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8 The Gaussian Free Field on Zd

The model studied in this chapter, the Gaussian Free Field (GFF), is the only one we
will consider whose single-spin space, R, is non-compact. Its sets of configurations
in finite and infinite volume are therefore, respectively,

ΩΛ
def= RΛ and Ω

def= RZd
.

Although most of the general structure of the DLR formalism developed in Chap-
ter 6 applies, the existence of infinite-volume Gibbs measures is not guaranteed
anymore under the most general hypotheses, and requires more care.

One possible physical interpretation of this model is as follows. In d = 1, the
spin at vertex i ∈Λ, ωi ∈R, can be interpreted as the height of a random line above
the x-axis:

i

ωi

Λ

Figure 8.1: A configuration of the Gaussian Free Field in a one-dimensional
boxΛ, with boundary condition η≡ 0.

The behavior of the model in large volumes is therefore intimately related to
the fluctuations of the line away from the x-axis. Similarly, in d = 2, ωi can be
interpreted as the height of a surface above the (x, y)-plane:

Figure 8.2: A configuration of the Gaussian Free Field in d = 2, in a 30× 30
box with boundary condition η ≡ 0, which can be interpreted as a random
surface.
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380 Chapter 8. The Gaussian Free Field on Zd

The techniques we will use to study the GFF will be very different from those
used in the previous chapters. In particular, Gaussian vectors and random walks
will play a central role in the analysis of the model. The basic results required about
these two topics are collected in Appendices B.9 and B.13.

8.1 Definition of the model

We consider a configuration ω ∈Ω of the GFF, in which a variable ωi ∈ R is associ-
ated to each vertex i ∈Zd ; as usual, we will refer toωi as the spin at i . We define the
interactions between the spins located inside a region Λ⋐ Zd , and between these
spins and those located outside Λ. We motivate the definition of the Hamiltonian
of the GFF by a few natural assumptions.

1. We first assume that only spins located at nearest-neighbors vertices of Zd

interact.

2. Our second requirement is that the interaction favors agreement of neighbor-
ing spins. This is achieved by assuming that the contribution to the energy
due to two neighboring spins ωi and ω j is given by

βV (ωi −ω j ) , (8.1)

for some V : R→ R≥0, which is assumed to be even, V (−x) = V (x). Mod-
els with this type of interaction, depending only on the difference between
neighboring spins, are often called gradient models. In the case of the GFF,
the function V is chosen to be

V (x)
def= x2 .

An interaction of the type (8.1) has the following property: the interaction
between two neighboring spins, ωi and ω j , does not change if the spins are
shifted by the same value a: ωi 7→ ωi + a, ω j 7→ ω j + a. As will be explained
later in Section 9.3, this invariance is at the origin of the mechanism that pre-
vents the existence of infinite-volume Gibbs measures in low dimensions.
The point is that local agreement between neighboring spins (that is, hav-
ing |ω j −ωi | small whenever i ∼ j ) does not prevent the spins from taking
very large values. This is of course a consequence of the unboundedness of
R. One way to avoid this problem is to introduce some external parameter
that penalizes large values of the spins.

3. To favor localization of the spinωi near zero, we introduce an additional term
to the Hamiltonian, of the form

λω2
i , λ≥ 0.

This guarantees that when λ> 0, large values of |ωi | represent large energies,
and are therefore penalized.

We are thus led to consider a formal Hamiltonian of the following form:

β
∑

{i , j }∈E
Zd

(ωi −ω j )2 +λ
∑

i∈Zd

ω2
i .

For convenience, we will replace β and λ by coefficients better suited to the manip-
ulations that will come later.
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Definition 8.1. The Hamiltonian of the GFF inΛ⋐Zd is defined by

HΛ;β,m(ω)
def= β

4d

∑

{i , j }∈E b
Λ

(ωi −ω j )2 + m2

2

∑
i∈Λ

ω2
i , ω ∈Ω , (8.2)

whereβ≥ 0 is the inverse temperature and m ≥ 0 is the mass 1. The model is massive
when m > 0, massless if m = 0.

Once we have a Hamiltonian, finite-volume Gibbs measures are defined in the
usual way. The measurable structures on ΩΛ and Ω were defined in Section 6.10;
we use the Borel sets BΛ onΩΛ, and the σ-algebra F generated by cylinders onΩ.
Since the spins are real-valued, a natural reference measure for the spin at site i is
the Lebesgue measure, which we shall simply denote dωi . We remind the reader
that ωΛηΛc ∈Ω is the configuration that agrees with ωΛ onΛ, and with η onΛc.

So, givenΛ⋐Zd and η ∈Ω, the Gibbs distribution for the GFF inΛwith bound-
ary condition η, at inverse temperature β ≥ 0 and mass m ≥ 0, is the probability
measure µη

Λ;β,m on (Ω,F ) defined by

∀A ∈F , µ
η

Λ;β,m(A) =
∫

e−HΛ;β,m (ωΛηΛc )

Zη
Λ;β,m

1A(ωΛηΛc )
∏
i∈Λ

dωi . (8.3)

The partition function is of course

Zη
Λ;β,m

def=
∫

e−HΛ;β,m (ωΛηΛc )
∏
i∈Λ

dωi .

Exercise 8.1. Show that Zη
Λ;β,m is well-defined, for all η ∈Ω, β> 0, m ≥ 0.

Remark 8.2. In the previous chapters, we also considered other types of boundary
conditions, namely free and periodic. As shown in the next exercise, this cannot
be done for the massless GFF. Sometimes (in particular when using reflection pos-
itivity, see Chapter 10), it is nevertheless necessary to use periodic boundary con-
ditions. In such situations, a common way of dealing with this problem is to take
first the thermodynamic limit with a positive mass and then send the mass to zero:
limm↓0 limn→∞µ

per

Vn ;m , remember Definition 3.2. ⋄

Exercise 8.2. Check that, for all nonempty Λ⋐Zd and all β> 0,

Z∅
Λ;β,0 = Zper

Λ;β,0 =∞ .

In particular, it is not possible to define the massless GFF with free or periodic bound-
ary conditions.

Before pursuing, observe that the scaling properties of the Gibbs measure imply
that one of the parameters, β or m, plays an irrelevant role when studying the GFF.

Indeed, the change of variables ω′
i

def= β1/2ωi , i ∈Λ, leads to

Zη
Λ;β,m =β−|Λ|/2Zη

′

Λ;1,m′ ,

1 The terminology “mass” is inherited from quantum field theory, where the corresponding
quadratic terms in the Lagrangian indeed give rise to the mass of the associated particles.
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where m′ def= β−1/2m and η′ def= β1/2η, and, similarly,

µ
η

Λ;β,m(A) =µη
′

Λ;1,m′ (β
1/2 A), ∀A ∈F .

This shows that there is no loss of generality in assuming that β= 1, which we will
do from now on; of course, we will then also omit β from the notations.

The next step is to define infinite-volume Gibbs measures. We shall do so by
using the approach described in detail in Chapter 6. Readers not comfortable with
this material can skip to the next subsection. We emphasize that, although we will
from time to time resort to this abstract setting in the sequel, most of our estimates
actually pertain to finite-volume Gibbs measures, and therefore do not require this
level of abstraction.

We proceed as in Section 6.10. First, the specification π= {πm
Λ }Λ⋐Zd of the GFF

is defined by the kernels

πm
Λ (· |η)

def= µ
η

Λ;m(·) .

Then, one defines the set of Gibbs measures compatible with π, by

G (m)
def= {

µ ∈M1(Ω) : µπm
Λ =µ for allΛ⋐Zd }

.

We remind the reader (see Remark 6.3.1) of the following equivalent characteriza-
tion: µ ∈G (m) if and only if, for allΛ⋐Zd and all A ∈F ,

µ(A |FΛc )(ω) =πm
Λ (A |ω) for µ-almost all ω. (8.4)

Usually, a Gibbs measure in G (m) will be denoted µm , or µηm when constructed via
a limiting procedure using a boundary condition η. Expectation of a function f
with respect to µηm will be denoted µηm( f ) or Eη

m[ f ].

8.1.1 Overview

The techniques used to study the GFF are very different from those used in previous
chapters. Let us first introduce the random variables ϕi :Ω→R, defined by

ϕi (ω)
def= ωi , i ∈Zd .

Similarly to what was done in Chapter 3, we will consider first the distribution of
ϕΛ = (ϕi )i∈Λ in a finite region Λ⊂B(n) ⋐Zd , under µη

B(n);m
(·). We will then deter-

mine under which conditions the random vector ϕΛ possesses a limiting distribu-
tion when n →∞. The first step will be to observe that, under µη

B(n);m
, ϕB(n) is ac-

tually distributed as a Gaussian vector. This will give us access to various tools from
the theory of Gaussian processes, in particular when studying the thermodynamic
limit. Namely, as explained in Appendix B.9, the limit of a Gaussian vector, when
it exists, is also Gaussian. This will lead to the construction, in the limit n → ∞,
of a Gaussian field ϕ = (ϕi )i∈Zd . The distribution of this field, denoted µ

η
m , will be

shown to be a Gibbs measure in G (m). But µηm is entirely determined by its mean
Eη

m[ϕi ] and by its covariance matrix, which measures the correlations between the
variables ϕi :

Covηm(ϕi ,ϕ j )
def= Eη

m
[
(ϕi −Eη

m[ϕi ])(ϕ j −Eη
m[ϕ j ])

]
.

It turns out that the mean and covariance matrix will take on a particularly nice
form, with a probabilistic interpretation in terms of the symmetric simple random
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walk on Zd . This will make it possible to compute explicitly various quantities of
interest. More precise statements will be given later, but the behavior established
for the Gaussian Free Field will roughly be the following:

• Massless case (m = 0), low dimensions: In dimensions d = 1 and 2, the ran-
dom variables ϕi , when considered in a large box B(n) = {−n, . . . ,n}d with an
arbitrary fixed boundary condition, present large fluctuations, unbounded
as n →∞. For example, the variance of the spin located at the center of the
box is of order

Varη
B(n);0

(ϕ0) ≈
{

n when d = 1,

logn when d = 2.

In such a situation, the field is said to delocalize. As we will see, delocal-
ization implies that there are no infinite-volume Gibbs measures in this case:
G (0) =∅.

• Massless case (m = 0), high dimensions: In d ≥ 3, the presence of a larger
number of neighbors renders the field sufficiently more rigid to remain lo-
calized, in the sense that it has fluctuations of bounded variance. In particu-
lar, there exist (infinitely many extremal) infinite-volume Gibbs measures in
this case. We will also show that the correlations under these measures are
nonnegative and decay slowly with the distance:

Covη0(ϕi ,ϕ j ) ≈ ∥ j − i∥−(d−2)
2 .

In particular, the susceptibility is infinite:
∑

j∈Zd

Covη0(ϕi ,ϕ j ) =+∞ .

• Massive case (m > 0), all dimensions: The presence of a mass term in the
Hamiltonian prevents the delocalization observed in dimensions 1 and 2 in
the massless case. However, we will show that, even in this case, there are
infinitely many infinite-volume Gibbs measures. As we will see, the presence
of a mass term also makes the correlations decay exponentially fast: there
exist c+ = c+(m) > 0, c− = c−(m) <∞, C+ = C+(m) <∞ and C− = C−(m) > 0
such that

C−e−c−∥ j−i∥2 ≤ Covηm(ϕi ,ϕ j ) ≤C+e−c+∥ j−i∥2 ∀i , j ∈Zd .

Moreover, c±(m) = O(m) as m ↓ 0. This shows that the correlation length of
the model is of the order of the inverse of the mass, m−1, when the mass is
small.

As seen from this short description, the GFF has no uniqueness regime (except in
the trivial case β= 0,m > 0).

8.2 Parenthesis: Gaussian vectors and fields

Before pursuing, we recall a few generalities about Gaussian vectors, which in our
case will be a family (ϕi )i∈Λ of random variables, indexed by the vertices of a fi-
nite region Λ⋐ Zd . A more detailed account of Gaussian vectors can be found in
Appendix B.9.
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8.2.1 Gaussian vectors

Let ϕΛ = (ϕi )i∈Λ ∈ΩΛ be a random vector, defined on some probability space. We
do not yet assume that the distribution of this vector is Gibbsian. We consider the
following scalar product onΩΛ: for tΛ = (ti )i∈Λ, ϕΛ = (ϕi )i∈Λ,

tΛ ·ϕΛ def=
∑
i∈Λ

tiϕi .

Definition 8.3. The random vector ϕΛ is Gaussian if, for all fixed tΛ, tΛ ·ϕΛ is a
Gaussian variable (possibly degenerate, that is, with zero variance).

The distribution of a Gaussian variable X is determined entirely by its mean and
variance, and its characteristic function is given by

E [e it X ] = exp
(
i tE [X ]− 1

2 t 2 Var(X )
)

.

Let us assume that ϕΛ = (ϕi )i∈Λ is Gaussian, and let us denote its distribution by
µΛ. Expectation (resp. variance, covariance) with respect to µΛ will be denoted EΛ
(resp. VarΛ, CovΛ). The mean and variance of tΛ ·ϕΛ depend on tΛ as follows:

EΛ[tΛ ·ϕΛ] =
∑
i∈Λ

ti EΛ[ϕi ] = tΛ ·aΛ , (8.5)

where aΛ = (ai )i∈Λ, ai
def= EΛ[ϕi ], is the average (or mean) of ϕΛ. Moreover,

VarΛ(tΛ ·ϕΛ) = EΛ
[
(tΛ ·ϕΛ−EΛ[tΛ ·ϕΛ])2]=

∑
i , j∈Λ

ΣΛ(i , j )ti t j = tΛ ·ΣΛtΛ , (8.6)

where ΣΛ = (ΣΛ(i , j ))i , j∈Λ is the covariance matrix of ϕΛ, defined by

ΣΛ(i , j )
def= CovΛ(ϕi ,ϕ j ) . (8.7)

Therefore, for each tΛ, the characteristic function of tΛ ·ϕΛ is given by

EΛ[e itΛ·ϕΛ ] = exp
(
itΛ ·aΛ− 1

2 tΛ ·ΣΛtΛ
)

(8.8)

and the moment generating function by

EΛ[e tΛ·ϕΛ ] = exp
(
tΛ ·aΛ+ 1

2 tΛ ·ΣΛtΛ
)

. (8.9)

The distribution of a Gaussian vector ϕΛ is thus entirely determined by the pair
(aΛ,ΣΛ); it is traditionally denoted by N (aΛ,ΣΛ). We say that ϕΛ is centered if
aΛ ≡ 0.

Clearly, ΣΛ is symmetric: ΣΛ(i , j ) = ΣΛ( j , i ). Moreover, since VarΛ(tΛ ·ϕΛ) ≥
0, we see from (8.6) that ΣΛ is nonnegative definite. In fact, to any aΛ ∈ ΩΛ and
any symmetric nonnegative definite matrixΣΛ corresponds a (possibly degenerate)
Gaussian vector ϕΛ having aΛ as mean and ΣΛ as covariance matrix. Moreover,
whenΣΛ is positive definite, the density with respect to the Lebesgue measure takes
the following well-known form:
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Theorem 8.4. Assume that ϕΛ ∼ N (aΛ,ΣΛ), with a covariance matrix ΣΛ which
is positive definite (and, therefore, invertible). Then, the distribution of ϕΛ is abso-
lutely continuous with respect to the Lebesgue measure dxΛ (on ΩΛ), with a density
given by

1

(2π)|Λ|/2
√

|detΣΛ|
exp

(− 1
2 (xΛ−aΛ) ·Σ−1

Λ (xΛ−aΛ)
)

, xΛ ∈ΩΛ . (8.10)

Conversely, if ϕΛ is a random vector whose distribution is absolutely continuous
with respect to the Lebesgue measure on ΩΛ with a density of the form (8.10), then
ϕΛ is Gaussian, with mean aΛ and covariance matrix ΣΛ.

We emphasize that, once a vector is Gaussian, ϕΛ ∼N (aΛ,ΣΛ), various quantities
of interest have immediate expressions in terms of the mean and covariance matrix.
For example, to study the random variable ϕi0 (which is, of course, Gaussian) at
some given vertex i0 ∈ Λ, one can consider the vector tΛ = (δi0 j ) j∈Λ, write ϕi0 as
ϕi0 = tΛ ·ϕΛ and conclude that the mean and variance of ϕi0 are given by

EΛ[ϕi0 ] = ai0 , VarΛ(ϕi0 ) =ΣΛ(i0, i0) .

Although it will not be used in the sequel, the following exercise shows that cor-
relation functions of Gaussian vectors enjoy a remarkable factorization property,
known as Wick’s formula or Isserlis’ theorem.

Exercise 8.3. Let ϕΛ be a centered Gaussian vector. Show that, for any n ∈N:

1. the 2n + 1-point correlation functions all vanish: for any collection of (not
necessarily distinct) vertices i1, . . . , i2n+1 ∈Λ,

EΛ[ϕi1 . . .ϕi2n+1 ] = 0; (8.11)

2. the 2n-point correlation function can always be expressed in terms of the 2-
point correlation functions: for any collection of (not necessarily distinct) ver-
tices i1, . . . , i2n ∈Λ,

EΛ[ϕi1 . . .ϕi2n ] =
∑
P

∏
{ℓ,ℓ′}∈P

EΛ[ϕiℓϕiℓ′ ] , (8.12)

where the sum is over all pairings P of {1, . . . ,2n}, that is, all families of n
pairs {ℓ,ℓ′} ⊂ {1, . . . ,2n} whose union equals {1, . . . ,2n}. Hint: Use (8.9). Ex-
panding the exponential in the right-hand side of that expression, determine
the coefficient of t i1 · · · t im .

In fact, this factorization property characterizes Gaussian vectors.

Exercise 8.4. Consider a random vector ϕΛ satisfying (8.11) and (8.12). Show that
ϕΛ is centered Gaussian.

8.2.2 Gaussian fields and the thermodynamic limit.

Gaussian fields are infinite collections of random variables whose local behavior is
Gaussian:
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Definition 8.5. An infinite collection of random variablesϕ= (ϕi )i∈Zd is a Gaussian
field if, for eachΛ⋐Zd , the restriction ϕΛ = (ϕi )i∈Λ is Gaussian. The distribution of
a Gaussian field is called a Gaussian measure.

Consider now the sequence of boxes B(n), n ≥ 0, and assume that, for each
n, a Gaussian vector ϕB(n) is given, ϕB(n) ∼N (aB(n),ΣB(n)), whose distribution we
denote byµB(n). A meaning can be given to the thermodynamic limit as follows. We
fix Λ⋐Zd . If n is large, then B(n) ⊃Λ. Notice that the distribution of ϕΛ = (ϕi )i∈Λ,
seen as a collection of variables indexed by vertices of B(n), can be computed by
taking a vector tB(n) = (ti )i∈B(n) for which ti = 0 for all i ∈B(n) \Λ. In this way,

EB(n)[e
itΛ·ϕΛ ] = EB(n)[e

itB(n)·ϕB(n) ] = e itB(n)·aB(n)− 1
2 tB(n)·ΣB(n)tB(n) .

Remembering that only a fixed number of components of tB(n) are non-zero, we
see that the limiting distribution of ϕΛ can be controlled if aB(n) and ΣB(n) have
limits as n →∞.

Theorem 8.6. Let, for all n, ϕB(n) = (ϕi )i∈B(n) be a Gaussian vector, ϕB(n) ∼
N (aB(n),ΣB(n)). Assume that, for all i , j ∈Zd , the limits

ai
def= lim

n→∞(aB(n))i and Σ(i , j )
def= lim

n→∞ΣB(n)(i , j )

exist and are finite. Then the following holds.

1. For all Λ ⋐ Zd , the distribution of ϕΛ = (ϕi )i∈Λ converges, when n → ∞, to
that of a Gaussian vector N (aΛ,ΣΛ), with mean and covariance given by the
restrictions

aΛ
def= (ai )i∈Λ and ΣΛ

def= (Σ(i , j ))i , j∈Λ .

2. There exists a Gaussian field ϕ̃ whose restriction ϕ̃Λ to each Λ⋐Zd is a Gaus-
sian vector with distribution N (aΛ,ΣΛ).

Proof. The first claim is a consequence of Proposition B.56. For the second one,
fix any Λ ⋐ Zd , and let µΛ denote the limiting distribution of ϕΛ. By construc-
tion, the collection {µΛ}Λ⋐Zd is consistent in the sense of Kolmogorov’s Extension
Theorem (Theorem 6.6 and Remark 6.98). This guarantees the existence of a prob-
ability measure µ on (Ω,F ) whose marginal on each Λ⋐ Zd is exactly µΛ. Under

µ, the random variables ϕ̃i (ω)
def= ωi then form a Gaussian field such that, for each

Λ, ϕ̃Λ = (ϕ̃i )i∈Λ has distribution µΛ.

Consider now the GFF in Λ, defined by the measure µη
Λ;m in (8.3). Although

the latter is a probability measure on (Ω,F ), it acts in a trivial way on the spins
outside Λ (for each j ̸∈Λ, ϕ j = η j almost surely). We will therefore, without loss of
generality, consider it as a distribution on (ΩΛ,FΛ).

By definition, µη
Λ;m is absolutely continuous with respect to the Lebesgue mea-

sure on ΩΛ. We will show that it can be put in the form (8.10), which will prove
that (ϕi )i∈Λ is a non-degenerate Gaussian vector. We thus need to reformulate the
Hamiltonian HΛ;m in such a way that it takes the form of the exponent that appears
in the density (8.10). We do this following a step-by-step procedure that will take us
on a detour.
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8.3 Harmonic functions and the Discrete Green Identities

Given a collection f = ( fi )i∈Zd of real numbers, we define, for each pair {i , j } ∈ EZd ,
the discrete gradient

(∇ f )i j
def= f j − fi ,

and, for all i ∈Zd , the discrete Laplacian

(∆ f )i
def=

∑
j : j∼i

(∇ f )i j . (8.13)

Lemma 8.7 (Discrete Green Identities). Let Λ⋐Zd . Then, for all collections of real
numbers f = ( fi )i∈Zd , g = (gi )i∈Zd ,

∑

{i , j }∈E b
Λ

(∇ f )i j (∇g )i j =−
∑
i∈Λ

gi (∆ f )i +
∑
i∈Λ

j∈Λc, j∼i

g j (∇ f )i j , (8.14)

∑
i∈Λ

{ fi (∆g )i − gi (∆ f )i } =
∑
i∈Λ

j∈Λc, j∼i

{ f j (∇g )i j − g j (∇ f )i j } . (8.15)

Remark 8.8. The continuous analogues of (8.14) and (8.15) are the classical Green
identities, which, on a smooth domain U ⊂ Rn , provide a higher-dimensional ver-
sion of the classical integration by parts formula. That is, for all smooth functions
f and g ,

∫

U
∇ f ·∇g dV =−

∫

U
g∆ f dV +

∮

∂U
g (∇ f ·n)dS ,

∫

U

{
f ∆g − g∆ f }dV =

∮

∂U

{
f ∇g ·n − g∇ f ·n

}
dS .

where n is the outward normal unit-vector and dV and dS denote respectively the
volume and surface elements. ⋄

Proof of Lemma 8.7: Using the symmetry between i and j (in all the sums below, j
is always assumed to be a nearest-neighbor of i ):

∑
{i , j }⊂Λ

(∇ f )i j (∇g )i j =
∑

{i , j }⊂Λ
g j ( f j − fi )−

∑
{i , j }⊂Λ

gi ( f j − fi )

=−
∑
i∈Λ

gi
∑
j∈Λ

( f j − fi )

=−
∑
i∈Λ

gi (∆ f )i +
∑
i∈Λ

gi
∑

j∈Λc
( f j − fi ) .

Therefore,

∑

{i , j }∈E b
Λ

(∇ f )i j (∇g )i j =
∑

{i , j }⊂Λ
(∇ f )i j (∇g )i j +

∑
i∈Λ, j∈Λc

(∇ f )i j (∇g )i j

=−
∑
i∈Λ

gi (∆ f )i +
∑

i∈Λ, j∈Λc
g j ( f j − fi ) .

The second identity (8.15) is obtained using the first one twice, interchanging the
roles of f and g .
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We can write the action of the Laplacian on f = ( fi )i∈Zd as:

(∆ f )i =
∑

j∈Zd

∆i j f j , i ∈Zd ,

where the matrix elements (∆i j )i , j∈Zd are defined by

∆i j =





−2d if i = j ,

1 if i ∼ j ,

0 otherwise.

(8.16)

To obtain a representation of HΛ;m in terms of the scalar product in Λ, we intro-

duce the restriction of ∆ toΛ, defined by ∆Λ
def= (∆i j )i , j∈Λ.

Remark 8.9. Let i ∈Λ. In what follows, it will be important to distinguish between
(∆ f )i , defined in (8.13) and which may depend on some of the variables f j located
outside Λ, and (∆Λ f )i , which is a shorthand notation for

∑
j∈Λ∆i j f j (and thus in-

volves only variables f j insideΛ). In particular, we will use the notation

f ·∆Λg
def=

∑
i , j∈Λ

∆i j fi g j ,

which clearly satisfies
f ·∆Λg = (∆Λ f ) · g . (8.17)

⋄
From now on, we assume that f coincides with η outside Λ and denote by BΛ

any boundary term, that is, any quantity (possibly changing from place to place)
depending only on the values η j , j ∈Λc.

Let us see how the quadratic term in the Hamiltonian will be handled. Apply-
ing (8.14) with f = g and rearranging terms, we get

∑

{i , j }∈E b
Λ

( f j − fi )2 =
∑

{i , j }∈E b
Λ

(∇ f )2
i j

=− f ·∆Λ f −2
∑
i∈Λ

∑
j∈Λc, j∼i

fi f j +BΛ . (8.18)

One can then introduce u = (ui )i∈Zd , to be determined later, depending on η and
Λ, and playing the role of the mean of f . Our aim is to rewrite (8.18) in the form
−( f −u) ·∆Λ( f −u), up to boundary terms. We can, in particular, include in BΛ any
expression that depends only on the values of u. We have, using (8.17),

( f −u) ·∆Λ( f −u) = f ·∆Λ f −2 f ·∆Λu +u ·∆Λu

= f ·∆Λ f −2
∑
i∈Λ

fi (∆u)i +2
∑
i∈Λ

∑
j∈Λc, j∼i

fi u j +BΛ .

Comparing with (8.18), we deduce that

∑

{i , j }∈E b
Λ

( f j − fi )2 =− ( f −u) ·∆Λ( f −u)

−2
∑
i∈Λ

fi (∆u)i︸ ︷︷ ︸
(i)

+2
∑
i∈Λ

∑
j∈Λc, j∼i

fi (u j − f j )︸ ︷︷ ︸
(ii)

+BΛ . (8.19)
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A look at the second line in this last display indicates exactly the restrictions one
should impose on u in order for −( f −u) ·∆Λ( f −u) to be the one and only contri-
bution to the Hamiltonian (up to boundary terms). To cancel the non-trivial terms
that depend on the values of f inside Λ, we need to ensure that: (i) u is harmonic
inΛ:

(∆u)i = 0 ∀i ∈Λ .

(ii) u coincides with f (hence with η) outsideΛ. We have thus proved:

Lemma 8.10. Let f coincide with η outside Λ. Assume that u solves the Dirichlet
problem inΛwith boundary condition η:

{
u harmonic inΛ ,

u j = η j for all j ∈Λc .
(8.20)

Then, ∑

{i , j }∈E b
Λ

( f j − fi )2 =−( f −u) ·∆Λ( f −u)+BΛ . (8.21)

Existence of a solution to the Dirichlet problem will be proved in Lemma 8.15.
Uniqueness can be verified easily:

Lemma 8.11. (8.20) has at most one solution.

Proof. We first consider the boundary condition η ≡ 0, and show that u ≡ 0 is the
unique solution. Namely, assume v is any solution, and let i∗ ∈ Λ be such that
|vi∗ | = max j∈Λ |v j |. With no loss of generality, assume vi∗ ≥ 0. Since (∆v)i∗ = 0
implies vi∗ = 1

2d

∑
j∼i∗ v j , and v j ≤ vi∗ for all j ∼ i∗, we conclude that v j = vi∗ for

all j ∼ i∗. Repeating this procedure until the boundary of Λ is reached, we deduce
that v must be constant, and this constant can only be 0. Let now u and v be two
solutions of (8.20). Then, h = u − v is a solution to the Dirichlet problem in Λ with
boundary condition η′ ≡ 0. By the previous argument, h ≡ 0 and thus u = v .

Exercise 8.5. Show that, when d = 1, the solution of the Dirichlet problem on an
interval Λ = {a, . . . ,b} is of the form ui = ai + c, for some a,c ∈ R determined by the
boundary condition.

8.4 The massless case

Let us consider the massless Hamiltonian HΛ;0, expressed in terms of the vari-
ables ϕ = (ϕi )i∈Zd , which are assumed to satisfy ϕi = ηi for all i ̸∈ Λ. We apply
Lemma 8.10 with f = ϕ, assuming for the moment that one can find a solution u
to the Dirichlet problem (in Λ, with boundary condition η). Since it does not alter
the Gibbs distribution, the constant BΛ in (8.21) can always be subtracted from the
Hamiltonian. We get

HΛ;0 = 1
2 (ϕ−u) · (− 1

2d∆Λ)(ϕ−u) . (8.22)

Our next tasks are, first, to invert the matrix − 1
2d∆Λ, in order to obtain an explicit

expression for the covariance matrix, and, second, to find an explicit expression for
the solution u to the Dirichlet problem.
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8.4.1 The random walk representation

We need to determine whether there exists some positive-definite covariance ma-
trix ΣΛ such that − 1

2d∆Λ =Σ−1
Λ . Observe first that

− 1
2d∆Λ = IΛ−PΛ ,

where IΛ = (δi j )i , j∈Λ is the identity matrix and PΛ = (P (i , j ))i , j∈Λ is the matrix with
elements

P (i , j )
def=

{
1

2d if j ∼ i ,

0 otherwise.

The numbers (P (i , j ))i , j∈Zd are the transition probabilities of the symmetric sim-

ple random walk X = (Xk )k≥0 on Zd , which at each time step jumps to any one of
its 2d nearest-neighbors with probability 1

2d :

1
2

1
2

Z

Figure 8.3: The one-dimensional symmetric simple random walk.

We denote by Pi the distribution of the walk starting at i ∈Zd . That is, we have
Pi (X0 = i ) = 1 and, for n ≥ 0,

Pi (Xn+1 = k |Xn = j ) = P ( j ,k) ∀ j ,k ∈Zd .

(Information on the simple random walk on Zd can be found in Appendix B.13.)
We will need to know that the walk almost surely exits a finite region in a finite

time:

Lemma 8.12. For Λ⋐ Zd , let τΛc
def= inf

{
k ≥ 0 : Xk ∈Λc

}
be the first exit time from

Λ. Then Pi (τΛc <∞) = 1. More precisely, there exists c = c(Λ) > 0 such that, for all
i ∈Λ,

Pi (τΛc > n) ≤ e−cn . (8.23)

Proof. If we let R = supl∈Λ infk∈Λc ∥k − l∥1, then, starting from i , one can find a
nearest-neighbor path of length at most R which exits Λ. This means that during
any time-interval of length R, there is a probability at least (2d)−R that the random
walk exitsΛ (just force it to follow the path). In particular,

Pi (τΛc > n) ≤ (1− (2d)−R )[n/R] .

The next lemma shows that the matrix IΛ−PΛ is invertible, and provides a proba-
bilistic interpretation for its inverse:

Lemma 8.13. The |Λ|× |Λ| matrix IΛ−PΛ is invertible. Moreover, its inverse GΛ
def=

(IΛ −PΛ)−1 is given by GΛ = (GΛ(i , j ))i , j∈Λ, the Green function in Λ of the simple
random walk on Zd , defined by

GΛ(i , j )
def= Ei

[τΛc−1∑
n=0

1{Xn= j }

]
. (8.24)
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The Green function GΛ(i , j ) represents the average number of visits at j made by a
walk started at i , before it leavesΛ.

Proof. To start, observe that (below, P n
Λ denotes the nth power of PΛ)

(IΛ−PΛ)(IΛ+PΛ+P 2
Λ+·· ·+P n

Λ) = IΛ−P n+1
Λ . (8.25)

We claim that there exists c = c(Λ) such that, for all i , j ∈Λ and all n ≥ 1,

P n
Λ(i , j ) ≤ e−cn . (8.26)

Indeed, for each n ≥ 1,

P n
Λ(i , j ) =

∑
i1,...,in−1∈Λ

P (i , i1)P (i1, i2) · · ·P (in−1, j ) =Pi (Xn = j ,τΛc > n).

Since Pi (Xn = j ,τΛc > n) ≤Pi (τΛc > n), (8.26) follows from (8.23). This implies that
the matrix GΛ = (GΛ)i , j∈Λ, defined by

GΛ(i , j ) = (IΛ+PΛ+P 2
Λ+·· · )(i , j ) =

∑
n≥0

Pi (Xn = j ,τΛc > n) , (8.27)

is well defined and, by (8.25), that it satisfies (IΛ−PΛ)GΛ = IΛ. Of course, by sym-
metry, we also have GΛ(IΛ−PΛ) = IΛ. The conclusion follows, since the right-hand
side of (8.27) can be rewritten in the form given (8.24).

Remark 8.14. The key ingredient in the above proof that IΛ−PΛ is invertible is the
fact that PΛ is substochastic:

∑
j∈ΛP (i , j ) < 1 for those vertices i which lie along the

inner boundary ofΛ. This property was crucial in establishing (8.26). ⋄
Let us now prove the existence of a solution to the Dirichlet problem (unique-

ness was shown in Lemma 8.11), also expressed in terms of the simple random
walk. Let XτΛc denote the position of the walk at the time of first exit fromΛ.

Lemma 8.15. The solution to the Dirichlet problem (8.20) is given by the function
u = (ui )i∈Zd defined by

ui
def= Ei [ηXτΛc

] ∀i ∈Zd . (8.28)

Proof. When j ∈ Λc, P j (τΛc = 0) = 1 and, thus, u j = E j [ηX0 ] = η j . When i ∈ Λ, by
conditioning on the first step of the walk,

ui = Ei [ηXτΛc
] =

∑
j∼i
Ei [ηXτΛc

, X1 = j ]

=
∑
j∼i
Pi (X1 = j )Ei [ηXτΛc

|X1 = j ]

=
∑
j∼i

1
2d E j [ηXτΛc

] = 1
2d

∑
j∼i

u j ,

which implies (∆u)i = 0.

Remark 8.16. Observe that if η= (ηi )i∈Zd is itself harmonic, then u ≡ η is the solu-
tion to the Dirichlet problem inΛwith boundary condition η. ⋄

Theorem 8.17. Under µη
Λ;0, ϕΛ = (ϕi )i∈Λ is Gaussian, with mean uΛ = (ui )i∈Λ de-

fined in (8.28), and positive definite covariance matrix GΛ = (GΛ(i , j ))i , j∈Λ given by
the Green function (8.24).
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Proof. The claim follows from the representation (8.22) of the Hamiltonian, the ex-
pression (8.28) for the solution to the Dirichlet problem, the expression (8.24) for
the inverse of IΛ−PΛ and Theorem 8.4.

The reader should note the remarkable fact that the distribution of ϕΛ under
µ
η

Λ;0 depends on the boundary condition η only through its mean: the covariance
matrix is only sensitive to the choice ofΛ.

Example 8.18. Consider the GFF in dimension d = 1. Let η be any boundary con-
dition, fixed outside an interval Λ = {a, . . . ,b} ⋐ Z. As we saw in Exercise 8.5, the
solution to the Dirichlet problem is the affine interpolation between (a,ηa) and
(b,ηb). A typical configuration under µη

Λ;0 should therefore be thought of as de-
scribing fluctuations around this line (however, these fluctuations can be large on
the microscopic scale, as will be seen below):

a b

ηb

ηa
u

ϕ

Figure 8.4: A configuration of the one-dimensional GFF under µ
η
Λ;0, whose

mean uΛ is the harmonic function given by the linear interpolation between
the values of η on the boundary.

⋄

Before we start with our analysis of the thermodynamic limit, let us exploit the
representation derived in Theorem 8.17 in order to study the fluctuations of ϕB(n)

in a large box B(n).
For the sake of concreteness, consider the spin at the origin, ϕ0. The latter is a

Gaussian random variable with variance given by

Varη
B(n);0

(ϕ0) =GB(n)(0,0) .

Notice first that the time τB(n)c it takes for the random walk, starting at 0, to leave
the box B(n) is increasing in n and is always larger than n. Therefore, by monotone
convergence,

lim
n→∞GB(n)(0,0) = E0

[∑
k≥0

1{Xk=0}

]
(8.29)

is just the expected number of visits of the walk at the origin. In particular, the
variance ofϕ0 diverges in the limit n →∞, whenever the symmetric simple random
walk is recurrent, that is, in dimensions 1 and 2 (see Appendix B.13.4). When this
happens, the field is said to delocalize. A closer analysis of the Green function (see
Theorem B.76) yields the following more precise information:

GB(n)(0,0) ≈
{

n if d = 1,

logn if d = 2.
(8.30)

In contrast, in dimensions d ≥ 3, the variance remains bounded, and therefore the
field remains localized close to its mean value even in the limit n →∞.
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In the next section, we will relate these properties with the problem of existence
of infinite-volume Gibbs measures for the massless GFF.

Exercise 8.6. Consider the one-dimensional GFF in B(n) with 0 boundary condition
(see Figure 8.1). Interpreting the values of the field, ϕ−n , . . . ,ϕn , as the successive
positions of a random walk on R with Gaussian increments, starting at ϕ−n−1 = 0
and conditioned on {ϕn+1 = 0}, prove directly (that is, without using the random
walk representation of G(0,0)) that ϕ0 ∼N (0,n +1).

8.4.2 The thermodynamic limit

We explained, before Theorem 8.6, how the thermodynamic limit n → ∞ can be
expressed in terms of the limits of the means uB(n) and of the covariance matrices
GB(n), when the latter exist:

lim
n→∞Ei [ηXτB(n)c

] , lim
n→∞GB(n)(i , j ) , (8.31)

for all fixed pairs i , j ∈Zd .

Low dimensions. We have seen that, when d = 1 or d = 2, limn→∞GB(n)(0,0) =∞.
This has the following consequence:

Theorem 8.19. When d = 1 or d = 2, the massless Gaussian Free Field has no
infinite-volume Gibbs measures: G (0) =∅.

Proof. Assume there exists a probability measure µ ∈ G (0). Since µ= µπ0
B(n)

for all
n, we have

µ(ϕ0 ∈ [a,b]) =µπ0
B(n)(ϕ0 ∈ [a,b]) =

∫
µ
η

B(n);0
(ϕ0 ∈ [a,b])µ(dη) ,

for any interval [a,b] ⊂R. But, uniformly in η,

µ
η

B(n);0
(ϕ0 ∈ [a,b]) = 1√

2πGB(n)(0,0)

∫ b

a
exp

{
−

(
x −µη

B(n);0
(ϕ0)

)2

2GB(n)(0,0)

}
dx

≤ b −a√
2πGB(n)(0,0)

. (8.32)

In dimensions 1 and 2, the right-hand side tends to 0 as n →∞. We conclude that
µ(ϕ0 ∈ [a,b]) = 0, for all a < b, and thus µ(ϕ0 ∈ R) = 0, which contradicts the as-
sumption that µ is a probability measure.

Remark 8.20. The lack of infinite-volume Gibbs measures for the massless GFF
ϕ = (ϕi )i∈Zd in dimensions 1 and 2, as seen above, is due to the fact that the fluc-
tuations of each spin ϕi become unbounded when B(n) ↑ Zd . This is not incom-
patible, nevertheless, with the fact that some random translation of the field does
have a well-defined thermodynamic limit. Namely, define the random variables
ϕ̃= (ϕ̃i )i∈Zd by

ϕ̃i
def= ϕi −ϕ0 . (8.33)

Then, as shown in the next exercise, these random variables have a well-defined
thermodynamic limit, even when d = 1,2. ⋄
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Exercise 8.7. Consider the variables ϕ̃i defined in (8.33). Show that under µ0
Λ;0 (zero

boundary condition), (ϕ̃i )i∈Λ is Gaussian, centered, with covariance matrix given by

G̃Λ(i , j )
def= GΛ(i , j )−GΛ(i ,0)−GΛ(0, j )+GΛ(0,0) . (8.34)

It can be shown that the matrix elements G̃Λ(i , j ) in (8.34) have a finite limit when
Λ ↑Zd ; see the comments in Section 8.7.2.

Higher dimensions. When d ≥ 3, transience of the symmetric simple random
walk implies that

G(i , j )
def= lim

n→∞GB(n)(i , j ) = Ei
(∑

k≥0
1{Xk= j }

)
(8.35)

is finite. This will allow us to construct infinite-volume Gibbs measures. We say
that η= (ηi )i∈Zd is harmonic (inZd ) if

(∆η)i = 0 ∀i ∈Zd .

Theorem 8.21. In dimensions d ≥ 3, the massless Gaussian Free Field possesses in-
finitely many infinite-volume Gibbs measures: |G (0)| =∞. More precisely, given any
harmonic function η on Zd , there exists a Gaussian Gibbs measure µη0 with mean η

and covariance matrix G = (G(i , j ))i , j∈Zd given in (8.35).

Remark 8.22. It can be shown that the Gibbs measures µη0 of Theorem 8.21 are pre-
cisely the extremal elements of G (0): exG (0) = {

µ
η
0 : η harmonic

}
. ⋄

Clearly, there exist infinitely many harmonic functions. For example, any con-
stant function is harmonic, or, more generally, any function of the form

ηi
def= α1i1 +·· ·+αd id + c , ∀i = (i1, . . . , id ) ∈Zd , (8.36)

with α= (α1, . . . ,αd ) ∈ Rd . But, in d ≥ 2, the variety of harmonic functions is much
larger:

Exercise 8.8. Show that all harmonic functions u :Zd →R can be obtained by fixing
arbitrary values of ui at all vertices i belonging to the strip

{
i = (i1, i2, . . . , id ) ∈Zd : id ∈ {0,1}

}

and extending u to the whole of Zd using ∆u = 0.

An analysis of the Green function G(i , j ) as ∥ j − i∥1 → ∞ (see Theorem B.76)
yields the following information on the asymptotic behavior of the covariance.

Proposition 8.23. Assume that d ≥ 3 and m = 0. Then, the infinite-volume Gibbs
measures µη0 of Theorem 8.21 satisfy, as ∥i − j∥2 →∞,

Covη0(ϕi ,ϕ j ) = r (d)

∥ j − i∥d−2
2

(1+o(1)) (8.37)

for some constant r (d) > 0.
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Proof of Theorem 8.21: Fix some harmonic function η. The restriction of η to any fi-
nite box B(n) obviously solves the Dirichlet problem on B(n) (with boundary con-
dition η). Since the limits limn→∞GB(n)(i , j ) exist when d ≥ 3, we can use Theo-
rem 8.6 to construct a Gaussian field ϕ = (ϕi )i∈Zd whose restriction to any finite
region Λ is a Gaussian vector (ϕi )i∈Λ with mean (ηi )i∈Λ and covariance matrix
GΛ = (G(i , j ))i , j∈Λ. If we let µη0 denote the distribution of ϕ, then µη0(ϕi ) = ηi and

Covη0(ϕi ,ϕ j ) =G(i , j ) . (8.38)

It remains to show that µη0 ∈ G (0). This could be done following the same steps
used to prove Theorem 6.26. For pedagogical reasons, we will give a different proof
relying on the Gaussian properties of ϕ.

We use the criterion (8.4), and show that, for allΛ⋐Zd and all A ∈F ,

µ
η
0(A |FΛc )(ω) =µωΛ;0(A) for µη0-almost all ω.

For that, we will verify that the field ϕ = (ϕi )i∈Zd , when conditioned on FΛc , re-
mains Gaussian (Lemma 8.24 below), and that, for all tΛ,

Eη
0

[
e itΛ·ϕΛ ∣∣ FΛc

]
(ω) = e itΛ·aΛ(ω)− 1

2 tΛ·GΛtΛ , (8.39)

where ai (ω) = Ei [ωXτΛc
] is the solution of the Dirichlet problem inΛwith boundary

condition ω.

Lemma 8.24. Let ϕ be the Gaussian field constructed above. Let, for all i ∈Λ,

ai (ω)
def= Eη

0 [ϕi |FΛc ](ω) .

Then, µ-almost surely, ai (ω) = Ei [ωXτΛc
]. In particular, each ai (ω) is a finite linear

combination of the variables ω j and (ai )i∈Zd is a Gaussian field.

Proof. When i ∈Λ, we use the characterization of the conditional expectation given
in Lemma B.50: up to equivalence, Eη

0 [ϕi |FΛc ] is the unique FΛc -measurable ran-
dom variable ψ for which

Eη
0

[
(ϕi −ψ)ϕ j

]= 0 for all j ∈Λc. (8.40)

We verify that this condition is indeed satisfied when ψ(ω) = Ei [ωXτΛc
]. By (8.38),

Eη
0

[
(ϕi −Ei [ϕXτΛc

])ϕ j
]= Eη

0 [ϕiϕ j ]−Eη
0

[
Ei [ϕXτΛc

]ϕ j
]

=G(i , j )+ηiη j −Eη
0

[
Ei [ϕXτΛc

]ϕ j
]

.

Using again (8.38),

Eη
0

[
Ei [ϕXτΛc

]ϕ j
]=

∑
k∈∂exΛ

Eη
0 [ϕkϕ j ]Pi [XτΛc = k]

= Ei
[
Eη

0 [ϕXτΛc
ϕ j ]

]

= Ei
[
G(XτΛc , j )

]+Ei
[
Eη

0 [ϕXτΛc
]Eη

0 [ϕ j ]
]

. (8.41)

On the one hand, since i ∈Λ and j ∈Λc, any trajectory of the random walk that con-
tributes to G(i , j ) must intersect ∂exΛ at least once, so the strong Markov Property
gives

G(i , j ) =
∑

k∈∂exΛ

Pi (XτΛc = k)G(k, j ) = Ei [G(XτΛc , j )] .
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On the other hand, sinceϕ has mean η and since η is solution of the Dirichlet prob-
lem inΛwith boundary condition η, we have

Ei
[
Eη

0 [ϕXτΛc
]Eη

0 [ϕ j ]
]= Ei [ηXτΛc

η j ] = Ei [ηXτΛc
]η j = ηiη j .

This shows that ai (ω) = Ei [ωXτΛc
]. In particular, the latter is a linear combination

of the ω j s:

ai (ω) =
∑

k∈∂exΛ

ωkPi (XτΛc = k) ,

which implies that (ai )i∈Zd is also a Gaussian field.

Corollary 8.25. Under µη0 , the random vector (ϕi −ai )i∈Λ is independent of FΛc .

Proof. We know that the variables ϕi − ai , i ∈ Λ, and ϕ j , j ∈ Λc, form a Gaus-
sian field. Therefore, a classical result (Proposition (B.58)) implies that (ϕi −ai )i∈Λ,
which is centered, is independent of FΛc if and only if each pair ϕi −ai (i ∈Λ) and
ϕ j ( j ∈Λc) is uncorrelated. But this follows from (8.40).

Let aΛ = (ai )i∈Λ. By Corollary 8.25 and since aΛ is FΛc -measurable,

Eη
0

[
e i tΛ·ϕΛ ∣∣ FΛc

]= e itΛ·aΛEη
0

[
e i tΛ·(ϕΛ−aΛ) ∣∣ FΛc

]= e itΛ·aΛEη
0

[
e i tΛ·(ϕΛ−aΛ)] .

We know that the variables ϕi −ai , i ∈Λ, form a Gaussian vector under µη0 . Since it
is centered, we need only compute its covariance. For i , j ∈Λ, write

(ϕi −ai )(ϕ j −a j ) =ϕiϕ j − (ϕi −ai )a j − (ϕ j −a j )ai −ai a j .

Using Corollary 8.25 again, we see that Eη
0

[
(ϕi −ai )a j

]= 0 and Eη
0

(
(ϕ j −a j )ai

)= 0
(since ai and a j are FΛc -measurable). Therefore,

Covη0
(
(ϕi −ai ), (ϕ j −a j )

)= Eη
0 [ϕiϕ j ]−Eη

0 (ai a j )

=G(i , j )+ηiη j −Eη
0 [ai a j ] .

Proceeding as in (8.41),

Eη
0 [ai a j ] = Ei , j

[
G(XτΛc , X ′

τΛc )
]+Ei , j

[
Eη

0 [ϕXτΛc
]Eη

0 [ϕX ′
τ′Λc

]
]

, (8.42)

where X and X ′ are two independent symmetric simple random walks, starting
respectively at i and j , Pi , j denotes their joint distribution, and τ′Λc is the first exit
time of X ′ fromΛ. As was done earlier,

Ei , j
[
Eη

0 [ϕXτΛc
]Eη

0 [ϕX ′
τ′Λc

]
]= Ei , j [ηXτΛc

ηX ′
τ′Λc

] = Ei [ηXτΛc
]E j [ηXτΛc

] = ηiη j .

Let us then define the modified Green function

KΛ(i , j )
def= Ei

[ ∑
n≥τΛc

1{Xn= j }

]
=G(i , j )−GΛ(i , j ) .
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Observe that KΛ(i , j ) = KΛ( j , i ), since G and GΛ are both symmetric; moreover,
KΛ(i , j ) =G(i , j ) if i ∈Λc. We can thus write

Ei , j
[
G(XτΛc , X ′

τ′Λc )
]=

∑
k,l∈∂extΛ

Pi (XτΛc = k)P j (XτΛc = l )G(k, l )

=
∑

l∈∂extΛ

P j (XτΛc = l )KΛ(i , l )

=
∑

l∈∂extΛ

P j (XτΛc = l )KΛ(l , i )

=
∑

l∈∂extΛ

P j (XτΛc = l )G(l , i )

= KΛ( j , i ) =G(i , j )−GΛ(i , j ) .

We have thus shown that Covη0
(
(ϕi −ai ), (ϕ j −a j )

)=GΛ(i , j ), which implies that

Eη
0

[
e i tΛ·ϕΛ |FΛc

]= e itΛ·aΛe−
1
2 tΛ·GΛtΛ .

This shows that, under µη0(· |FΛc ),ϕΛ is Gaussian with distribution given by µη
Λ;0(·).

We have thereby proved (8.39) and Theorem 8.21.

The proof given above that the limiting Gaussian field belongs to G (0) only de-
pends on having a convergent expression for the Green function of the associated
random walk; it will be used again in the massive case.

8.5 The massive case

A similar analysis, based on a Gaussian description of the finite-volume Gibbs dis-
tribution, holds in the massive case m > 0. Nevertheless, the presence of a mass
term in the Hamiltonian leads to a change in the probabilistic interpretation, which
eventually leads to a completely different behavior.

Consider the Hamiltonian HΛ;m , which contains the term m2

2

∑
i∈Λϕ2

i . To ex-
press HΛ;m as a scalar product involving the inverse of a covariance matrix, we
use (8.19), but this time including the mass term. After rearrangement, this yields

HΛ;m = 1
2 (ϕ−u) · (− 1

2d∆Λ+m2)(ϕ−u)

+
∑
i∈Λ

ϕi
(
(− 1

2d∆+m2)u
)

i︸ ︷︷ ︸
(i)

+ 1
2d

∑
i∈Λ

∑
j∈Λc, j∼i

ϕi (u j −ϕ j )︸ ︷︷ ︸
(ii)

+BΛ . (8.43)

As before, we choose u so as to cancel the extra terms on the second line. The mean
u = (ui )i∈Zd we are after must solve a modified Dirichlet problem. Let us say that u
is m-harmonic onΛ (resp. Zd ) if

(
(− 1

2d∆+m2)u
)

i = 0, ∀i ∈Λ (resp. i ∈Zd ) .

We say that u solves the massive Dirichlet problem inΛ if
{

u is m-harmonic onΛ ,

u j = η j for all j ∈Λc .
(8.44)

We will give a probabilistic solution of the massive Dirichlet problem, by again rep-
resenting the scalar product in the Hamiltonian, using a different random walk.
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Exercise 8.9. Verify that the solution to (8.44) (whose existence will be proved below)
is unique.

When d = 1, one can determine all m-harmonic functions explicitly:

Exercise 8.10. Show that all m-harmonic functions on Z are of the following type:

uk = Aeαk +Be−αk , where α
def= log(1+m2 +

p
2m2 +m4).

8.5.1 Random walk representation

Consider a random walker on Zd which, as before, only jumps to nearest neigh-

bors but which, at each step, has a probability m2

1+m2 > 0 of dying. That is, as-
sume that, before taking each new step, the walker flips a coin with probability

P (head) = 1
1+m2 , P (tail) = m2

1+m2 . If the outcome is head, the walker survives and

jumps to a nearest neighbor on Zd uniformly, with probability 1
2d . If the outcome

is tail, the walker dies (and remains dead for all subsequent times).
This process can be defined by considering

Zd
⋆

def= Zd ∪ {⋆} ,

where ⋆ ̸∈Zd is a new vertex which we call the graveyard. We define the following
transition probabilities on Zd

⋆:

Pm(i , j )
def=





1
1+m2

1
2d if i , j ∈Zd , i ∼ j ,

1− 1
1+m2 if i ∈Zd and j =⋆,

1 if i = j =⋆,

0 otherwise.

Let Z = (Zk )k≥0 denote the killed random walk, that is the Markov chain on Zd
⋆

associated to the transition matrix Pm .

Z

1
1+m2

1
2

1

1
1+m2

1
2

⋆

Figure 8.5: The one-dimensional symmetric simple random walk which has

a probability m2

1+m2 of dying at each step.

We denote by Pm
i the distribution of the process Z starting at i ∈Zd . By definition,

⋆ is an absorbing state for Z :

∀n ≥ 0, Pm
i (Zn+1 =⋆ |Zn =⋆) = 1.

Moreover, when m > 0, at all time n ≥ 0 (up to which the walk has not yet entered
the graveyard), the walk has a positive probability of dying:

∀k ∈Zd , Pm
i (Zn+1 =⋆ |Zn = k) = m2

1+m2 > 0.
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Let
τ⋆

def= inf
{
n ≥ 0 : Zn =⋆}

be the time at which the walker dies. Since Pm
i (τ⋆ > n) = (1+m2)−n , τ⋆ is Pm

i -
almost surely finite.

Notice that, when m = 0, Z reduces to the symmetric simple walk considered in
the previous section. The processes X and Z are in fact related by

Pm
i (Zn = j ) =Pm

i (τ⋆ > n)Pi (Xn = j ) = (1+m2)−nPi (Xn = j ) , (8.45)

for all i , j ∈Zd .
The process Z underlies the probabilistic representation of the mean and co-

variance of the finite-volume Gibbs distribution of the massive GFF:

Theorem 8.26. Let Λ⋐Zd , d ≥ 1, and η be any boundary condition. Define η⋆
def= 0.

Then, under µη
Λ;m , ϕΛ = (ϕi )i∈Λ is Gaussian, with mean um

Λ = (um
i )i∈Λ given by

um
i

def= Em
i [ηZτΛc

] , ∀i ∈Λ , (8.46)

where τΛc
def= inf{k ≥ 0 : Zk ̸∈Λ}, and covariance matrix Gm;Λ = (Gm;Λ(i , j ))i , j∈Λ

given by

Gm;Λ(i , j ) = 1

1+m2 E
m
i

[τΛc−1∑
n=0

1{Zn= j }

]
. (8.47)

Exercise 8.11. Returning to the original Hamiltonian (8.2) with β not necessarily
equal to 1, check that the mean and covariance matrix are given by

uβ,m
i =β−1/2 umβ−1/2

i , Gβ,m;Λ(i , j ) =β−1 Gmβ−1/2;Λ(i , j ) .

Observe that there are now two ways for the process Z to reach the exit-time τΛc :
either by stepping on a vertex j ̸∈Λ or by dying.

Proof. We proceed as in the massless case. First, it is easy to verify that um
i de-

fined in (8.46) provides a solution to the massive Dirichlet problem (8.44). Then,
we use (8.43), in which only the term involving − 1

2d∆Λ+m2 remains. By introduc-
ing the restriction Pm;Λ = (Pm(i , j ))i , j∈Λ, we write

− 1
2d∆Λ+m2 = (1+m2)IΛ−PΛ = (1+m2)

{
IΛ−Pm;Λ

}
.

Since P k
m;Λ(i , j ) =Pm

i (Zk = j ,τΛc > k) and, by (8.45),

Pm
i (Zk = j ) ≤ (1+m2)−k , (8.48)

we conclude, as before, that the matrix IΛ−Pm;Λ is invertible and that its inverse is
given by the convergent series

Gm;Λ = 1

1+m2

(
IΛ+Pm;Λ+P 2

m;Λ+·· ·) .

Clearly, the entries of Gm;Λ are exactly those given in (8.47).
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Example 8.27. Consider the one-dimensional massive GFF in {−n, . . . ,n}, with a
boundary condition η. Using Exercises 8.9 and 8.10, we easily check that the so-
lution to the Dirichlet problem with boundary condition η is given by um

k = Aeαk +
Be−αk , where α= log(1+m2 +

p
2m2 +m4) and

A = ηn+1eα(n+1) −η−n−1e−α(n+1)

e2α(n+1) −e−2α(n+1)
, B = η−n−1eα(n+1) −ηn+1e−α(n+1)

e2α(n+1) −e−2α(n+1)
. ⋄

Exercise 8.12. Let (p(i ))i∈Zd be nonnegative real numbers such that
∑

i p(i ) = 1.
Consider the generalization of the GFF in which the Hamiltonian is given by

β

2

∑

{i , j }⊂Zd

{i , j }∩Λ̸=∅

p( j − i )(ωi −ω j )2 + m2

2

∑
i∈Λ

ω2
i , ω ∈Ω .

Show that the random walk representation derived above extends to this more gen-
eral situation, provided that one replaces the simple random walk on Zd by the ran-
dom walk on Zd with transition probabilities p(·).

8.5.2 The thermodynamic limit

We can easily show that the massive GFF always has at least one infinite-volume
Gibbs measure, in any dimension d ≥ 1. Namely, the boundary condition η ≡ 0 is
m-harmonic, so u ≡ 0 is the solution of the corresponding massive Dirichlet prob-
lem (8.44). Moreover,

Gm(i , j )
def= lim

n→∞Gm;B(n)(i , j ) = 1

1+m2

∑
n≥0

Pm
i (Zn = j ) . (8.49)

In view of (8.48), this series always converges when m > 0. By Theorem 8.6, this
yields the existence of the Gaussian field with mean zero and covariance matrix
Gm , whose distribution we denote by µ0

m . As in the proof of Theorem 8.21, one
then shows that its distribution µ0

m belongs to G (m). Of course, the same argu-
ment can be used starting with any m-harmonic function η on Zd ; observe that
Exercise 8.8 extends readily to the massive case, providing a description of all m-
harmonic functions. We have therefore proved the following result:

Theorem 8.28. In any dimension d ≥ 1, the massive Gaussian Free Field possesses
infinitely many infinite-volume Gibbs measures: |G (m)| =∞. More precisely, given
any m-harmonic function η on Zd , there exists a Gaussian Gibbs measure µηm with
mean η and covariance matrix Gm = (Gm(i , j ))i , j∈Zd given in (8.49).

Remark 8.29. As in the massless case, it can be shown that m-harmonic functions
parametrize extremal Gibbs measures: exG (m) = {

µ
η
m : η is m-harmonic

}
. ⋄

In contrast to the massless case in dimension d ≥ 3, in which G(0, i ) decreases
algebraically when ∥i∥2 →∞, we will now see that the decay in the massive case is
always exponential. Let us thus define the rate

ξm(i )
def= lim

ℓ→∞
−1

ℓ
logGm(0,ℓi ).
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Proposition 8.30. Let d ≥ 1. For any i ∈Zd , ξm(i ) exists and

Gm(0, i ) ≤Gm(0,0)e−ξm (i ) .

Moreover,

log(1+m2) ≤ ξm(i )

∥i∥1

≤ log(2d)+ log(1+m2) . (8.50)

Proof. Let, for all j ∈Zd , τ j
def= min

{
n ≥ 0 : Zn = j

}
. Observe that

Gm(0,ℓi ) =Pm
0 (τℓi < τ⋆)Gm(ℓi ,ℓi ) .

Therefore, since Gm(ℓi ,ℓi ) =Gm(0,0) <∞ for any m > 0,

lim
ℓ→∞

−1

ℓ
logGm(0,ℓi ) = lim

ℓ→∞
−1

ℓ
logPm

0 (τℓi < τ⋆) .

Now, for all ℓ1,ℓ2 ∈N, it follows from the strong Markov property that

Pm
0 (τ(ℓ1+ℓ2)i < τ⋆) ≥Pm

0 (τℓ1i < τ(ℓ1+ℓ2)i < τ⋆) =Pm
0 (τℓ1i < τ⋆)Pm

0 (τℓ2i < τ⋆) .

This implies that the sequence
(− logPm

0 (τℓi < τ⋆)
)
ℓ≥1 is subadditive; Lemma B.5

then guarantees the existence of ξm(i ), and provides the desired upper bound on
Gm(0, i ), after taking ℓ= 1.

Let us now turn to the bounds on ξm(i )/∥i∥1. For the lower bound, we use (8.48):

(1+m2)Gm(i , j ) =
∑

n≥0
Pm

i (Zn = j )

≤
∑

n≥∥ j−i∥1

(1+m2)−n ≤ 1+m2

m2 (1+m2)−∥ j−i∥1 .

For the upper bound, we can use

(1+m2)Gm(i , j ) ≥Pm
i (τ j < τ⋆) ≥ (2d(1+m2))−∥ j−i∥1 ,

where the second inequality is obtained by fixing an arbitrary shortest path from i
to j and then forcing the walk to follow it.

Using m-harmonic functions as a boundary condition allows one to construct in-
finitely many distinct Gibbs measures. It turns out, however, that if we only con-
sider boundary conditions growing not too fast, then the corresponding Gaussian
field is unique:

Theorem 8.31. Let d ≥ 1. For any boundary condition η satisfying

limsup
k→∞

max
i :∥i∥1=k

log |ηi |
k

< log(1+m2) , (8.51)

the Gaussian Gibbs measure µηm constructed in Theorem 8.28 is the same as the one
obtained with the boundary condition η≡ 0: µηm =µ0

m .

Since each m-harmonic function leads to a distinct infinite-volume Gibbs mea-
sure, Theorem 8.31 shows that the only m-harmonic function with subexponential
growth is η≡ 0. This is in sharp contrast with the massless case, for which distinct
Gibbs measures can be constructed using boundary conditions of the form (8.36),
in which ηi diverges linearly in ∥i∥1.
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Proof of Theorem 8.31: It suffices to prove that limn→∞Em
i [ηZτB(n)c

] = 0 whenever η

satisfies (8.51). Let ϵ > 0 be such that eϵ/(1+m2) < 1 and, for all n large enough,
|ηi | ≤ eϵn for all i ∈ ∂extB(n). Then, for all such n,

∣∣Em
i

[
ηZτB(n)c

]∣∣≤ eϵnPm
i

(
τB(n)c > d1(i ,B(n)c)

)≤ eϵn(1+m2)−n+∥i∥1 .

which tends to 0 as n →∞.

8.5.3 The limit m ↓ 0

We have seen that, when d = 1 or d = 2, the large fluctuations of the field prevent
the existence of any infinite-volume Gibbs measure for the massless GFF. It is thus
natural to study how these large fluctuations build up as m ↓ 0. One way to quantify
the change in behavior as m ↓ 0 (in dimensions 1 and 2) is to consider how fast the
variance Varm(ϕ0) diverges and how the rate of exponential decay of the covariance
Covm(ϕi ,ϕ j ) decays to zero.

Divergence of the variance in d = 1,2

We first study the variance of the field in the limit m ↓ 0, when d = 1 or 2.

Proposition 8.32. Let ϕ be any massive Gaussian Free Field on Zd . Then, as m ↓ 0,

Varm(ϕ0) ≃
{

1p
2m

in d = 1,
2
π | logm| in d = 2.

(8.52)

Proof. Let eλ = 1+m2, and remember that

Varm(ϕ0) =Gm(0,0) = (1+m2)−1
∑

n≥0
e−λnP0(Xn = 0) .

We first consider the case d = 1. From the local limit theorem (Theorem B.70), for
all ϵ> 0, there exists K0 such that

1−ϵp
πk

≤P0(X2k = 0) ≤ 1+ϵp
πk

, ∀k ≥ K0 . (8.53)

This leads to the lower bound

∑
n≥0

e−λnP0(Xn = 0) ≥ 1−ϵp
π

∑
k≥K0

e−2λk

p
k

≥ 1−ϵp
π

∫ ∞

K0

e−2λx

p
x

dx = 1−ϵp
2λ

(
1−O(

p
λ)

)
,

where we used the change of variable 2λx ≡ y2/2. For the upper bound, we bound
the first K0 terms of the series by 1, and obtain

∑
k≥0

e−2λkP0(X2k = 0) ≤ K0 +1+ 1+ϵp
π

∞∑
k=K0+1

e−2λk

p
k

≤ K0 +1+ 1+ϵp
π

∫ ∞

K0

e−2λx

p
x

dx .

The case d = 2 is similar and is left as an exercise; the main difference is that the
integral obtained cannot be computed explicitly.
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m

ξ(m)

Figure 8.6: The rate of exponential decay ξm of the massive Green function
in dimension 1.

The rate of decay for small masses

Proposition 8.30 shows that, as m →∞,

Gm(i , j ) = e−2logm (1+o(1))∥ j−i∥1 ∀i ̸= j ∈Zd .

It turns out that the rate of decay for small values of m has a very different behavior.
We first consider the one-dimensional case, in which an exact computation can be
made, valid for all m > 0:

Theorem 8.33. Let d = 1 and m > 0. For all i , j ∈Zd ,

Gm(i , j ) = Am exp
(−ξm | j − i |) , (8.54)

where Am ,ξm > 0 are given in (8.55). In particular, limm↓0
ξm
m =

p
2.

Proof. Since Gm(i , j ) = Gm(0, j − i ), it suffices to consider i = 0. Let λ > 0 be such
that eλ = 1+m2 and use (8.45) to write

(1+m2)Gm(0, j ) =
∑

n≥0
e−λnP0(Xn = j ) = E0

[ ∑
n≥0

e−λn 1{Xn= j }

]
.

We then use a Fourier representation for the indicator: for all j ∈Z,

1{Xn= j } =
1

2π

∫ π

−π
e ik(Xn− j ) dk .

The position of the symmetric simple random walk after n steps, Xn , can be ex-
pressed as a sum of independent identically distributed increments: Xn = ξ1 +·· ·+
ξn , with P0(ξ1 = ±1) = 1

2 . Let φ(k)
def= E0[e ikξ1 ] = cos(k) denote the characteristic

function of the increment. Since the increments are independent, E [e ik Xn ] =φ(k)n .
Since λ> 0, we can interchange the sum and the integral and get

(1+m2)Gm(0, j ) = 1

2π

∫ π

−π
e−ik j

∑
n≥0

(e−λφ(k))n dk

= 1

2π

∫ π

−π
e−ik j

1−e−λφ(k)
dk .
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We will study the behavior of this last integral using the residue theorem. To start,

we look for the singularities of z 7→ e−iz j

1−e−λ cos z
in the complex plane. Solving cos z =

eλ, we find z± = it±, with t± = t±(λ) =− log(eλ∓
√

e2λ−1). Observe that t−(λ) < 0 <
t+(λ). Let γ denote the closed clockwise-oriented path in C depicted on the figure
below:

z+

π− iR

π−π

γ z−

We decompose ∮

γ
=

∫ π

−π
+

∫ π−iR

π
+

∫ −π−iR

π−iR
+

∫ −π

−π−iR
.

Uniformly for all z on the path of integration from π− iR to −π− iR, when R is large
enough, |1−e−λ cos(z)| ≥ eR−λ/3. Therefore, as R →∞,

∣∣∣
∫ −π−iR

π−iR

e−iz j

1−e−λφ(z)
dz

∣∣∣→ 0.

On the other hand, since the integrand is periodic, the integrals
∫ π−iR
π and

∫ −π
−π−iR

cancel each other. By the residue theorem (since the path is oriented clockwise),

−
∮

γ

e−iz j

1−e−λ cos(z)
dz = 2πi Res

( e−iz j

1−e−λ cos(z)
; z−

)

= 2πi lim
z→z−

(z − z−)
e−iz j

1−e−λ cos(z)
.

This yields

Gm(0, j ) = e t−(λ) j

sinh |t−(λ)| ≡ Ame−ξm j , (8.55)

with ξm = log(1+m2 +
p

2m2 +m4).

The previous result shows in particular that the rate of decay ξm(i )/∥i∥2 behaves
linearly in m as m ↓ 0. We now extend this to all dimensions, using a more prob-
abilistic approach, which has the additional benefit of shedding more light on the
underlying mechanism.

Theorem 8.34. There exist m0 > 0 and constants 0 <α≤ δ such that, for all 0 < m <
m0 and all i ∈Zd ,

αm∥i∥2 ≤ ξm(i ) ≤ δm∥i∥2 . (8.56)



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

8.5. The massive case 405

Let us explain why this behavior should be expected. Let j ∈ Zd (with ∥ j∥2

large) and let τ j (resp. τ⋆) be the time at which the walk first reaches j (resp. dies).
As we already observed earlier,

Gm(0, j ) =Pm
0 (τ j < τ⋆)Gm( j , j ) =Pm

0 (τ j < τ⋆)Gm(0,0) . (8.57)

On the one hand, it is unlikely that the walker survives for a time much larger than
1/m2. Indeed, for all r > 0 for which r /m2 is an integer,

Pm
0 (τ⋆ > r /m2) = (1+m2)−r /m2 ≤ e−r /2 , (8.58)

for all sufficiently small m. On the other hand, in a time at most r /m2, the walker
typically cannot get to a distance further than r /m:

Pm
0 (∥Zr /m2∥2 ≥ r /m) ≤P0(∥Xr /m2∥2 ≥ r /m)

≤ E0[∥Xr /m2∥2
2 ]

r 2/m2 = r /m2

r 2/m2 = 1

r
. (8.59)

However, in order for a random walk started at 0 to reach j , such an event has to
occur at least ∥ j∥2/(r /m) times. Therefore, the probability that the random walk
reaches j should decay exponentially with ∥ j∥2/(r /m) = (m/r )∥ j∥2. The proof below
makes this argument precise. ⋄

Proof. Lower bound. Let r ≥ 8 be such that r /m2 is a positive integer and m/r < 1.

Set M
def= ⌊m

r ∥ j∥2⌋. Let us introduce the following sequence of random times: T0
def= 0

and, for k > 0,
Tk

def= inf
{
n > Tk−1 : ∥Zn −ZTk−1∥2 ≥ r /m

}
.

Note that, by definition, TM ≤ τ j . Applying the strong Markov Property at times
T1,T2, . . . ,TM−1,

Pm
0 (τ j < τ⋆) ≤

M−1∏
k=0

Pm
0 (T1 < τ⋆) =Pm

0 (T1 < τ⋆)M .

Following the heuristics described before the proof, we use the decomposition

Pm
0 (T1 < τ⋆) =Pm

0 (T1 < τ⋆,T1 ≤ r /m2)+Pm
0 (T1 < τ⋆,T1 > r /m2)

≤Pm
0 (T1 ≤ r /m2)+Pm

0 (τ∗ > r /m2) .

Now, on the one hand, it follows from (8.58) that Pm
0 (τ∗ > r /m2) ≤ e−r /2, which is

smaller than 1
4 by our choice of r . On the other hand,

Pm
0

(∥Zr /m2∥2 ≥ r /m
)≥Pm

0

(∥Zr /m2∥2 ≥ r /m
∣∣ T1 ≤ r /m2)Pm

0

(
T1 ≤ r /m2)

≥ 1
2P

m
0

(
T1 ≤ r /m2) ,

since, by symmetry,

Pm
0

(∥Zℓ∥2 ≥ r /m
∣∣ ∥Zk∥2 ≥ r /m

)≥ 1
2 ,

for all ℓ≥ k. Therefore, it follows from (8.59) that

Pm
0

(
T1 ≤ r /m2)≤ 2Pm

0

(∥Zr /m2∥2 ≥ r /m
)≤ 2

r
≤ 1

4
,
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again by our choice of r . We conclude that

Gm(0, j ) ≤ 2Gm(0,0)e−(log2/r )m∥ j∥2 .

Upper bound. In (8.57), we write

Pm
0 (τ j < τ∗) ≥P0(X[∥ j∥2/m] = j )Pm

0 (τ∗ > ∥ j∥2/m) ,

where we assume [∥ j∥2/m] to be either ⌊∥ j∥2/m⌋ or ⌊∥ j∥2/m⌋+1 in such a way that
{Z[∥ j∥2/m] = j } ̸= ∅. The first factor in the right-hand side can then be estimated
using the local limit theorem, Theorem B.70. Namely, provided that m sufficiently
small, Theorem B.70 implies the existence of constants c1,c2 such that

P0(X[∥ j∥2/m] = j ) ≥ e−c1m∥ j∥2

c1(∥ j∥2/m)d/2
,

for all j ∈Zd with ∥ j∥2 > c2. Since

Pm
0 (τ∗ > ∥ j∥2/m) = (1+m2)−⌊∥ j∥2/m⌋ ≥ e−m∥ j∥2 ,

the conclusion follows easily.

8.6 Bibliographical references

The study of the Gaussian Free Field (often also called harmonic crystal in the litera-
ture) was initiated in the 1970s. More details can be found in Chapter 13 of Georgii’s
book [134], in particular proofs of the facts mentioned in Remarks 8.22 and 8.29, as
well as an extensive bibliography. Some parts of Section 8.4.2 were inspired by the
lecture notes of Spitzer [320].

8.7 Complements and further reading

8.7.1 Random walk representations

The random walk representation presented in this chapter (Theorems 8.17 and 8.26
and Exercise 8.12) can be extended in (at least) two directions.

In the first generalization, one replaces ϕ2
i in the mass term by a more general

smooth function Ui (ϕi ) with a sufficiently fast growth. Building on earlier work by
Symanzik [324], a generalization of the random walk representation to this context
was first derived by Brydges, Fröhlich and Spencer in [56], which is still a nice place
to learn about this material. Another source we recommend is the book [102] by
Fernández, Fröhlich and Sokal, which also contains several important applications
of this representation. In fact, as explained in these references, the spins ϕi them-
selves can be allowed to take values in Rν, ν ≥ 1. Considering suitable sequences
of functions U (n)

i , this makes it possible to obtain random walk representations for
the types of continuous spin models discussed in Chapters 9 and 10.

In the second generalization, it is the quadratic interaction (ϕi −ϕ j )2 that is
replaced by a more general function V (ϕi −ϕ j ) of the gradients. (Models of this
type will be briefly considered in Section 9.3.) In this case, a generalization of the
random walk representation was obtained by Helffer and Sjöstrand [158]. A good
account can be found in Section 2 of the article [76] by Deuschel, Giacomin and
Ioffe.
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8.7.2 Gradient Gibbs states

As discussed in this chapter, the massless GFF delocalizes in dimensions 1 and 2,
which leads to the absence of any Gibbs measure in the thermodynamic limit in
those two cases.

Nevertheless, we have seen in Exercise 8.7 that, under µ0
Λ;0, the random vector

(ϕ̃i )i∈Λ, where ϕ̃i
def= ϕi −ϕ0, is centered Gaussian with covariance matrix given by

G̃Λ(i , j )
def= GΛ(i , j )−GΛ(i ,0)−GΛ(0, j )+GΛ(0,0) .

It can be shown [209] that, as Λ ↑ Zd , the limit of this quantity is given by the con-
vergent series

G̃(i , j )
def=

∑
n≥0

Pi (Xn = j ,τ0 > n) , (8.60)

where τ0
def= min{n ≥ 0 : Xn = 0}. In particular, the limiting Gaussian field is always

well defined.
More generally, the joint distribution of the gradients ϕi −ϕ j , {i , j } ∈ EZd , re-

mains well defined in all dimensions. It is thus possible to define Gibbs measures
for this collection of random variables, instead of the original random variables
ϕi , i ∈ Zd . This approach was pursued in a systematic way by Funaki and Spohn
in [124], where the reader can find much more information. Other good source are
Funaki’s lecture notes [125] and Sheffield’s thesis [302].

8.7.3 Effective interface models

As mentioned in the text, the Gaussian Free Field onZd , as well as the more general
class of gradient models, are often used as caricatures of the interfaces in more
realistic lattice systems, such as the 3-dimensional Ising model. Such caricatures
are known as effective interface models. They are much simpler to analyze than
the objects they approximate and their analysis yields valuable insights into the
properties of the latter. In particular, they are used to study the effect of various
external potentials or constraints on interfaces. More information on these topics
can be found in the review article [46] by Bricmont, El Mellouki and Fröhlich, and
in the lecture notes by Giacomin [136], Funaki [125] and Velenik [347]. In addition,
the reader would probably also enjoy the older, but classical, review paper [107] by
Fisher, although it only covers one-dimensional effective interface models.

8.7.4 Continuum GFF

In this chapter, we only considered the Gaussian Free Field on the lattice Zd . It
turns out that it is possible to define an analogous model on Rd . The latter ob-
ject plays a crucial role in the analysis of the scaling limit of critical systems in two
dimensions. Good introductions to this topic can be found in the review [303] by
Sheffield and the lecture notes [348] by Werner.

8.7.5 A link to discrete spin systems

We saw in Section 2.5.2 how the Hubbard–Stratonovich transformation can be used
to compute the pressure of the Curie–Weiss model. Let us use the same idea and
explain how discrete spin systems can sometimes be expressed in terms of the GFF.
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The approach is very general but, for simplicity, we only consider an Ising fer-
romagnet with periodic boundary conditions. That is, we work on the torus Tn ,
whose set of vertices is denoted Vn , as in Chapter 3.

Let us thus consider the Ising ferromagnet on Tn , with the following Hamilto-
nian:

HVn ;J,h
def= − 1

2β
∑

i , j∈Vn

Ji jσiσ j −h
∑

i∈Vn

σi .

We will see that an interesting link can be made between the partition function
Zper

Vn ;β,J,h and the GFF, provided that the coupling constants J = (Ji j )i , j∈Vn are well

chosen.

The starting point is the following generalization of (2.20): for any positive def-
inite matrix Σ= (Σ(i , j ))1≤i , j≤N and any vector x = (x1, . . . , xN ) ∈RN ,

exp
[ 1

2

N∑
i , j=1

Σ(i , j )xi x j
]= (

(2π)N detΣ
)−1/2

×
∫ ∞

−∞
dy1 · · ·

∫ ∞

−∞
dyN exp

[− 1
2

N∑
i , j=1

Σ−1(i , j )yi y j
]

exp
[ N∑

i=1
xi yi

]
. (8.61)

(See Exercise B.22.) We will apply this identity to the quadratic part of the Boltz-

mann weight of the ferromagnet introduced above, with xi
def=

√
βσi , Σ(i , j )

def= Ji j .
To establish a correspondence with the GFF, we choose J so that the inverseΣ−1 can
be related to the GFF. Let us therefore take

Ji j
def= Gm;Tn (i , j ) ,

where Gm;Tn (i , j ) denotes is the massive Green function of the symmetric simple
random walk (Xn)n≥0 on Tn , given by

Gm;Tn (i , j )
def=

∑
n≥0

(1+m2)−n−1Pi (Xn = j ) . (8.62)

A straightforward adaptation of the proof of Theorem 8.26 shows that

(Gm;Tn )−1 =− 1
2d∆+m2 .

where ∆= (∆i j )i , j∈Tn denotes the discrete Laplacian on Tn , defined as in (8.16).
Notice that, even though the coupling constants Ji j defined above depend on n

and involve long-range interactions, they converge as n →∞ and decay exponen-
tially fast in ∥ j − i∥1, uniformly in n, as can be seen from (8.62).

With this choice of coupling constants, (8.61) can be written as

exp
[ 1

2β
∑

i , j∈Vn

Ji jσiσ j
]= (

(2π)|Vn | detGm;Tn

)−1/2×

×
∫

exp
[− 1

2

∑
i , j∈Vn

yi (− 1
2d∆i j +m2)y j

]
exp

[
β1/2

∑
i∈Vn

yiσi
] ∏

i∈Vn

dyi ,

where each yi , i ∈ Vn , is integrated over R. Since we recognize the Boltzmann
weight of the massive centered GFF on Tn , we get

exp
[ 1

2β
∑

i , j∈Vn

Ji jσiσ j
]=

〈
exp

[
β1/2

∑
i∈Vn

ϕiσi
]〉GFF,per

Vn ;β,m
.
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We can now perform the summation over configurations in the partition function
of the ferromagnet, which yields

Zper

Vn ;β,J,h = 2|Vn |
〈 ∏

i∈Vn

cosh
(
β1/2ϕi +h

)〉GFF,per

Vn ;m
.

Note that the numerator in the right-hand side corresponds to a massless GFF with
an additional term

∑
i∈Vn W (ϕi ) in the Hamiltonian, where W (·) is an external po-

tential defined by (see Figure 8.7)

W (x)
def= m2

2 x2 − logcosh
(
β1/2x +h

)
. (8.63)

x

W

x

W

Figure 8.7: The external potential W with m = 1 and h = 0. Left: β = 0.5.
Right: β= 2.

More generally, the same argument leads to a similar representation for any
correlation function:

〈σA〉per

Vn ;β,h =
〈∏

i∈A
tanh

(
β1/2ϕi +h

)〉GFF,per

Vn ;W
,

where the latter measure is that of the massless GFF in the external potential W .

In a sense, the above transformation (sometimes called the sine-Gordon trans-
formation) allows us to replace the discrete ±1 spins of the Ising model by the con-
tinuous (and unbounded) spins of a Gaussian Free Field. A trace of the two values
can still be seen in the resulting double-well potential (8.63) to which this field is
submitted whenβ is sufficiently large; see Figure 8.7. Even though we will not make
use of this in the present book, this continuous settings turns out to be very con-
venient when implementing rigorously the renormalization group approach. We
refer to [57] for more information.
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