The Gaussian Free Field on 7¢

The model studied in this chapter, the Gaussian Free Field (GFF), is the only one we
will consider whose single-spin space, R, is non-compact. Its sets of configurations
in finite and infinite volume are therefore, respectively,

&R and Q¥R
Although most of the general structure of the DLR formalism developed in Chap-
ter 6 applies, the existence of infinite-volume Gibbs measures is not guaranteed
anymore under the most general hypotheses, and requires more care.
One possible physical interpretation of this model is as follows. In d = 1, the
spin at vertex i € A, w; € R, can be interpreted as the height of a random line above
the x-axis:

A i

Figure 8.1: A configuration of the Gaussian Free Field in a one-dimensional
box A, with boundary condition n = 0.

The behavior of the model in large volumes is therefore intimately related to
the fluctuations of the line away from the x-axis. Similarly, in d = 2, w; can be
interpreted as the height of a surface above the (x, y)-plane:
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Figure 8.2: A configuration of the Gaussian Free Field in d = 2, in a 30 x 30
box with boundary condition 1 = 0, which can be interpreted as a random
surface.
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The techniques we will use to study the GFF will be very different from those
used in the previous chapters. In particular, Gaussian vectors and random walks
will play a central role in the analysis of the model. The basic results required about
these two topics are collected in Appendices B.9 and B.13.

Definition of the model

We consider a configuration w € Q of the GFE in which a variable w; € R is associ-
ated to each vertex i € Z%; as usual, we will refer to w; as the spin at i. We define the
interactions between the spins located inside a region A € Z%, and between these
spins and those located outside A. We motivate the definition of the Hamiltonian
of the GFF by a few natural assumptions.

1. We first assume that only spins located at nearest-neighbors vertices of Z¢
interact.

2. Oursecond requirement is that the interaction favors agreement of neighbor-
ing spins. This is achieved by assuming that the contribution to the energy
due to two neighboring spins w; and w; is given by

BV (wi-wj), (8.1)

for some V : R — R, which is assumed to be even, V(—x) = V(x). Mod-
els with this type of interaction, depending only on the difference between
neighboring spins, are often called gradient models. In the case of the GFE
the function V is chosen to be

V(x) L2,

An interaction of the type (8.1) has the following property: the interaction
between two neighboring spins, w; and w;, does not change if the spins are
shifted by the same value a: w; — w; + a, w; — w; + a. As will be explained
later in Section 9.3, this invariance is at the origin of the mechanism that pre-
vents the existence of infinite-volume Gibbs measures in low dimensions.
The point is that local agreement between neighboring spins (that is, hav-
ing |wj — w;| small whenever i ~ j) does not prevent the spins from taking
very large values. This is of course a consequence of the unboundedness of
R. One way to avoid this problem is to introduce some external parameter
that penalizes large values of the spins.

3. To favor localization of the spin w; near zero, we introduce an additional term
to the Hamiltonian, of the form

Aw?, A=0.
This guarantees that when A > 0, large values of |w;| represent large energies,

and are therefore penalized.

We are thus led to consider a formal Hamiltonian of the following form:

B Y (wi-w)*+1 ) o
{i,j}eéazd iezd
For convenience, we will replace § and A by coefficients better suited to the manip-
ulations that will come later.
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8.1. Definition of the model 381

Definition 8.1. The Hamiltonian of the GFFin A € Z% is defined by

2
e m
iﬁ\;ﬁ,m(w)dzfﬁ Y (wi—wj)2+72w§, weQ, (8.2)
{i,jre&P ieA

1

where 3 = 0 is the inverse temperature and m = 0 is themass . The model is massive

when m > 0, massless if m =0.

Once we have a Hamiltonian, finite-volume Gibbs measures are defined in the
usual way. The measurable structures on Q) and Q were defined in Section 6.10;
we use the Borel sets Zx on Qp, and the o-algebra .# generated by cylinders on Q.
Since the spins are real-valued, a natural reference measure for the spin at site i is
the Lebesgue measure, which we shall simply denote dw;. We remind the reader
that wpanac € Q is the configuration that agrees with wa on A, and with  on A°.

So, given A € Z% and 1 € Q, the Gibbs distribution for the GFF in A with bound-
ary condition 7, at inverse temperature § = 0 and mass m = 0, is the probability
measure ,u7\; pm 0N (2, Z) defined by

n e‘-}gj\;ﬁ,m(‘”AnAC)
VAeZ, ,uA;ﬁ,m(A)szn—lA(wAnAc)l_!\dwi. 8.3)
A‘ﬁ,m 1€

The partition function is of course

def _ .
ieA

Exercise 8.1. Show that Z"

Afym is well-defined, forallne Q, >0, m=0.

Remark 8.2. In the previous chapters, we also considered other types of boundary
conditions, namely free and periodic. As shown in the next exercise, this cannot
be done for the massless GFE Sometimes (in particular when using reflection pos-
itivity, see Chapter 10), it is nevertheless necessary to use periodic boundary con-
ditions. In such situations, a common way of dealing with this problem is to take
first the thermodynamic limit with a positive mass and then send the mass to zero:
lim,;; 0 limy—oo ,u“’f;; ,» remember Definition 3.2. o

Exercise 8.2. Check that, for all nonempty A € 2% and all >0,

1%] __ rgper _
ZA;ﬁ0 _ZA;ﬁ,o =00.

In particular, it is not possible to define the massless GFF with free or periodic bound-
ary conditions.

Before pursuing, observe that the scaling properties of the Gibbs measure imply

that one of the parameters, 8 or m, plays an irrelevant role when studying the GFE
7 def

Indeed, the change of variables o/ = BY2w;, i € A, leads to

n _ p-lAl2gn
ZA;ﬁ,m =p ZA;l,m’ ’

1 The terminology “mass” is inherited from quantum field theory, where the corresponding
quadratic terms in the Lagrangian indeed give rise to the mass of the associated particles.
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def ,_ def ..
where m’ = ~2m and ' € p'/?1, and, similarly,

Hnpm A = Hyy e B2A), VAET,

This shows that there is no loss of generality in assuming that § = 1, which we will
do from now on; of course, we will then also omit § from the notations.

The next step is to define infinite-volume Gibbs measures. We shall do so by
using the approach described in detail in Chapter 6. Readers not comfortable with
this material can skip to the next subsection. We emphasize that, although we will
from time to time resort to this abstract setting in the sequel, most of our estimates
actually pertain to finite-volume Gibbs measures, and therefore do not require this
level of abstraction.

We proceed as in Section 6.10. First, the specification 7 = {m}{'} , c 7« of the GFF

is defined by the kernels

TR = ), 0.

Then, one defines the set of Gibbs measures compatible with 7, by
4 (m) d=ef{u € MQ) : un'™ = forall A € 7%}

We remind the reader (see Remark 6.3.1) of the following equivalent characteriza-
tion: p € ¥ (m) if and only if, for all A € Z and all A€ .Z,

WA F pe) () =7 (Alw)  for p-almost all w. (8.4)

Usually, a Gibbs measure in ¢ (m) will be denoted i, or ., when constructed via
a limiting procedure using a boundary condition n. Expectation of a function f
with respect to ph, will be denoted p, (f) or El[f].

Overview

The techniques used to study the GFF are very different from those used in previous
chapters. Let us first introduce the random variables ¢; : Q@ — R, defined by

i Ew;, icz?.

Similarly to what was done in Chapter 3, we will consider first the distribution of
@a = (@)ica in a finite region A c B(n) € Z4, under ,u’é(n).m(-). We will then deter-
mine under which conditions the random vector ¢, possésses a limiting distribu-
tion when n — oo. The first step will be to observe that, under ,uré(n);m, PB(n) is ac-
tually distributed as a Gaussian vector. This will give us access to various tools from
the theory of Gaussian processes, in particular when studying the thermodynamic
limit. Namely, as explained in Appendix B.9, the limit of a Gaussian vector, when
it exists, is also Gaussian. This will lead to the construction, in the limit n — oo,
of a Gaussian field ¢ = (¢;);.z4. The distribution of this field, denoted w, will be
shown to be a Gibbs measure in & (m). But ), is entirely determined by its mean
Enm [¢;] and by its covariance matrix, which measures the correlations between the
variables ¢;:

Covh (@i, ) E Ep (@i — Emloi) (9 — Emlo;D)] .

It turns out that the mean and covariance matrix will take on a particularly nice
form, with a probabilistic interpretation in terms of the symmetric simple random
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walk on Z%. This will make it possible to compute explicitly various quantities of
interest. More precise statements will be given later, but the behavior established
for the Gaussian Free Field will roughly be the following:

e Massless case (m = 0), low dimensions: In dimensions d = 1 and 2, the ran-
dom variables ¢;, when considered in a large box B(n) = {-n,..., ¥ with an
arbitrary fixed boundary condition, present large fluctuations, unbounded
as n — oo. For example, the variance of the spin located at the center of the
box is of order

n whend=1,

Var! =
B(");O((pO) {logn whend=2.

In such a situation, the field is said to delocalize. As we will see, delocal-
ization implies that there are no infinite-volume Gibbs measures in this case:
Y0)=02.

* Massless case (m = 0), high dimensions: In d = 3, the presence of a larger
number of neighbors renders the field sufficiently more rigid to remain lo-
calized, in the sense that it has fluctuations of bounded variance. In particu-
lar, there exist (infinitely many extremal) infinite-volume Gibbs measures in
this case. We will also show that the correlations under these measures are
nonnegative and decay slowly with the distance:

Covil (i) = Ilj—ill; @72

In particular, the susceptibility is infinite:

> Covg((pi,goj) = +o00.
jezd

* Massive case (m > 0), all dimensions: The presence of a mass term in the
Hamiltonian prevents the delocalization observed in dimensions 1 and 2 in
the massless case. However, we will show that, even in this case, there are
infinitely many infinite-volume Gibbs measures. As we will see, the presence
of a mass term also makes the correlations decay exponentially fast: there
exist c, =cy(m) >0,c_ =c_(m) <oo, Cy =Cy(m) <ooand C_=C_(m) >0
such that

C_e W=l < Covl) (@i, ) < Cre™ Wil i jezd.

Moreover, c+(m) = O(m) as m | 0. This shows that the correlation length of
the model is of the order of the inverse of the mass, m~!, when the mass is
small.

As seen from this short description, the GFF has no uniqueness regime (except in
the trivial case f =0, m > 0).

Parenthesis: Gaussian vectors and fields

Before pursuing, we recall a few generalities about Gaussian vectors, which in our
case will be a family (¢;);ep of random variables, indexed by the vertices of a fi-
nite region A € Z%. A more detailed account of Gaussian vectors can be found in
Appendix B.9.
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Gaussian vectors

Let op = (¢;)ien € Qa be a random vector, defined on some probability space. We
do not yet assume that the distribution of this vector is Gibbsian. We consider the
following scalar product on Qp: for 5 = (;)ien, @A = (@i)ien,

def
A A= Z lipi.
ieA

Definition 8.3. The random vector ¢, is Gaussian if, for all fixed tp, tp - @p isa
Gaussian variable (possibly degenerate, that is, with zero variance).

The distribution of a Gaussian variable X is determined entirely by its mean and
variance, and its characteristic function is given by

E[e"*] = exp(itE[X] - § £* Var(X)).

Let us assume that @ = (¢;) ;e is Gaussian, and let us denote its distribution by
- Expectation (resp. variance, covariance) with respect to pus will be denoted Ep
(resp. Vary, Covy). The mean and variance of £, - @ depend on £, as follows:

Eplta-@al = ) tiEAl@il =15+ an, (8.5)
ieA

def .
where ap = (a;)iep, a; = E\lgil, is the average (or mean) of ¢ 5. Moreover,

Varp(ta-@n) = Ex[(ta-@n — Exlia-@aD?] = Y Za(, )ity =tr-Zptr, (8.6)
i,jeA

where 25 = (ZA (i, j))i,jea is the covariance matrix of ¢4, defined by

Ial, j) E Covalgi, @) 8.7)
Therefore, for each t, the characteristic function of z, - ¢, is given by
Eple™90] = expl(ity - an — $En-ZAlA) (8.8)
and the moment generating function by
Eple™ %M =exp(tn-an+ 3 in-Zala). (8.9)

The distribution of a Gaussian vector ¢, is thus entirely determined by the pair
(ap,Zp); it is traditionally denoted by .4 (ap,Zp). We say that ¢, is centered if
ap =0.

Clearly, X, is symmetric: X5 (i, j) = ZA(j,7). Moreover, since Varp (fp - @p) =
0, we see from (8.6) that X, is nonnegative definite. In fact, to any as € Qp and
any symmetric nonnegative definite matrix X corresponds a (possibly degenerate)
Gaussian vector ¢, having a, as mean and X, as covariance matrix. Moreover,
when X, is positive definite, the density with respect to the Lebesgue measure takes
the following well-known form:
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Theorem 8.4. Assume that @ ~ A (ap,Zp), With a covariance matrix X, which
is positive definite (and, therefore, invertible). Then, the distribution of ¢ is abso-
lutely continuous with respect to the Lebesgue measure dx, (on Qy), with a density
given by

1

@2m)IA2,/|detZ 5|

Conversely, if ¢ is a random vector whose distribution is absolutely continuous
with respect to the Lebesgue measure on Qp with a density of the form (8.10), then
@ is Gaussian, with mean a, and covariance matrix X .

exp(—1(xa —an)-Z3' (xa — an)), xp€Qa. (8.10)

We emphasize that, once a vector is Gaussian, @ ~ .4 (aa,Zp), various quantities
of interest have immediate expressions in terms of the mean and covariance matrix.
For example, to study the random variable ¢;, (which is, of course, Gaussian) at
some given vertex iy € A, one can consider the vector tp = (6;,;) jen, Write @;, as
@i, = ta - @ and conclude that the mean and variance of ¢;, are given by

EA[(pl()] = aio) VarA((on) =ZA(iO) iO)‘
Although it will not be used in the sequel, the following exercise shows that cor-

relation functions of Gaussian vectors enjoy a remarkable factorization property,
known as Wick's formula or Isserlis’ theorem.

Exercise 8.3. Let ¢ be a centered Gaussian vector. Show that, for any n € N:

1. the 2n + 1-point correlation functions all vanish: for any collection of (not
necessarily distinct) vertices iy, ..., iap+1 € A,

Ezlgiy ... @iy, 1=0; (8.11)

2. the 2n-point correlation function can always be expressed in terms of the 2-
point correlation functions: for any collection of (not necessarily distinct) ver-
tices iy,...,ion €A,

Eplgiy @i, 1=Y. [ Eale,9i,l, (8.12)
Pl eDP

where the sum is over all pairings & of {1,...,2n}, that is, all families of n
pairs {¢,0'} c {1,...,2n} whose union equals {1,...,2n}. Hint: Use (8.9). Ex-
panding the exponential in the right-hand side of that expression, determine
the coefficient of t' ---t'm.

In fact, this factorization property characterizes Gaussian vectors.

Exercise 8.4. Consider a random vector ¢, satisfying (8.11) and (8.12). Show that
@ is centered Gaussian.

8.2.2 Gaussian fields and the thermodynamic limit.

Gaussian fields are infinite collections of random variables whose local behavior is
Gaussian:
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Definition 8.5. An infinite collection of random variables ¢ = (¢;) ;cza is a Gaussian
field if, for each A € 7%, the restriction ¢ = (¢;)ica is Gaussian. The distribution of|
a Gaussian field is called a Gaussian measure.

Consider now the sequence of boxes B(n), n = 0, and assume that, for each
n, a Gaussian vector @p, is given, ¢, ~ 4 (agm), ZB(n)), whose distribution we
denote by up(,. A meaning can be given to the thermodynamic limit as follows. We
fix A€z Ifnis large, then B(n) > A. Notice that the distribution of @ = (¢;);en,
seen as a collection of variables indexed by vertices of B(n), can be computed by
taking a vector Iy = (£;);eB(n) for which ; = 0 for all i € B(n) \ A. In this way,

. . ) 1
EB(n) [elfA'wA] - EB(n) [eltB(tz)'<PB(n)] — eltB(n)'“B(n)‘E[B(n)'ZB(n) B
Remembering that only a fixed number of components of fg(,, are non-zero, we

see that the limiting distribution of ¢ can be controlled if ag(, and Xg(,, have
limits as n — oo.

Theorem 8.6. Let, for all n, gy = (@i)ieBm be a Gaussian vector, @, ~
JV(“B(n):ZB(n))- Assume that, forall i, j € Zd, the limits

a; = lim (ag,)i and 20, )= im gy ()
exist and are finite. Then the following holds.

1. Forall A € Z9, the distribution of ¢ = (p;)ien converges, when n — oo, to
that of a Gaussian vector ¥ (ap, 2 ), with mean and covariance given by the
restrictions

ar = (a)ien and IpE (Z3, i, jen -

2. There exists a Gaussian field ¢ whose restriction §» to each A € 29 is a Gaus-
sian vector with distribution A (ap,>A).

Proof. The first claim is a consequence of Proposition B.56. For the second one,
fix any A € Z%, and let u, denote the limiting distribution of @,. By construc-
tion, the collection {tp}, 74 is consistent in the sense of Kolmogorov’s Extension
Theorem (Theorem 6.6 and Remark 6.98). This guarantees the existence of a prob-
ability measure p on (Q,.%) whose marginal on each A € Z¢ is exactly 5. Under
U, the random variables @; (w) = ; then form a Gaussian field such that, for each
A, P = (@;)iep has distribution p,. O

Consider now the GFF in A, defined by the measure ;/]\;m in (8.3). Although
the latter is a probability measure on (Q,.%), it acts in a trivial way on the spins
outside A (for each j ¢ A, ¢; =n; almost surely). We will therefore, without loss of
generality, consider it as a distribution on (Qp, %4).

By definition, u;’\; . 18 absolutely continuous with respect to the Lebesgue mea-
sure on Q4. We will show that it can be put in the form (8.10), which will prove
that (¢;) ;e is @a non-degenerate Gaussian vector. We thus need to reformulate the
Hamiltonian J#.,, in such a way that it takes the form of the exponent that appears
in the density (8.10). We do this following a step-by-step procedure that will take us
on a detour.
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Harmonic functions and the Discrete Green Identities

Given a collection f = (f;);.z« of real numbers, we define, for each pair {i, j} € 654,

the discrete gradient
def

~VHij=fi—-fi
and, for all i € Z4, the discrete Laplacian
AT Y (V. (8.13)
jij~i

Lemma 8.7 (Discrete Green Identities). Let A € Z%. Then, for all collections of real
numbers f = (fi);czda, & = (81 jezd,

Y. VNV =-) g+ Y gV, (8.14)
{i,j}eé"/'\’ ieA . IEA
JEAS, j~i
Y (i(Agi-gi ANt = Y. {fi(Vgij—gi(Vijl. (8.15)
ieEA [l\%A )
JEN", j~I

Remark 8.8. The continuous analogues of (8.14) and (8.15) are the classical Green
identities, which, on a smooth domain U c R", provide a higher-dimensional ver-
sion of the classical integration by parts formula. That is, for all smooth functions

fand g,
fo-ngVz—f gAde+f g(Vf-n)ds,
U U U
| irag-ganiav=4 {f9g-n-gvs-nhds.
U ou

where 7 is the outward normal unit-vector and dV and dS denote respectively the
volume and surface elements. o

Proof of Lemma 8.7: Using the symmetry between i and j (in all the sums below, j
is always assumed to be a nearest-neighbor of 7):

Y VPij(Veiji= ) gilfi-f- ) &lfi—f)

{i,jlcA {i,jlcA {i,jlcA
NNV
ieEA  jeA
==Y &ANi+Y 8 Y (fi—-f).
ieA ieA  jeA©
Therefore,
Y (VA= Y (VHij(Vij+ Y (Vij(Ve)ij
{i,j}€(§/l\) {i,jlcA i€A, jeA®
=-Y giAfi+ Y gfi-f).
ieA ieA,jeA®

The second identity (8.15) is obtained using the first one twice, interchanging the
roles of f and g. O
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We can write the action of the Laplacian on f = (f;);cza as:

Af); = Z Aijfj, iEZd,

jezd

where the matrix elements (A;;); ;c7a are defined by

-2d ifi=j,
Ajj=11 ifi~j, (8.16)
0 otherwise.

To obtain a representation of 7%}, in terms of the scalar product in A, we intro-
duce the restriction of A to A, defined by Ay & (Aijdijen-

Remark 8.9. Let i € A. In what follows, it will be important to distinguish between
(Af);, defined in (8.13) and which may depend on some of the variables f; located
outside A, and (Aj f);, which is a shorthand notation for ), jeA A;jfj (and thus in-
volves only variables f; inside A). In particular, we will use the notation

farg® > Aijfigi
i,jEA
which clearly satisfies
f-Arg=(Arf)-g. (8.17)

o
From now on, we assume that f coincides with 1 outside A and denote by By
any boundary term, that is, any quantity (possibly changing from place to place)
depending only on the values 7, j € A°.
Let us see how the quadratic term in the Hamiltonian will be handled. Apply-
ing (8.14) with f = g and rearranging terms, we get

Y =t Y Ny
{i,jle&P {i,jlesy

=—f-DMpf-2), > fifj+Ba. (8.18)

ieA jEAC,j~i

One can then introduce u = (;);.74, to be determined later, depending on 77 and
A, and playing the role of the mean of f. Our aim is to rewrite (8.18) in the form
—(f —uw)-Ax(f —u), up to boundary terms. We can, in particular, include in B, any
expression that depends only on the values of u. We have, using (8.17),

(f—w-ApA(f—w=f-Arf-2f-Apu+u-Apu
=f-Aaf-2) filAw;+2Y >  fiuj+Bj.
ieA i€A jEAS, j~i

Comparing with (8.18), we deduce that

Y (i-fr=-(f-w-Anf-w
{i,jle&P
-2Y fidw;+2Y. Y fi(uj—f})+Ba. (8.19)
ieA 0 i€A jeAS,j~i T
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A look at the second line in this last display indicates exactly the restrictions one
should impose on u in order for —(f — u) - Ap(f — u) to be the one and only contri-
bution to the Hamiltonian (up to boundary terms). To cancel the non-trivial terms
that depend on the values of f inside A, we need to ensure that: (i) u is harmonic
in A:

(Au);=0 VieA.

(ii) u coincides with f (hence with n) outside A. We have thus proved:

Lemma 8.10. Let f coincide with n outside A. Assume that u solves the Dirichlet
problem in A with boundary conditionn:

u harmonicin A,
. (8.20)
{uj =n;j forall j € A°.
Then,
Y (fi—fi)?=—(f-w-An(f—w)+Ba. (8.21)

{i,jre&P

Existence of a solution to the Dirichlet problem will be proved in Lemma 8.15.
Uniqueness can be verified easily:

‘ Lemma 8.11. (8.20) has at most one solution.

Proof. We first consider the boundary condition 1 = 0, and show that u = 0 is the
unique solution. Namely, assume v is any solution, and let i, € A be such that
|vi,| = maxjea |vj]. With no loss of generality, assume v;, = 0. Since (Av);, =0
implies v;, = ﬁZjNi* vj, and vj < v;, for all j ~ i., we conclude that v; = v;, for
all j ~ i,. Repeating this procedure until the boundary of A is reached, we deduce
that v must be constant, and this constant can only be 0. Let now u and v be two
solutions of (8.20). Then, h = u— v is a solution to the Dirichlet problem in A with
boundary condition i’ = 0. By the previous argument, & = 0 and thus u = v. O

Exercise 8.5. Show that, when d = 1, the solution of the Dirichlet problem on an
interval A = {a, ..., b} is of the form u; = ai + c, for some a, c € R determined by the
boundary condition.

The massless case

Let us consider the massless Hamiltonian .74y, expressed in terms of the vari-
ables ¢ = (¢;);cza, which are assumed to satisfy ¢; = n; for all i ¢ A. We apply
Lemma 8.10 with f = ¢, assuming for the moment that one can find a solution u
to the Dirichlet problem (in A, with boundary condition 7). Since it does not alter
the Gibbs distribution, the constant B, in (8.21) can always be subtracted from the
Hamiltonian. We get

Hro=3@—w)- (5780 (@ — ). (8.22)

Our next tasks are, first, to invert the matrix —ﬁA A, in order to obtain an explicit
expression for the covariance matrix, and, second, to find an explicit expression for
the solution u to the Dirichlet problem.
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The random walk representation

We need to determine whether there exists some positive-definite covariance ma-
trix X5 such that —75A, = £7!. Observe first that

—37Ar=IA—Py,

where Ip = (6i);,jea is the identity matrix and Py = (P(i, j));, jea is the matrix with
elements

PG, )% 20 H7~1,
’ 0 otherwise.

The numbers (P(i, j)); jeza are the transition probabilities of the symmetric sim-

ple random walk X = (Xj) =0 on Z4, which at each time step jumps to any one of
its 2d nearest-neighbors with probability ﬁ:

1
2
¥ N\ N
-O ® o—7

D=

Figure 8.3: The one-dimensional symmetric simple random walk.

We denote by P; the distribution of the walk starting at i € Z%. That is, we have
P;(Xo=1i)=1and, forn=0,

Pi(Xnse1 =kl Xn=j)=P(j,k) Vjkez’

(Information on the simple random walk on Z¢ can be found in Appendix B.13.)
We will need to know that the walk almost surely exits a finite region in a finite
time:

Lemma 8.12. For A € Z%, let 1pc & inf{k =0 : Xy € A°} be the first exit time from
A. Then P;(tpc < 00) = 1. More precisely, there exists ¢ = c(A) > 0 such that, for all
i€A,

Pi(tac>n)<e ", (8.23)

Proof. If we let R = supj¢, infxepc llk — I, then, starting from i, one can find a
nearest-neighbor path of length at most R which exits A. This means that during
any time-interval of length R, there is a probability at least (2d) % that the random
walk exits A (just force it to follow the path). In particular,

[FDi(TAC>n)s(1_(2d)7R)[l’l/R]' -

The next lemma shows that the matrix I, — P, is invertible, and provides a proba-
bilistic interpretation for its inverse:

Lemma 8.13. The |A| x |A| matrix I — Py is invertible. Moreover, its inverse G o
(In — Pp)~! is given by Gy = (GA G, )i, jen, the Green function in A of the simple
random walk on 7%, defined by

Tpac—1

Gali, N EE] Y 1, (8.24)
n=0
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The Green function G, (i, j) represents the average number of visits at j made by a
walk started at 7, before it leaves A.

Proof. To start, observe that (below, PX denotes the nth power of Py)
(Iy=P\)(I\+Py+Pi+--+Ply=1,-P*. (8.25)
We claim that there exists ¢ = ¢(A) such that, foralli,je Aand alln =1,
PR(i,j)<e ", (8.26)
Indeed, foreach n>1,

PG, j)= ). P(i,i)Pli1,iz)-+-Plin-1, /) =Pi(Xp = j, Tac > ).
010 in-1€EA
Since P; (X, = j,Tac > 1) < P;(7Ac > n), (8.26) follows from (8.23). This implies that
the matrix Gp = (Ga)j,jea, defined by

Ga(i, j) = (Ian + P +P/2\ +--)(,j) = Z Pi(Xy=j,Tac >n), (8.27)

n=0
is well defined and, by (8.25), that it satisfies (Iy — PA)Ga = I5. Of course, by sym-
metry, we also have Gp (Ix — Pp) = Ix. The conclusion follows, since the right-hand
side of (8.27) can be rewritten in the form given (8.24). O

Remark 8.14. The key ingredient in the above proof that Iy — P, is invertible is the
fact that P, is substochastic: }_ jc s P(i, j) <1 for those vertices i which lie along the
inner boundary of A. This property was crucial in establishing (8.26). 3

Let us now prove the existence of a solution to the Dirichlet problem (unique-
ness was shown in Lemma 8.11), also expressed in terms of the simple random
walk. Let X7,. denote the position of the walk at the time of first exit from A.

Lemma 8.15. The solution to the Dirichlet problem (8.20) is given by the function
U = (U;) jcza defined by

w EEilnx,, | Viez’. (8.28)

Proof. When j € AS, P;j(tac =0) =1and, thus, uj =Ej[nx,] =n;. When i € A, by
conditioning on the first step of the walk,

wi =Eilnx, 1= Eilnx, X1 =)
Jj~i

=Y PiXi=)Eilnx, 1 X1 =]
Jj~i

- 1 _ 1
=2 zabilx, =532 u,
j~i Jj~i
which implies (Au); = 0. O

Remark 8.16. Observe that if ) = (17;) ;7 is itself harmonic, then u = 7 is the solu-
tion to the Dirichlet problem in A with boundary condition 7. 3

Theorem 8.17. Under ,u7\,0, @A = (pi)ien is Gaussian, with mean uy = (u;)iep de-
fined in (8.28), and positive definite covariance matrix Gy = (Ga (i, j)); jen given by
the Green function (8.24).
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392 Chapter 8. The Gaussian Free Field on 74

Proof. The claim follows from the representation (8.22) of the Hamiltonian, the ex-
pression (8.28) for the solution to the Dirichlet problem, the expression (8.24) for
the inverse of Iy — P, and Theorem 8.4. O

The reader should note the remarkable fact that the distribution of ¢, under
N?\-o depends on the boundary condition 1 only through its mean: the covariance
matrix is only sensitive to the choice of A.

Example 8.18. Consider the GFF in dimension d = 1. Let n be any boundary con-
dition, fixed outside an interval A = {a,...,b} € Z. As we saw in Exercise 8.5, the
solution to the Dirichlet problem is the affine interpolation between (a,n,) and
(b,np). A typical configuration under ”7\;0 should therefore be thought of as de-
scribing fluctuations around this line (however, these fluctuations can be large on
the microscopic scale, as will be seen below):

a b

Figure 8.4: A configuration of the one-dimensional GFF under 'UZ'O' whose
mean u, is the harmonic function given by the linear interpolation between
the values of nj on the boundary.

Before we start with our analysis of the thermodynamic limit, let us exploit the
representation derived in Theorem 8.17 in order to study the fluctuations of ¢,
in alarge box B(n).

For the sake of concreteness, consider the spin at the origin, ¢o. The latter is a
Gaussian random variable with variance given by

Varg . (90) = Gg(n) (0,0).

Notice first that the time 7g,)c it takes for the random walk, starting at 0, to leave
the box B(n) is increasing in n and is always larger than n. Therefore, by monotone
convergence,

mehwwﬁﬁﬁdgymﬁﬂ (8.29)
is just the expected number of visits of the walk at the origin. In particular, the
variance of ¢ diverges in the limit n — oo, whenever the symmetric simple random
walk is recurrent, that is, in dimensions 1 and 2 (see Appendix B.13.4). When this
happens, the field is said to delocalize. A closer analysis of the Green function (see
Theorem B.76) yields the following more precise information:

Ge@0~{" A=l (8.30)
B Nogn  ifd=2. ’
In contrast, in dimensions d = 3, the variance remains bounded, and therefore the
field remains localized close to its mean value even in the limit 7 — co.
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In the next section, we will relate these properties with the problem of existence
of infinite-volume Gibbs measures for the massless GFE

Exercise 8.6. Consider the one-dimensional GFF in B(n) with 0 boundary condition
(see Figure 8.1). Interpreting the values of the field, ¢_,,...,¢n, as the successive
positions of a random walk on R with Gaussian increments, starting at ¢_,—1 =0
and conditioned on {¢,+1 = 0}, prove directly (that is, without using the random
walk representation of G(0,0)) that @g ~ A (0, n+1).

The thermodynamic limit

We explained, before Theorem 8.6, how the thermodynamic limit 7 — oo can be
expressed in terms of the limits of the means ug ;) and of the covariance matrices
GB(n)» when the latter exist:

lim Eilnx,, 1, lim Gy (i, ), 8.31)
for all fixed pairs i, j € Z%.

Lowdimensions. We have seen that, whend =1ord =2,lim,_., Gg(»)(0,0) = co.
This has the following consequence:

Theorem 8.19. When d = 1 or d = 2, the massless Gaussian Free Field has no
infinite-volume Gibbs measures: 4 (0) = &.

Proof. Assume there exists a probability measure p € ¢(0). Since u = ;m% - for all
n, we have

pleo € la, b)) = pg ,, (@o € La, b)) = f K 000 € L@, b)) pdm),
for any interval [a, b] < R. But, uniformly in 7,

2
1 b (%= B 0 @0))
—f exp{——’ }dx
V271 GR;)(0,0) Ja 2Gp(1)(0,0)
b-—a

S — .
\/ ZﬂGB(n) (0,0)

In dimensions 1 and 2, the right-hand side tends to 0 as 7 — co. We conclude that
wwo € [a,b]) =0, for all a < b, and thus p(@y € R) = 0, which contradicts the as-
sumption that u is a probability measure. O

K nys0 PO € L@, D)) =

(8.32)

Remark 8.20. The lack of infinite-volume Gibbs measures for the massless GFF
¢ = (¢;) ez« in dimensions 1 and 2, as seen above, is due to the fact that the fluc-
tuations of each spin ¢; become unbounded when B(n) 1 Z4. This is not incom-
patible, nevertheless, with the fact that some random translation of the field does
have a well-defined thermodynamic limit. Namely, define the random variables
@ = (Pi)jeza bY

def

Pi=@i—o. (8.33)
Then, as shown in the next exercise, these random variables have a well-defined
thermodynamic limit, even when d =1, 2. o
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394 Chapter 8. The Gaussian Free Field on 74

Exercise 8.7. Consider the variables ¢; defined in (8.33). Show that under ,u%_o (zero
boundary condition), (¢;) e is Gaussian, centered, with covariance matrix given by

Gali, /) € G i, j) — GA(i,0) — GA (0, j) + GA (0,0). (8.34)

It can be shown that the matrix elements G (i, j) in (8.34) have a finite limit when
A 1 2% see the comments in Section 8.7.2.

Higher dimensions. When d = 3, transience of the symmetric simple random
walk implies that

GG, ) lim Gay (i, ) =Ei( ¥ Lix=j) (8.35)
oo k=0

is finite. This will allow us to construct infinite-volume Gibbs measures. We say
that 77 = (17;) ;cza is harmonic (in 7% if

(Am;=0 Viez?.

Theorem 8.21. In dimensions d = 3, the massless Gaussian Free Field possesses in-
finitely many infinite-volume Gibbs measures: |4 (0)| = co. More precisely, given any
harmonic functionn on Z%, there exists a Gaussian Gibbs measure ug with mean 1
and covariance matrix G = (G(i, j)); jeza given in (8.35).

Remark 8.22. It can be shown that the Gibbs measures yg of Theorem 8.21 are pre-
cisely the extremal elements of 4 (0): ex¥(0) = {,ug ' harmonic}. o

Clearly, there exist infinitely many harmonic functions. For example, any con-
stant function is harmonic, or, more generally, any function of the form

ni S arin++agigte,  Vi=(i,...,ig) € 2%, (8.36)

with @ = (ay,...,ag) € R%. But, in d = 2, the variety of harmonic functions is much
larger:

Exercise 8.8. Show that all harmonic functions u : Z* — R can be obtained by fixing
arbitrary values of u; at all vertices i belonging to the strip

{i=(,iz....i0)€Z% : ig€ (0,13}

and extending u to the whole of Z% using Au = 0.

An analysis of the Green function G(i, j) as ||j — ill, — oo (see Theorem B.76)
yields the following information on the asymptotic behavior of the covariance.

Proposition 8.23. Assume that d = 3 and m = 0. Then, the infinite-volume Gibbs
measures ug of Theorem 8.21 satisfy, as |i — jll, — oo,

r(d)
5 (1+0(1)) (8.37)

Cov (pi,pj) = ————
ORI - ingd-

for some constant r(d) > 0.
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Proof of Theorem 8.21: Fix some harmonic function 7. The restriction of n; to any fi-
nite box B(n) obviously solves the Dirichlet problem on B(n) (with boundary con-
dition n). Since the limits lim,_.o, Gg(y) (i, j) exist when d = 3, we can use Theo-
rem 8.6 to construct a Gaussian field ¢ = (¢;);.y« whose restriction to any finite
region A is a Gaussian vector (¢;);cp with mean (;);ep and covariance matrix
Ga = (G3, )i, jen. If we let yg denote the distribution of ¢, then ug (p;) =n; and

Covy(pi @) = G(i, j). (8.38)

It remains to show that ,ug € ¢(0). This could be done following the same steps
used to prove Theorem 6.26. For pedagogical reasons, we will give a different proof
relying on the Gaussian properties of ¢.

We use the criterion (8.4), and show that, for all A € Z and all A€ .%,

o (Al Fpe) () = pR o (A)  for p)-almost all w.

For that, we will verify that the field ¢ = (¢;);.z«, when conditioned on Fpc, Te-
mains Gaussian (Lemma 8.24 below), and that, for all ¢,

Eg[eifA'(PA | yAC](w) — eifA'ﬂA(ﬂ))—%l‘A'GAfA , (8.39)

where a; (w) = E;[w Xr e ] is the solution of the Dirichlet problem in A with boundary
condition w.

Lemma 8.24. Let ¢ be the Gaussian field constructed above. Let, for all i € A,

def

ai (@) = Ey[9i|. Facl ).

Then, p-almost surely, a;(w) = E;[w Xeyo 1o In particular, each a;(w) is a finite linear
combination of the variables w j and (a;) ;cza is a Gaussian field.

Proof. When i € A, we use the characterization of the conditional expectation given
in Lemma B.50: up to equivalence, Eg [@;|-Fac] is the unique .#jc-measurable ran-
dom variable 1 for which

El[(@i—y)p;] =0 forall jeA°. (8.40)

We verify that this condition is indeed satisfied when ¢ (w) = E;[w P 1. By (8.38),

Eg (@i ~Eilox, )oj] = B lpip;] - B [Eilex, ¢;]
=G, j)+nin; - Eg[Eilox, o]
Using again (8.38),

Eo[Eilpx, Joj]= 3 EjlokpIPilXq,. =kl
ked™*A

=Ei[Eglox, . )]
=Ei[G(Xe e, D] +Ei[Elpx, Vg1 (8.41)

On the one hand, since i € A and j € A, any trajectory of the random walk that con-
tributes to G(i, j) must intersect 0**A at least once, so the strong Markov Property
gives

G, )= Y, Pi(Xsye = kG, j) =E[G(Xq e, D]
ked®*A
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396 Chapter 8. The Gaussian Free Field on 74

On the other hand, since ¢ has mean 7 and since 7 is solution of the Dirichlet prob-
lem in A with boundary condition n, we have

Ei[Eglox, Eglojl] =Eilnx, 01 =Eilnx, nj=nim;.

This shows that a;(w) = E;[w b ]. In particular, the latter is a linear combination
of the wjs:

aiw)= Y oiPi(Xe=k),
ked®xXA

which implies that (a;) .z« is also a Gaussian field. O

Corollary 8.25. Under ug, the random vector (p; — a;) e is independent of F c.

Proof. We know that the variables ¢; —a;, i € A, and ¢j, j € AS, form a Gaus-
sian field. Therefore, a classical result (Proposition (B.58)) implies that (¢; — a;)jen,
which is centered, is independent of .% ¢ if and only if each pair ¢; — a; (i € A) and
@j (j € A°) is uncorrelated. But this follows from (8.40). O

Let ap = (a;)iea- By Corollary 8.25 and since ay is .#5c-measurable,
Eg[eitA'(/’A | yAC] — eitA'aAEg[eitA-UﬂA*aA) | fAC] — eitA'ﬂAEg[eitA-(lﬂA*ﬂA)] .

We know that the variables ¢; — a;, i € A, form a Gaussian vector under ug. Since it
is centered, we need only compute its covariance. For i, j € A, write

(pi—ailpj—aj)=¢ipj—(pi—ala;—(pj—aja; - a;a;.

Using Corollary 8.25 again, we see that E{ [(¢; — a;)a;| =0and E| ((¢; — aj)a;) =0
(since a; and a; are Z rc-measurable). Therefore,

Covy ((pi — ai), (¢ — a))) = Eg lpip;] — Eg(a;a;)
=G, j)+nin; - Ejla;a;j].

Proceeding as in (8.41),
Eylaiaj) =Eij[GXrye, X's )] +Ei j [ Eglox, N Eglox, 1], (8.42)
where X and X' are two independent symmetric simple random walks, starting

respectively at i and j, P; ; denotes their joint distribution, and 7', is the first exit
time of X’ from A. As was done earlier,

Eij[Eolox, JEglox,, 1] =Eijlnx, nx, 1=Einx, JEjnx, J=nm;.
Let us then define the modified Green function

Kal, ) €E;

Y x| =G0, )= Gali, ).

N=T pc
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Observe that Ku (i, j) = Kx(j, 1), since G and G, are both symmetric; moreover,
Ka(i, j) = G(i, j) if i € A°. We can thus write

Eij[GXryer X' 0)] = kl%: tAIPi(XTAC = OP;(X; . = DGk, )
) € [

= ) Pj(Xre =DKaG,D
leQ®XtA

= Y Pj(Xee = DKa(, D)
leQ®XtA
= Y Pj(Xe,e = DG,
[eQXtA

=Ka(j, i) =G, j) - Ga, ).
We have thus shown that Covg(((p,- —a;),(@j— aj)) = G (i, j), which implies that
) . 1
Eg[eltA'<PA |yAC] = lfaan e‘it/\'G/\t/\ .

This shows that, under ,ug (-1.ZAc), @4 is Gaussian with distribution given by ;/]\_0 ).
We have thereby proved (8.39) and Theorem 8.21.

The proof given above that the limiting Gaussian field belongs to ¢(0) only de-
pends on having a convergent expression for the Green function of the associated
random walk; it will be used again in the massive case.

The massive case

A similar analysis, based on a Gaussian description of the finite-volume Gibbs dis-
tribution, holds in the massive case m > 0. Nevertheless, the presence of a mass
term in the Hamiltonian leads to a change in the probabilistic interpretation, which
eventually leads to a completely different behavior.

Consider the Hamiltonian J#.,, which contains the term "172 Yiea (pf. To ex-
press %\, as a scalar product involving the inverse of a covariance matrix, we
use (8.19), but this time including the mass term. After rearrangement, this yields

fﬁ’ﬁ\;mz%((p—u)-(—ﬁAA+m2)(<p—u)
+ 3 @i ((—5g0+m*u); id Z @i (uj—@)+Ba. (843)
ieh \—(z)—' ENJENS =1 e
1 11

As before, we choose 1 so as to cancel the extra terms on the second line. The mean
u = (u;) ;.74 we are after must solve a modified Dirichlet problem. Let us say that u
is m-harmonic on A (resp. Zd) if

(A +m*u); =0, YieA (resp.iez).

We say that u solves the massive Dirichlet problem in A if

u is m-harmonic on A,
(8.44)

uj=n;forall je A°.

We will give a probabilistic solution of the massive Dirichlet problem, by again rep-
resenting the scalar product in the Hamiltonian, using a different random walk.
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Exercise 8.9. Verify that the solution to (8.44) (whose existence will be proved below)
is unique.

When d =1, one can determine all m-harmonic functions explicitly:

Exercise 8.10. Show that all m-harmonic functions on Z are of the following type:
u = Ae®* + Be % where a £ log(1 + m? + V2mZ + m).

Random walk representation

Consider a random walker on Z¢ which, as before, only jumps to nearest neigh-
bors but which, at each step, has a probability 2 > 0 of dying. That is, as-

1+m?
sume that, before taking each new step, the walke;n flips a coin with probability

. 2
P(head) = 17i—, P(tail) = {22,
jumps to a nearest neighbor on Z¢ uniformly, with probability ﬁ. If the outcome
is tail, the walker dies (and remains dead for all subsequent times).

This process can be defined by considering

If the outcome is head, the walker survives and

def
74790 %},
where x ¢ Z9 is a new vertex which we call the graveyard. We define the following

transition probabilities on Z%:

1
1+m?

Puli, )& TW

& ifi,jez? i~}
ifiez%and j = *,
ifi=j=x,

0 otherwise.

Let Z = (Zy) k=0 denote the killed random walk, that is the Markov chain on Zf
associated to the transition matrix P,,.

11 1
1+m? 2 1+m?

N|—

]

Figure 8.5: The one-dimensional symmetric simple random walk which has

a probability mn; of dying at each step.

1+

We denote by P the distribution of the process Z starting at i € 7% By definition,
* is an absorbing state for Z:

Vn=0, PM"(Zy=*|Zy=%)=1.

Moreover, when m > 0, at all time n = 0 (up to which the walk has not yet entered
the graveyard), the walk has a positive probability of dying:

Vkez?, PP Zpi=x|Zn=k) =225 >0.

1+m?
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Let
T Einf{n=0: Z, = x}

be the time at which the walker dies. Since IP’;"(T* >n)=1+m?)" 1, is [FD;”-
almost surely finite.

Notice that, when m = 0, Z reduces to the symmetric simple walk considered in
the previous section. The processes X and Z are in fact related by

PP (Zn= ) =Pl @x > 0Pi(Xp = ) = A+ m*) "Pi(X, = J), (8.45)

forall i, e 24,
The process Z underlies the probabilistic representation of the mean and co-
variance of the finite-volume Gibbs distribution of the massive GFF:

Theorem 8.26. Let A € Z%, d = 1, and ) be any boundary condition. Definen .
Then, under N?\;m' @A = (pi)ien s Gaussian, with mean u/’(’ = (ulf”),-eA given by

m def

u' Sz, ), VieA, (8.46)

where T pc Cinfik=0: Zr ¢ N}, and covariance matrix Gpn = (G (i, )i jen

given by

Tpac—1

1
Y Liz=p)- (8.47)
n=0

1+ m?

Gm;A(irj) = [E;-n

Exercise 8.11. Returning to the original Hamiltonian (8.2) with  not necessarily
equal to 1, check that the mean and covariance matrix are given by

—1/2
uiﬁ,m — ﬁ—l/z ulmﬁ , Gﬁ,m;l\(i’j) = ﬁ_l Gmﬁ—IIZ;A(irj) .

Observe that there are now two ways for the process Z to reach the exit-time 7 c:
either by stepping on a vertex j ¢ A or by dying.

Proof. We proceed as in the massless case. First, it is easy to verify that u!" de-
fined in (8.46) provides a solution to the massive Dirichlet problem (8.44). Then,
we use (8.43), in which only the term involving — ﬁA A + m? remains. By introduc-
ing the restriction Py;;a = (P (i, j))i,jen, We write
1 2 _ 2 _ 2
—55Ap+m” = (1+m*) Iy —Py=(1+m*){Ip - Ppya}.

Since PX (i, j) = P™(Zj = j,Tac > k) and, by (8.45),

P™(Zr=j)<A+m*)F, (8.48)

we conclude, as before, that the matrix Iy — Py, 5 is invertible and that its inverse is
given by the convergent series

Gm;AZ (IA+Pm;A+P;2n;A+"')-

1+ m?

Clearly, the entries of G, are exactly those given in (8.47). O
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Example 8.27. Consider the one-dimensional massive GFF in {-n,...,n}, with a
boundary condition 1. Using Exercises 8.9 and 8.10, we easily check that the so-
lution to the Dirichlet problem with boundary condition 7 is given by u;" = Aek 4

Be~ %k where a =log(1 + m? + v2m?2 + m*) and

a(n+1) efa(n+1)

n_n_lea(n+1) _ nn+1efrx(n+1)

» B= e2a(n+l) _ p—2a(n+l) ' ©

Nn+1€ —N-n-1
eZa(n+1) _ e—2a(n+l)

A=

Exercise 8.12. Let (p(i));.z« be nonnegative real numbers such that }_; p(i) = 1.
Consider the generalization of the GFF in which the Hamiltonian is given by

ﬁ . . ) X 2 m2 2
= ) pl-Dwi-0p)i+—) 0, weQ.
z {i,jrcz? 2 i

{i,jinA#£D

Show that the random walk representation derived above extends to this more gen-
eral situation, provided that one replaces the simple random walk on Z% by the ran-
dom walk on Z% with transition probabilities p(-).

The thermodynamic limit

We can easily show that the massive GFF always has at least one infinite-volume
Gibbs measure, in any dimension d = 1. Namely, the boundary condition n =0 is
m-harmonic, so u = 0 is the solution of the corresponding massive Dirichlet prob-
lem (8.44). Moreover,

1 .
T ZOP;”(Z =j. (8.49)
n=

G (i, /)& m Gy (i ) =
In view of (8.48), this series always converges when m > 0. By Theorem 8.6, this
yields the existence of the Gaussian field with mean zero and covariance matrix
Gm, whose distribution we denote by u%,. As in the proof of Theorem 8.21, one
then shows that its distribution ,u(,)n belongs to ¥ (m). Of course, the same argu-
ment can be used starting with any m-harmonic function 7 on Z%; observe that
Exercise 8.8 extends readily to the massive case, providing a description of all m-
harmonic functions. We have therefore proved the following result:

Theorem 8.28. In any dimension d = 1, the massive Gaussian Free Field possesses
infinitely many infinite-volume Gibbs measures: | (m)| = co. More precisely, given
any m-harmonic functionn on Z%, there exists a Gaussian Gibbs measure i, with
mean 1 and covariance matrix Gp, = (G, (i, j))iyjezd given in (8.49).

Remark 8.29. As in the massless case, it can be shown that m-harmonic functions
parametrize extremal Gibbs measures: ex¥ (m) = {,u?n : 17 is m-harmonic}. o

In contrast to the massless case in dimension d = 3, in which G(0, i) decreases
algebraically when ||i||, — oo, we will now see that the decay in the massive case is
always exponential. Let us thus define the rate

def

. . 1 .
En() = ZILIEO—ZlogGm(O,h).
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Proposition 8.30. Letd =1. Foranyie€ 74, Em (i) exists and
Gm(0,1) < Gp(0,0)e~5m)

Moreover, )
log(1+ m?) < % <log(2d) +log(1 + m?). (8.50)
1

Proof. Let, forall jez%,1; Emin{n=0: Z, = j}. Observe that
Gm(0,00) =PI (T ¢; < T2) G (01, 01).

Therefore, since G, (¢1, i) = G;;,(0,0) < oo for any m > 0,
lim —llogGm(O,fi) = lim —llogIP(’)”(Tgi <T,).
-0 ¥ (-0 ¥

Now, for all 1, ¢, € N, it follows from the strong Markov property that

PO (T(0y+02)i < Tw) ZPQ (Te1i <T(r1402)i <Tx) =P (T <THPG (7,1 <T4).

This implies that the sequence (—1ogP{(t¢; < 7)), is subadditive; Lemma B.5
then guarantees the existence of ¢, (i), and provides the desired upper bound on
G (0,1), after taking ¢ = 1.
Let us now turn to the bounds on &,,,(i)/||i||;. For the lower bound, we use (8.48):
A+m*)Gn(i, )= Y. P Zy = j)
n=0

1+ m? i
< Y a+m)h"s - (1 +m?)~ 1=,

nz|j-il

For the upper bound, we can use
A+ mA)Gp(i, ) 2P (1 <74) = 2d1 +m?) -1

where the second inequality is obtained by fixing an arbitrary shortest path from i
to j and then forcing the walk to follow it. O

Using m-harmonic functions as a boundary condition allows one to construct in-
finitely many distinct Gibbs measures. It turns out, however, that if we only con-
sider boundary conditions growing not too fast, then the corresponding Gaussian
field is unique:

Theorem 8.31. Let d = 1. For any boundary conditionn satisfying

l .
limsup max M<log(1+m2), (8.51)
kooo Elili=k Kk

the Gaussian Gibbs measure i, constructed in Theorem 8.28 is the same as the one
obtained with the boundary conditionn = 0: u), = uo,.

Since each m-harmonic function leads to a distinct infinite-volume Gibbs mea-
sure, Theorem 8.31 shows that the only m-harmonic function with subexponential
growth is 77 = 0. This is in sharp contrast with the massless case, for which distinct
Gibbs measures can be constructed using boundary conditions of the form (8.36),
in which n; diverges linearly in |7 ]];.
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Proof of Theorem 8.31: It suffices to prove that lim,—..E}"[n Zrg, )C] = 0 whenever

n satisfies (8.51). Let € > 0 be such that e/(1 + m?) < 1 and n be large enough to
ensure that |n;| < e for all i € 0°“B(n). Then,

|E (124, )| < €PY (TR (e > di (1, B(m))) < e (1 + m?) 71

which tends to 0 as n — oo. O

The limit m | 0

We have seen that, when d = 1 or d = 2, the large fluctuations of the field prevent
the existence of any infinite-volume Gibbs measure for the massless GFE It is thus
natural to study how these large fluctuations build up as m | 0. One way to quantify
the change in behavior as m | 0 (in dimensions 1 and 2) is to consider how fast the
variance Var,, (@) diverges and how the rate of exponential decay of the covariance
Covy, (¢4, @) decays to zero.

Divergence of the variancein d = 1,2

We first study the variance of the field in the limit 72 | 0, when d =1 or 2.

Proposition 8.32. Let ¢ be any massive Gaussian Free Field on Z%. Then, asm | 0,

L ind=1,
Vary (o) = { y2m , (8.52)
;Ilogml ind=2.

Proof. Let e* = 1+ m?, and remember that

Vary, (o) = G (0,0) = (1+m?) ™' Y e M"Py (X, =0).

n=0

We first consider the case d = 1. From the local limit theorem (Theorem B.70), for
all € > 0, there exists Kj such that

17€ =0 =128 vkzK 8.53)
—= k=0)= , = . .
vk o vk 0
This leads to the lower bound
l1-¢ e 2Ak 1 _¢ oo pm2Ax l-¢
—-An
e Py (X, = 0) = > dx = 1-0WV1),
go " N kZK Vi valk vx v )

where we used the change of variable 21x = y?/2. For the upper bound, we bound
the first Ky terms of the series by 1, and obtain

-2k —2Ax
Y e PPy (X = 0) < Ky + 14 s i ¢ k14 [T gy
k=0 \/ﬁ k=Ko+1 \/% \/ﬁ Ko \/}

The case d = 2 is similar and is left as an exercise; the main difference is that the
integral obtained cannot be computed explicitly. O
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¢&(m)

m

Figure 8.6: The rate of exponential decay ¢, of the massive Green function
in dimension 1.

The rate of decay for small masses
Proposition 8.30 shows that, as m — oo,
Gm(i, ) = e—210gm(1+o(1))||j—i||1 ViZje Zd.

It turns out that the rate of decay for small values of m has a very different behavior.
We first consider the one-dimensional case, in which an exact computation can be
made, valid for all m > 0:

Theorem 8.33. Letd =1and m>0. Foralli,j € z4,
Gm(i, j) = Amexp(=&mlj—il), (8.54)

where Ay, &m > 0 are given in (8.55). In particular, lim,, o %’” =2,

Proof. Since Gp,(i, j) = Gi»(0, j — i), it suffices to consider i = 0. Let A > 0 be such
that e* = 1 + m? and use (8.45) to write

A+ mA)Gm(0, )= ¥ e MPo(Xy = ) =Fo| Y- e 1ix,-].

n=0 n=0

We then use a Fourier representation for the indicator: for all j € Z,
L7 kX
1 —_n=— e n=dk.
{Xn=7} 27 ﬁn

The position of the symmetric simple random walk after n steps, X;,, can be ex-

pressed as a sum of independent identically distributed increments: X, =¢&; +--- +

&n, with Po(&; = £1) = % Let ¢(k) o Eolet*$1] = cos(k) denote the characteristic

function of the increment. Since the increments are independent, E[e!*X#] = ¢(k)".
Since A > 0, we can interchange the sum and the integral and get

1+ m?)Gm(0, j) = %f e K Y (e (k)" dk

- n=0
1 7 —ikj
S S —.
2n ) g 1-e k)
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404 Chapter 8. The Gaussian Free Field on 74

We will study the behavior of this last integral using the residue theorem. To start,

. .. —izj
we look for the singularities of z — —&—
1-e *cosz

e’l, we find z4 =ity, with 14 = . (1) = —log(e’1 Fve2t —1). Observe that £_(1) <0 <
£+ (1). Let y denote the closed clockwise-oriented path in C depicted on the figure
below:

in the complex plane. Solving cosz =

2+

We decompose

b n—iR -n—iR -7
(A IS Y N S
Y -7 b4 n—iR —n—iR
Uniformly for all z on the path of integration from 7 —iR to —7 —iR, when R is large
enough, |1 — e * cos(z)| = ef~*/3. Therefore, as R — oo,

—-n—iR e 1zj
[ gy
-k 1—e *p(2)

On the other hand, since the integrand is periodic, the integrals [ ~IR and Jorir

cancel each other. By the residue theorem (since the path is oriented clockwise),

e—izj e—izj
—f —  dz=2ni Res(—;z_)
y 1—e*cos(z) 1-e *cos(z)
e—izj
=27i lim (z-2z_.)————.
z—z- 1-e*cos(z)

This yields
et-(Mj £
Gn0,j) = ———=A,,e Y, 8.55
ml( ]) NI meé ( )
with &,, =log(1 + m? + vV2m?2 + m4). O

The previous result shows in particular that the rate of decay &, (i) /||i ], behaves
linearly in m as m | 0. We now extend this to all dimensions, using a more prob-
abilistic approach, which has the additional benefit of shedding more light on the
underlying mechanism.

Theorem 8.34. There exist my > 0 and constants 0 < a < 6 such that, forall0 < m <
mo and alli € 7%,

amllill, <&m) <dmlill,. (8.56)
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A

_’@: Let us explain why this behavior should be expected. Let j € 7% (with || jlla
large) and let T (resp. T+ ) be the time at which the walk first reaches j (resp. dies).
As we already observed earlier,

Gm(0,)) =Py'(1; <T)Gm(j, ) =Py (1; <T4)Gm(0,0). (8.57)

On the one hand, it is unlikely that the walker survives for a time much larger than
1/m?. Indeed, for all r > 0 for which r/m? is an integer,

PI(zy > rim?) = (1+m?) " <712, (8.58)

for all sufficiently small m. On the other hand, in a time at most r/ m?, the walker
typically cannot get to a distance further thanr/m:

B 12y = 71 < P, iz = 7/ )
- Eoll X, m2l]  rim? 1

2im? r2lm? r’ (8.59)

However, in order for a random walk started at 0 to reach j, such an event has to
occur at least || jll./(r/m) times. Therefore, the probability that the random walk
reaches j should decay exponentially with || jll,/ (r/m) = (m/7r)| jll,. The proof below
makes this argument precise. 3

Proof. Lower bound. Let r = 8 be such that r/m? is a positive integer and m/r < 1.

Set M & L% Il jll.]. Let us introduce the following sequence of random times: Ty =)

and, for k>0,
def .
Ty =inf{n>Te_y 2 | Zy— Zg, = 1/m}.

Note that, by definition, Tjs < 7. Applying the strong Markov Property at times
Tlr T2y---) TM*lr

M-1
P (rj <t < [ PO <70 =P (T <T.0M.
k=0
Following the heuristics described before the proof, we use the decomposition
PI(Ty < 74) =PI Ty < T, Ty < 7/m2%) + PIN(T) < T, Ty > 1/ m?)
<PJN(Ty < rIm?) + P (T, > 1Im?).

Now, on the one hand, it follows from (8.58) that IP(’)” (T« >r/m?) < e "2 which is
smaller than ;11 by our choice of r. On the other hand,

PO (I1Z 2 llo = 71m) 2 PE (1 Z, o = 71m | Ty < 1/ m?) P (Ty < r/m?)

= 1Py (T < r/im?),
since, by symmetry,
Po'(1Zell, = rim | Zkll, = rim) = 3,
for all ¢ = k. Therefore, it follows from (8.59) that

PO (T < rim?) < 2P (1 Zy el = 71m) < = <

)

SN
AN
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again by our choice of r. We conclude that
Gm(0, ) <2G(0,0) e 108/l
Upper bound. In (8.57), we write
Py (1) < T4) =2 Po (X jlrm = DPG (T > 1 jll./m),

where we assume [|| j ||,/ m] to be either || jll./m] or Ll jll./m] +1 in such a way that
{21 j12rm = Jt # 2. The first factor in the right-hand side can then be estimated
using the local limit theorem, Theorem B.70. Namely, provided that m sufficiently
small, Theorem B.70 implies the existence of constants cj, ¢; such that

e—cmljlz

Po (X1 jlio/m = J) 2 —————>"
Wjl2/m1 =] er (171l mydr2

forall je 7% with Il jll, > co. Since
ﬂ:osﬂ(.[* >jll./m) =1+ m2)—[|\j||2/ml > e—m”jllz’

the conclusion follows easily. O

Bibliographical references

The study of the Gaussian Free Field (often also called harmonic crystalin the litera-
ture) was initiated in the 1970s. More details can be found in Chapter 13 of Georgii’s
book [134], in particular proofs of the facts mentioned in Remarks 8.22 and 8.29, as
well as an extensive bibliography. Some parts of Section 8.4.2 were inspired by the
lecture notes of Spitzer [320].

Complements and further reading

Random walk representations

The random walk representation presented in this chapter (Theorems 8.17 and 8.26
and Exercise 8.12) can be extended in (at least) two directions.

In the first generalization, one replaces (plz. in the mass term by a more general
smooth function U;(¢;) with a sufficiently fast growth. Building on earlier work by
Symanzik [324], a generalization of the random walk representation to this context
was first derived by Brydges, Frohlich and Spencer in [56], which is still a nice place
to learn about this material. Another source we recommend is the book [102] by
Ferndndez, Frohlich and Sokal, which also contains several important applications
of this representation. In fact, as explained in these references, the spins ¢; them-
selves can be allowed to take values in RY, v = 1. Considering suitable sequences
of functions UIF”), this makes it possible to obtain random walk representations for
the types of continuous spin models discussed in Chapters 9 and 10.

In the second generalization, it is the quadratic interaction (¢; — ¢ j)2 that is
replaced by a more general function V(¢; — ¢;) of the gradients. (Models of this
type will be briefly considered in Section 9.3.) In this case, a generalization of the
random walk representation was obtained by Helffer and Sjéstrand [158]. A good
account can be found in Section 2 of the article [76] by Deuschel, Giacomin and
Ioffe.
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Gradient Gibbs states

As discussed in this chapter, the massless GFF delocalizes in dimensions 1 and 2,
which leads to the absence of any Gibbs measure in the thermodynamic limit in
those two cases.

Nevertheless, we have seen in Exercise 8.7 that, under ,u?\,o, the random vector

_ __def . . . . N
(@) ien, Where §; = @; — ¢y, is centered Gaussian with covariance matrix given by

Gali, /) € G i, j) — GA(i,0) — GA (0, ) + GA (0,0).

It can be shown [209] that, as A 1 Z¢, the limit of this quantity is given by the con-

vergent series
def

Gi, )= Y. Pi(Xn=j,To>n), (8.60)

n=0

where 1 “ min {n=0: X, =0}. In particular, the limiting Gaussian field is always
well defined.

More generally, the joint distribution of the gradients ¢; — ¢, {i, j} € &5a, re-
mains well defined in all dimensions. It is thus possible to define Gibbs measures
for this collection of random variables, instead of the original random variables
@i, i € Z%. This approach was pursued in a systematic way by Funaki and Spohn
in [124], where the reader can find much more information. Other good source are
Funaki’s lecture notes [125] and Sheffield’s thesis [302].

Effective interface models

As mentioned in the text, the Gaussian Free Field on Zd, as well as the more general
class of gradient models, are often used as caricatures of the interfaces in more
realistic lattice systems, such as the 3-dimensional Ising model. Such caricatures
are known as effective interface models. They are much simpler to analyze than
the objects they approximate and their analysis yields valuable insights into the
properties of the latter. In particular, they are used to study the effect of various
external potentials or constraints on interfaces. More information on these topics
can be found in the review article [46] by Bricmont, El Mellouki and Fréhlich, and
in the lecture notes by Giacomin [136], Funaki [125] and Velenik [347]. In addition,
the reader would probably also enjoy the older, but classical, review paper [107] by
Fisher, although it only covers one-dimensional effective interface models.

Continuum GFF

In this chapter, we only considered the Gaussian Free Field on the lattice 7%, 1t
turns out that it is possible to define an analogous model on R. The latter ob-
ject plays a crucial role in the analysis of the scaling limit of critical systems in two
dimensions. Good introductions to this topic can be found in the review [303] by
Sheffield and the lecture notes [348] by Werner.

A link to discrete spin systems

We saw in Section 2.5.2 how the Hubbard-Stratonovich transformation can be used
to compute the pressure of the Curie-Weiss model. Let us use the same idea and
explain how discrete spin systems can sometimes be expressed in terms of the GFE
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408 Chapter 8. The Gaussian Free Field on 74

The approach is very general but, for simplicity, we only consider an Ising fer-
romagnet with periodic boundary conditions. That is, we work on the torus T,
whose set of vertices is denoted V;,, as in Chapter 3.

Let us thus consider the Ising ferromagnet on T, with the following Hamilto-
nian:

def
30 = —%ﬁ Z ]ijO'iO'j—h Z gj.
i,jEVy i€V,

We will see that an interesting link can be made between the partition function
Z“’Z; BIh and the GFE provided that the coupling constants J = (J;;);,jev, are well
chosen.

The starting point is the following generalization of (2.20): for any positive def-
inite matrix X = (Z(i, j))1<i,j<n and any vector x = (x1,...,XN) € RN,

N
exp[L Y =G, Hxixj] = (@mN detz) ™

ij=1

0o 00 1 N 1 N
xf dyl---f dynexp[-3 Y =7 G, ))yiyjlexp[) xiyi]. (8.61)
—c0 -0 ij=1 i=1

(See Exercise B.22.) We will apply this identity to the quadratic part of the Boltz-

mann weight of the ferromagnet introduced above, with x; « VBoi, (i, ) =8 j-
To establish a correspondence with the GFE we choose J so that the inverse Z~! can
be related to the GFE Let us therefore take

]ij dl:eme;'D',,(ir]'),

where G,;7, (i, j) denotes is the massive Green function of the symmetric simple
random walk (X},) ;=0 on T, given by

Gm1, (i, NE Y. A+ m?) " IPi(X, = ). (8.62)
n=0

A straightforward adaptation of the proof of Theorem 8.26 shows that
(GmﬂTn)_l = —ﬁA + m2 .

where A = (A;});, jet, denotes the discrete Laplacian on T, defined as in (8.16).

Notice that, even though the coupling constants J;; defined above depend on n
and involve long-range interactions, they converge as n — co and decay exponen-
tially fastin || j — i|l,, uniformly in #n, as can be seen from (8.62).

With this choice of coupling constants, (8.61) can be written as
-1/2
exp[3f Y. Jijoioj]) = (@m)'"" detGpr,) " x
i,jeVy

xfexp[—% Y yil=gghij+mA)y;lexp[p? Y yioi] ] dyi,

L,jEVn i€V, i€V,

where each y;,i € V,,, is integrated over R. Since we recognize the Boltzmann
weight of the massive centered GFF on T, we get

exp[1B ¥ Jijoio;] = (exp[82 ¥ gioi])

i,jeVy i€V,

GFF,per

Vn;ﬁ,m ’
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We can now perform the summation over configurations in the partition function
of the ferromagnet, which yields

ZI‘)}:;ﬁJ,h = 2\Vn|< H COSh(ﬁllz(p,- n h)>GFF,per

i€V, Vaim

Note that the numerator in the right-hand side corresponds to a massless GFF with
an additional term }_;cy;, W (¢;) in the Hamiltonian, where W (-) is an external po-
tential defined by (see Figure 8.7)

def 3,2

W(x) = sz ~logcosh(8'?x+h). (8.63)
W / W
X \ X

Figure 8.7: The external potential W with m = 1 and h = 0. Left: 8 =0.5.
Right: f=2.

More generally, the same argument leads to a similar representation for any
correlation function:

(oA ?/e;;ﬁ,h = <H tanh(8'2¢; + h)>
icA

GFF,per

Vw '’

where the latter measure is that of the massless GFF in the external potential W.

In a sense, the above transformation (sometimes called the sine-Gordon trans-
formation) allows us to replace the discrete +1 spins of the Ising model by the con-
tinuous (and unbounded) spins of a Gaussian Free Field. A trace of the two values
can still be seen in the resulting double-well potential (8.63) to which this field is
submitted when g is sufficiently large; see Figure 8.7. Even though we will not make
use of this in the present book, this continuous settings turns out to be very con-
venient when implementing rigorously the renormalization group approach. We
refer to [57] for more information.
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