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Preface

Equilibrium statistical mechanics is a field that has existed for more than a century.
Its origins lie in the search for a microscopic justification of equilibrium thermo-
dynamics, and it developed into a well-established branch of mathematics in the
second half of the twentieth century. The ideas and methods that it introduced to
treat systems with many components have now permeated many areas of science
and engineering, and have had an important impact on several branches of math-
ematics.

There exist many good introductions to this theory designed for physics under-
graduates. It might however come as a surprise that textbooks addressing it from a
mathematically rigorous standpoint have remained rather scarce. A reader looking
for an introduction to its more advanced mathematical aspects must often either
consult highly specialized monographs or search through numerous research arti-
cles available in peer-reviewed journals. It might even appear as if the mastery of
certain techniques has survived from one generation of researchers to the next only
by means of oral communication, through the use of chalk and blackboard...

It seems a general opinion that pedagogical introductory mathematically rigor-
ous textbooks simply do not exist. This book aims at starting to bridge this gap.
Both authors graduated in physics before turning to mathematical physics. As
such, we have witnessed this lack from the student’s point of view, before experi-
encing it, a few years later, from the teacher’s point of view. Above all, this text aims
to provide the material we would have liked to have at our disposal when entering
this field.

Although our hope is that it will also be of interest to students in theoretical
physics, this is in fact a book on mathematical physics. There is no general consen-
sus on what the latter term actually refers to. In rough terms, what it means for us
is: the analysis of problems originating in physics, at the level of rigor associated to
mathematics. This includes the introduction of concepts and the development of
tools enabling such an analysis. It is unfortunate that mathematical physics is often
held in rather low esteem by physicists, many of whom see it as useless nitpicking
and as dealing mainly with problems that they consider to be already fully under-
stood. There are however very good reasons for these investigations. First, such an
approach allows a very clear separation between the assumptions (the basic prin-
ciples of the underlying theory, as well as the particulars of the model analyzed)
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and the actual derivation: once the proper framework is set, the entire analysis is
done without further assumptions or approximations. This is essential in order to
ensure that the phenomenon that has been derived is indeed a consequence of the
starting hypotheses and not an artifact of the approximations made along the way.
Second, to provide a complete mathematical analysis requires us to understand the
phenomenon of interest in a much deeper and detailed way. In particular, it forces
one to provide precise definitions and statements. This is highly useful in clarifying
issues that are sometimes puzzling for students and, occasionally, researchers.

Let us emphasize two central features of this work.

e The first has to do with content. Equilibrium statistical mechanics has be-
come such a rich and diverse subject that it is impossible to cover more than
a fraction of it in a single book. Since our driving motivation is to provide an
easily accessible introduction in a form suitable for self-study, our first de-
cision was to focus on some of the most important and relevant examples
rather than to present the theory from a broad point of view. We hope that
this will help the reader build the necessary intuition, in concrete situations,
as well as provide background and motivation for the general theory. We also
refrained from introducing abstractions for their own sake and have done our
best to keep the technical level as low as possible.

* The second central feature of this book is related to our belief that the main
value of the proof of a theorem is measured by the extent to which it enhances
understanding of the phenomena under consideration. As a matter of fact,
the concepts and methods introduced in the course of a proof are often at
least as important as the claim of the theorem itself. The most useful proof,
for a beginner, is thus not necessarily the shortest or the most elegant one.
For these reasons, we have strived to provide, throughout the book, the ar-
guments we personally consider the most enlightening in the most simple
manner possible.

These two features have shaped the book from its very first versions. (They have
also contributed, admittedly, to the lengthiness of some chapters.) Together with
the numerous illustrations and exercises, we hope that they will help the beginner
to become familiarized with some of the central concepts and methods that lie at
the core of statistical mechanics.

As underlined by many authors, one of the main purposes of writing a book
should be one’s own pleasure. Indeed, leading this project to its conclusion was
by and large a very enjoyable albeit long journey! But, beyond that, the positive
feedback we have already received from students and from colleagues who have
used early drafts in their lectures, indicates that it may yet reach its goal, which is
to help beginners enter this beautiful field...

Acknowledgements. This book benefited both directly and indirectly from the
help and support of many colleagues. First and foremost, we would like to thank
Charles Pfister who, as a PhD advisor, introduced both authors to this field of re-
search many years ago. We have also learned much of what we know from our var-
ious co-authors during the last two decades. In particular, YV would like to express
his thanks to Dima Ioffe, for a long, fruitful and very enjoyable ongoing collabora-
tion.
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Conventions

def

Rd

Zd
R=o
IR>0
Z>
N, Z~q
i
Rez,Tmz
anb
avb
log
AcCB
ACB
AAB
#A,|A|

6m,n
Ox
Lx]
[x]

a is defined as being b

d-dimensional Euclidean space

d-dimensional cubic lattice

nonnegative real numbers

positive real numbers

nonnegative integers: 0,1,2,3,...

positive integers: 1,2,3,...

V-1

real and imaginary parts of z€ C

minimum of @ and b

maximum of @ and b

natural logarithm, that is, in base e = 2.718...

Ais a (not necessarily proper) subset of B

Ais a proper subset of B

symmetric difference

number of elements in the set A (if A is finite). At several places, also
used to denote the Lebesgue measure.
Kronecker symbol: 6, , = 1 if m = n, 0 otherwise
Dirac measure at x: §,(A) = 1if x € A, 0 otherwise
largest integer smaller or equal to x

smallest integer larger or equal to x

Asymptotic equivalence of functions will follow the standard conventions. For func-
tions f, g, defined in the neighborhood of x( (possibly xp = c0),

f(x) ~gx) meanslim, .y, }gg{; 83 -1,
f(x)=gx) meanslimy_y, Q—Q =1,
fx) = g(x) means0<liminfy_ % <limsup,_,, % <o
fx)=0(g(x)) meanslimsup, | %l <00,
fx)=0(g(x)) meanslim,_y| %| —o.
Xv
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XVi Preface

As usual, AP is identified with the set of all maps f : B — A. A sequence of
elements a, € E will usually be denoted as (a,),>1 < E. At several places, we will

set 0log0 0. Sums or products over empty families are defined as follows:

ZaidZEfO HaidZEfl.

[13%) i€

Several important notations involving several geometrical notions on Z¢ will be
defined at the end of the introduction and at the beginning of Chapter 3.
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