′))

]≤ 2+4dβ

N
.

Therefore, by Chebyshev’s inequality (B.18), for all ϵ> 0,

µCW
N ;β,h(| f | > ϵ) ≤ 2+4dβ

Nϵ2 .
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Finally, since |m̌i (ω)−mN (ω)| ≤ 1/N for all i ,

∣∣ f (ω)−{
mN (ω)− tanh

(
2dβmN (ω)+h

)}∣∣≤ 2dβ

N
,

from which we conclude that, for all N large enough,

µCW
N ;β,h

(∣∣mN (ω)− tanh
(
2dβmN (ω)+h

)∣∣> 2ϵ
)≤µCW

N ;β,h(| f | > ϵ) ≤ 2+4dβ

Nϵ2 .

This implies that the magnetization density mN concentrates, as N → ∞, on the
solution of (2.15). Further refinements can be found in [66], such as much stronger
concentration bounds and the computation of the distribution of the fluctuations
of the magnetization density in the limit N →∞.

2.5.3 Critical exponents

As we have seen in this chapter, the Curie–Weiss model exhibits two types of phase
transitions:

• When β> βc = 1/2d , the magnetization, as a function of h, is discontinuous
at h = 0: there is a first-order phase transition.

• When h = 0, the magnetization, as a function of β is continuous, but not
analytic at βc: there is a continuous phase transition.

It turns out that the behavior of statistical mechanical systems at continuous
phase transitions displays remarkable properties, which will be briefly described
in Section 3.10.11. In particular, the different models of statistical mechanics fall
into broad universality classes, in which all models share the same type of critical
behavior, characterized by their critical exponents.

In this section, we will take a closer look at the critical behavior of the Curie–
Weiss model in the neighborhood of the point β = βc,h = 0 at which a continuous
phase transition takes place. This will be done by defining certain critical expo-
nents associated to the model. Having the graph of Figure 2.6 in mind might help
the reader understand the definitions of these exponents.

To start, let us approach the transition point by varying the temperature from
high to low. We know that h 7→ mCW

β
(h) is continuous at h = 0 when β≤βc, but dis-

continuous when β> βc. We can consider this phenomenon from different points
of view, each associated to a way of fixing one variable and varying the other. First,
one can see how the derivative of mCW

β
(h) with respect to h at h = 0 diverges as

β ↑βc. Let us thus consider the magnetic susceptibility , ,

χ(β)
def=
∂mCW

β
(h)

∂h

∣∣∣
h=0

,

which is well defined for all β<βc. Since χ(β) must diverge when β ↑βc, one might
expect a singular behavior of the form

χ(β) ∼ 1

(βc −β)γ
, as β ↑βc , (2.21)
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for some constant γ > 0. More precisely, the last display should be understood in
terms of the following limit:

γ
def= − lim

β↑βc

logχ(β)

log(βc −β)
.

βc

β

χ(β)

Figure 2.9: Magnetic susceptibility of the Curie–Weiss model.

On the other hand, one can fix β = βc and consider the fast variation of the
magnetization at h = 0:

mCW
βc

(h) ∼ h1/δ , as h ↓ 0, (2.22)

with δ defined by

δ−1 def= lim
h↓0

logmCW
βc

(h)

logh
.

−1

1

h

mCW
βc

(h)

Figure 2.10: Magnetization of the Curie–Weiss model as a function of h at βc.

But one can also approach the transition by varying the temperature from low
to high. So, for β > βc, consider the magnetization m∗,CW(β), in the vicinity of βc.
We have already seen in Remark 2.6 that m∗,CW(β) vanishes as β ↓ βc, and one is
naturally led to expect some behavior of the type:

m∗,CW(β) ∼ (β−βc)b , (2.23)

with b defined by

b
def= lim

β↓βc

logm∗,CW(β)

log(β−βc)
.
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βc

1

β

m∗,CW(β)

Figure 2.11: The spontaneous magnetization of the Curie–Weiss model at h =
0, as a function of β.

(Usually, the letter used for b is β, but we rather use b for obvious reasons.)

Let us introduce one last pair of exponents. This time, in order for our definition
to match the standard one in physics, we consider the dependence on the temper-
ature T = β−1 and on H , defined by h ≡ βH . Let us define the internal average
energy density by

u(T, H)
def= lim

N→∞
1

βN

〈
H CW

N ;β,βH

〉CW

N ;β,βH ,

and define the heat capacity

cH (β)
def= ∂u

∂T
.

The exponents α and α′ are defined through

cH=0(β) ∼
{

(βc −β)−α as β ↑βc ,

(β−βc)−α
′

as β ↓βc ,

or, more precisely, by

α
def= − lim

β↑βc

logcH=0(β)

log(βc −β)
,

and similarly for α′.

βc

1.5

β

cH=0

Figure 2.12: Heat capacity of the Curie–Weiss model at H = 0.

The numbersα,α′,b,γ,δ are examples of critical exponents. Similar exponents
can be defined for any model at a continuous phase transition, but are usually dif-
ficult to compute. These exponents can vary from one model to the other, but co-
incide for models belonging to the same universality class. We have seen, for in-
stance, in Exercise 1.14, that b = 1/8 for the two-dimensional Ising model (more
information on this topic can be found in Section 3.10.11).
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Theorem 2.9. For the Curie–Weiss model,

α=α′ = 0, b = 1
2 , γ= 1, δ= 3.

Proof. We start with b. Since m∗,CW(β) > 0 is the largest solution of (2.12) and since
βm∗,CW(β) is small when β is sufficiently close to βc, we can use a Taylor expansion
for tanh(·):

m∗,CW(β) = tanh(2dβm∗,CW(β))

= 2dβm∗,CW(β)− 1
3 (2dβm∗,CW(β))3 +O

(
(βm∗,CW(β))5)

= 2dβm∗,CW(β)− (1+o(1)) (2dβ)3

3 (m∗,CW(β))3 ,

where o(1) tends to zero when β ↓βc. We thus get

m∗,CW(β) = (1+o(1))
(3(β−βc)

4d 2β3

)1/2
, (2.24)

(using the fact that βc = 1/2d) which shows that b = 1/2.
To study χ(β) with β < βc, we start by the definition of mCW

β
= mCW

β
(h), as the

unique solution to the mean-field equation (2.15), which we differentiate implicitly
with respect to h, to obtain

χ(β) =
∂mCW

β

∂h

∣∣∣
h=0

=
1− tanh2(2dβmCW

β
)

1−2dβ(1− tanh2(2dβmCW
β

))

∣∣∣
h=0

= βc

βc −β
,

which shows that γ= 1.
Let us now turn to the exponentsα,α′. The internal energy density of the Curie–

Weiss model at H = 0 is given by

u =−d lim
N→∞

〈m2
N 〉CW

N ;β,0 .

Now, by Theorem 2.2,

lim
N→∞

〈m2
N 〉CW

N ;β,0 =
{

0 if β<βc ,

m∗,CW(β)2 if β>βc .

We immediately deduce that u = 0 when β<βc and, thus, α= 0. When β>βc,

∂u

∂T
= 2dβ2m∗,CW(β)

∂m∗,CW(β)

∂β
.

Differentiating (2.12) with respect to β, we get

∂m∗,CW(β)

∂β
= (

1− tanh2(2dβm∗,CW(β))
)(

2dm∗,CW(β)+2dβ
∂m∗,CW(β)

∂β

)
.

Rearranging, expanding the hyperbolic tangents to leading order and using (2.24),
we obtain that, as β ↓βc,

∂m∗,CW(β)

∂β
= 1− tanh2(2dβm∗,CW(β))

1−2dβ+2dβ tanh2(2dβm∗,CW(β))
2dm∗,CW(β) = (1+o(1))

2(β−βc)
m∗,CW(β) .

Using once more (2.24), we conclude that, as β ↓βc,

cH=0(β) = dβ2

β−βc

(m∗,CW(β))2(1+o(1)) = 3

2

βc

β
(1+o(1)) ,

so that limβ↓βc cH=0(β) = 3/2 and α′ = 0.
We leave the proof that δ= 3 to the reader.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

76 Chapter 2. The Curie–Weiss Model

2.5.4 Links with other models on Zd .

One of the main reasons for the interest in mean-field models is that the results
obtained often shed light on the type of behavior that might be expected in more
realistic lattice models on Zd , of the type discussed in the rest of this book. In view
of the approximation involved, one might expect the agreement between a lattice
spin system on Zd and its mean-field version to improve as the number of spins
with which one spin interacts increases, which happens when either the range of
the interaction becomes large, or the dimension of the lattice increases. It turns
out that, in many cases, this can in fact be quantified rather precisely. We will
not discuss these issues in much detail, but will rather provide some references.
Much more information can found in Sections II.13–II.15 and V.3–V.5 of Simon’s
book [308] and in Section 4 of Biskup’s review [22].

Rigorous bounds. A first type of comparison between models on Zd and their
mean-field counterpart is provided by various bounds on some quantities associ-
ated to the former in terms of the corresponding quantities associated to the latter.

First, the mean-field pressure is known to provide a rigorous lower bound on
the pressure in very general settings. For example, we will show in Theorem 3.53
that

ψ
Ising on Zd

β
(h) ≥ψCW

β (h) .

(Remember that the dimensional parameter d also appears in the definition of the
Curie–Weiss model in the right-hand side.) See also Exercise 6.28 for a closely re-
lated result.

Second, the mean-field critical temperature is known to provide rigorous up-
per bound on the critical temperature of models on Zd . Again, this is done for the
Ising model, via a comparison of the magnetizations of these two models, in The-
orem 3.53. More information and references on this topic can be found in [308,
Sections V.3 and V.5].

Convergence. The bounds mentioned above enable a general comparison be-
tween models in arbitrary dimensions and their mean-field approximation, but do
not yield quantitative information about the discrepancy. Here, we consider vari-
ous limiting procedures, in which actual convergence to the mean-field limits can
be established.

First, one can consider spin systems on Zd with spread-out interactions (for
example, such that any pair of spins located at a distance less than some large value
interact). A prototypical example are models with Kac interactions. An example of
the latter is discussed in detail in Section 4.10 and a proof that the corresponding
pressure converges to the corresponding mean-field pressure when the range of
the interactions diverges is provided in Theorem 4.31. Additional information and
references on this topic can be found at the end of Chapter 4.

Another approach is to consider models on Zd and prove convergence of the
pressure or the magnetization as d → ∞. A general result can be found in [308,
Theorem II.14.1] with the relevant bibliography. Alternatively, one might try to pro-
vide quantitative bounds for the difference between the magnetization of a model
on Zd and the magnetization of its mean-field counterpart. This is the approach
developed in [23, 24, 68]; see also the lecture notes by Biskup [22]. This approach
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is particularly interesting for models in which the mean-field magnetization is dis-
continuous. Indeed, once the dimension is large enough (or the interaction is suf-
ficiently spread-out), the error term becomes small enough that the magnetization
of the corresponding model on Zd must necessarily be also discontinuous. This
provides a powerful technique to prove the existence of first-order phase transi-
tions in some models.

Critical exponents. Finally, as mentioned in Section 2.5.3 and as will be discussed
in more detail in Section 3.10.11, when a continuous phase transition occurs, de-
scribing qualitatively quantities exhibiting singular behavior is of great interest. In
particular, a challenging problem is to determine the corresponding critical expo-
nents, as we did for the Curie–Weiss model in Section 2.5.3. It is expected that the
critical exponents of models on Zd coincide with those of their mean-field coun-
terpart for all large enough dimensions (and not only in the limit!). Namely, there
exists a critical dimension du, known as the upper critical dimension, such that the
critical exponents take their mean-field values for all d > du. This has been proved
in several cases, such as the Ising model, for which du = 4. A thorough discussion
can be found in the book by Fernández, Fröhlich and Sokal [102].
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