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6 Infinite-Volume Gibbs Measures

In this chapter, we give an introduction to the theory of Gibbs measures, which
describes the properties of infinite systems at equilibrium. We will not cover all the
aspects of the theory, but instead present the most important ideas and results in
the simplest possible setting, the Ising model being a guiding example throughout
the chapter.

Remark 6.1. Due to the rather abstract nature of this theory, it will be necessary
to resort to some notions from measure theory that were not necessary in the pre-
vious chapters. From the probabilistic point of view, we will use extensively the
fundamental notion of conditional expectation, central in the description of Gibbs
measures. The reader familiar with these subjects (some parts of which are briefly
presented in Appendix B, Sections B.5 and B.8) will certainly feel more comfortable.
Certain topological notions will also be used, but will be presented from scratch
along the chapter. Nevertheless, we emphasize that although of great importance
in the understanding of the mathematical framework of statistical mechanics, a
detailed understanding of this chapter is not required for the rest of the book. ⋄

Some models to which the theory applies. The theory of Gibbs measures pre-
sented in this chapter is general and applies to a wide range of models. Although
the description of the equilibrium properties of these models will always follow
the standard prescription of Equilibrium Statistical Mechanics, what distinguishes
them is their microscopic specificities. That is, in our context: (i) the possible values
of a spin at a given vertex of Zd , and (ii) the interactions between spins contained
in a finite regionΛ⋐Zd .

A model is thus defined by first considering the set Ω0, called the single-spin
space, which describes all the possible states of one spin. The spin configurations
on a (possible infinite) subset S ⊂Zd are defined as in Chapter 3:

ΩS
def= ΩS

0 = {(ωi )i∈S : ωi ∈Ω0∀i ∈ S} .

When S = Zd , we simply write Ω ≡ ΩZd . Then, for each finite subset Λ⋐ Zd , the
energy of a configuration inΛ is determined by a Hamiltonian

HΛ :Ω→R .
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246 Chapter 6. Infinite-Volume Gibbs Measures

We list some of the examples that will be used as illustrations throughout the chap-
ter.

• For the Ising model,

Ω0 = {+1,−1} .

The nearest-neighbor version studied in Chapter 3 corresponds to

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

ωiω j −h
∑
i∈Λ

ωi ,

where we remind the reader that E b
Λ is the set of nearest-neighbor edges ofZd

with at least one endpoint in Λ, see (3.2). We will also consider a long-range
version of this model:

HΛ(ω) =−
∑

{i , j }∩Λ̸=∅
Ji jωiω j −h

∑
i∈Λ

ωi ,

where Ji j → 0 (sufficiently fast) when ∥ j − i∥1 →∞.

• For the q-state Potts model, where q ≥ 2 is an integer, we set

Ω0 = {0,1,2, . . . , q −1} ,

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

δωi ,ω j .

• For the Blume–Capel model,

Ω0 = {+1,0,−1} ,

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

(ωi −ω j )2 −h
∑
i∈Λ

ωi −λ
∑
i∈Λ

ω2
i .

• The X Y model is an example with an uncountable single-spin space,

Ω0 =
{

x ∈R2 : ∥x∥2 = 1
}

,

and Hamiltonian

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

ωi ·ω j ,

where ωi ·ω j denotes the scalar product.

All the models above have a common property: their single-spin space is com-
pact (see below). Models with non-compact single-spin spaces present additional
interesting difficulties which will not be discussed in this chapter. One important
case, the Gaussian Free Field for which Ω0 =R, will be studied separately in Chap-
ter 8.
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About the point of view adopted in this chapter. Describing the above models
in infinite volume will require a fair amount of mathematical tools. For simplicity,
we will only expose the details of the theory for models whose spins take their values

in {±1}; the set of configurations is thus the same as in Chapter 3: Ω= {±1}Z
d

.
Even with this simplification, we will face most of the mathematical difficulties

that are unavoidable when attempting to describe infinite systems at equilibrium.
It will however allow us to provide elementary proofs, in several cases, and to some-
what reduce the overall amount of abstraction (and notation) required.

Let us stress that the set {±1} has been chosen for convenience, but that it could
be replaced by any finite set; our discussion (including the proofs) applies essen-
tially verbatim also in that setting. In fact, all the results presented here remain
valid, modulo some minor changes, for any model whose spins take their values in
a compact set. At the end of the chapter, in Section 6.10, we will mention the few
differences that appear in this more general situation.

So, from now on, and until the end of the chapter, unless explicitly stipulated
otherwise,Ω0 will be {±1}, and

ΩΛ = {±1}Λ , Ω= {±1}Z
d

.

Outline of the chapter

The probabilistic framework used to describe infinite systems on the lattice will be
presented in Section 6.2, together with a motivation for the notion of specification,
central to the definition of infinite-volume Gibbs measures. After introducing the
necessary topological notions, the existence of Gibbs measures will be proved in
Section 6.4. Several uniqueness criteria, among which Dobrushin’s condition of
weak dependence, will be described in Section 6.5. Gibbs measures enjoying sym-
metries will be described rapidly in Section 6.6; translation invariance, which plays
a special role, will be described in Section 6.7. In Section 6.8, the convex struc-
ture of the set of Gibbs measures will be described, as well as the decomposition
of any Gibbs measure into a convex combination of extremal elements and the lat-
ter’s remarkable properties. In Section 6.9, we will present the variational principle,
which provides an alternative description of translation-invariant Gibbs measures,
in more thermodynamical terms. In Section 6.10, we will sketch the changes neces-
sary in order to describe infinite systems whose spins take infinitely many values,
the latter being considered at several places in the rest of the book. In Section 6.11,
we give a criterion for non-uniqueness involving the non-differentiability of the
pressure, which will be used later in the book. The remaining sections are comple-
ments to the chapter.

6.1 The problem with infinite systems

Let us recall the approach used in Chapter 3. By considering for example the +
boundary condition, we started in a finite volume Λ⋐ Zd , and defined the Gibbs
distribution unambiguously by

µ+
Λ;β,h(ω) = e−HΛ;β,h (ω)

Z+
Λ;β,h

, ω ∈Ω+
Λ .
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248 Chapter 6. Infinite-Volume Gibbs Measures

Then, to describe the Ising model on the infinite lattice, we introduced the thermo-
dynamic limit. We considered a sequence of subsets Λn ↑Zd and showed, for each
local function f , existence of the limit

〈 f 〉+β,h = lim
n→∞〈 f 〉+Λn ;β,h .

This defined a linear functional 〈·〉+
β,h on local functions, which was called an infin-

ite-volume Gibbs state.
This procedure was sufficient for us to determine the phase diagram of the Ising

model (Section 3.7), but leaves several natural questions open. For instance, we
know that

lim
n→∞µ

+
Λn ;β,h(σ0 =−1) = lim

n→∞
1
2

(
1−〈σ0〉+Λn ;β,h

)= 1
2

(
1−〈σ0〉+β,h

)

exists. This raises the question whether this limit represents the probability that
σ0 =−1 under some infinite-volume probability measure µ+

β,h :

µ+
β,h(σ0 =−1) = 1

2

(
1−〈σ0〉+β,h

)
. (6.1)

In infinite volume, neither the Hamiltonian nor the partition function are well-
defined. Moreover, it is easy to check that each individual configuration would have
to have probability zero. Therefore, extending the definition of a Gibbs distribution
to the uncountable set of configurationsΩ requires a different approach, involving
the methods of measure theory.

6.2 Events and probability measures on Ω

As we said above, it is easy to construct a probability distribution on a finite set such
as ΩΛ, since this can be done by specifying the probability of each configuration.
Another convenient consequence of the finiteness ofΩΛ is that the set of events as-
sociated toΩΛ is naturally identified with the collection P(ΩΛ) of all subsets ofΩΛ.
The set of probability distributions on the finite measurable space (ΩΛ,P(ΩΛ)) is
denoted simply M1(ΩΛ).

Notation 6.2. In this chapter, it will often be convenient to add a subscript to con-
figurations to specify explicitly the domain in which they are defined. For example
elements of ΩΛ will usually be denoted ωΛ,ηΛ, etc.

Given S ⊂ Zd and a configuration ω defined on a set larger than S, we will also
write ωS to denote the restriction of ω to S, (ωi )i∈S . We will also often decompose a
configuration ωS ∈ΩS as a concatenation: ωS =ωΛωS\Λ (for some Λ⊂ S).

These notations should not to be confused with the notation in Chapter 3, where
σΛ was used to denote the product of all spins in Λ, while the restriction of ω to Λ
was written ω|Λ.

We first define the natural collection of events onΩ, based on the notion of cylinder.
The restriction of ω ∈Ω to S ⊂ Zd , ωS , can be expressed using the projection map
ΠS :Ω→ΩS :

ΠS (ω)
def= ωS .

In particular, with this notation, given A ∈ P(ΩΛ), the event that “A occurs in Λ”
can be writtenΠ−1

Λ (A) = {ω ∈Ω : ωΛ ∈ A}.
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For eachΛ⋐Zd , consider the set

C (Λ)
def= {

Π−1
Λ (A) : A ∈P(ΩΛ)

}

of all events on Ω that depend only on the spins located inside Λ. Each event
C ∈ C (Λ) is called a cylinder (with base Λ). For example, {ω0 = −1}, the event
containing all configurations ω for which ω0 =−1, is a cylinder with baseΛ= {0}.

Exercise 6.1. Show that C (Λ) has the structure of an algebra: (i) ∅ ∈C (Λ), (ii) A ∈
C (Λ) implies Ac ∈C (Λ), and (iii) A,B ∈C (Λ) implies A∪B ∈C (Λ).

For any S ⊂Zd (possibly infinite), consider the collection

CS
def=

⋃
Λ⋐S

C (Λ)

of all local events in S, that is, all events that depend on finitely many spins, all
located in S.

Exercise 6.2. Check that, for all S ⊂Zd , CS contains at most countably many events
and that it has the structure of an algebra. Hint: first, show that C (Λ) ⊂C (Λ′) when-
ever Λ⊂Λ′.

The σ-algebra generated by cylinders with base contained in S is denoted by

FS
def= σ(CS )

and consists of all the events that depend only on the spins inside S. When S =Zd ,
we simply write

C ≡CZd , F ≡σ(C ) .

The cylinders C should be considered as the algebra of local events. Although
generated from these local events, the σ-algebra F automatically contains macro-
scopic events, that is, events that depend on the system as a whole (a precise defi-
nition of macroscopic events will be given in Section 6.8.1). For example, the event

{
ω ∈Ω : limsup

n→∞
1

|B(n)|
∑

i∈B(n)

ωi > 0
}
=

⋃
k≥1

⋂
n≥1

⋃
m≥n

{ 1

|B(m)|
∑

i∈B(m)

ωi ≥ 1
k

}

belongs to F (and is obviously not local). The importance of macroscopic events
will be emphasized in Section 6.8.

The reader might wonder whether there are interesting events that do not be-
long to F . As a matter of fact, all events which we will need can be described ex-
plicitly in terms of the individual spins in S, using (possibly infinite) unions and
intersections. Those are all in F . ⋄

The set of probability measures on (Ω,F ) will be denoted M1(Ω,F ), or sim-
ply M1(Ω) when no ambiguity is possible. The elements of M1(Ω) will usually be
denoted µ or ν.

A function g :Ω→R is measurable with respect to FS (or simply FS -measur-
able) if g−1(I ) ∈FS for all Borel sets I ⊂ R. Intuitively, such a function should be a
function of the spins living in S:
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250 Chapter 6. Infinite-Volume Gibbs Measures

Lemma 6.3. A function g : Ω→ R is FS -measurable if and only if there exists ϕ :
ΩS →Rmeasurable such that

g (ω) =ϕ(ωS ) .

Proof. Let g be FS -measurable. OnΩS , consider the set of cylinder events C ′
S , and

F ′
S = σ(C ′

S ). If ΠS :Ω→ΩS denotes the projection map, we have Π−1
S (C ′) ∈FS for

all C ′ ∈C ′
S . This implies that FS is generated byΠS : FS =σ(ΠS ) (see Section B.5.2).

Therefore, by Lemma B.38, there existsϕ :Ω→ΩS such that g =ϕ◦ΠS . Conversely,
if g is of this form, then clearly g−1(I ) ∈ FS for each Borel set I ⊂ R so that g is
FS -measurable.

Remember that f :Ω→R is local if it only depends on a finite number of spins:
there exists Λ⋐Zd such that f (ω) = f (ω′) as soon as ωΛ =ω′

Λ. By Lemma 6.3, this
is equivalent to saying that f is FΛ-measurable. In fact, since the spins take finitely
many values, a local function can only take finitely many values and can therefore
be expressed as a finite linear combination of indicators of cylinders. Since, for
each of the latter, f −1(I ) ∈ C ⊂ F , local functions are always measurable. In the
sequel, all the functions f : Ω→ R which we will consider will be assumed to be
measurable.

Notation 6.4. In Chapter 3, we denoted the expectation of a function f under a prob-
ability measure µ by 〈 f 〉µ. For the rest of this chapter, it will be convenient to also use
the following equivalent notations:

∫
f dµ, or µ( f ).

States vs. probability measures

Remember from Section 3.4 that a state is a normalized positive linear functional
f 7→ 〈 f 〉 acting on local functions. Observe that a state can be associated to each
probability measure µ ∈M1(Ω) by setting, for all local functions f ,

〈 f 〉 def= µ( f ) .

It turns out that all states are of this form:

Theorem 6.5. For every state 〈·〉, there exists a unique probability measure µ ∈
M1(Ω) such that 〈 f 〉 =µ( f ) for every local function f :Ω→R.

This result is a particular case of the Riesz–Markov–Kakutani Representation Theo-
rem. Its proof requires a few tools that will be presented later, and can be found in
Section 6.12.

Two infinite-volume measures for the Ising model

Using Theorem 6.5, we can associate a probability measure to each Gibbs state of
the Ising model. In particular, let us denote by µ+

β,h (resp. µ−
β,h) the measure asso-

ciated to 〈·〉+
β,h (resp. 〈·〉−

β,h). For these measures, relations such as (6.1) hold. A lot

will be learned about these measures throughout the chapter.
For the time being, one should remember that the construction ofµ+

β,h andµ−
β,h

was based on the thermodynamic limit, which was used to define the states 〈·〉+
β,h

and 〈·〉−
β,h . Our aim, in the following sections, is to present a way of defining mea-

sures directly on the infinite lattice, without involving any limiting procedure. As
we will see, this alternative approach presents a number of substantial advantages.
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Why not simply use Kolmogorov’s Extension Theorem?

In probability theory, the standard approach to construct infinite collections of de-
pendent random variables relies on Kolmogorov’s Extension Theorem, in which the
strategy is to define a measure by requiring it to satisfy a set of local conditions. In
our case, these conditions should depend on the microscopic description of the
system under consideration, which is encoded in its Hamiltonian. We briefly out-
line this approach and explain why it does not solve the problem we are interested
in.

Given µ ∈M1(Ω) and Λ⋐Zd , the marginal distribution of µ on Λ is the prob-
ability distribution µ|Λ ∈M1(ΩΛ) defined by

µ|Λ def= µ◦Π−1
Λ . (6.2)

In other words, µ|Λ is the only distribution in M1(ΩΛ) such that, for all A ∈P(ΩΛ),
µ|Λ(A) =µ({ω ∈Ω : ωΛ ∈ A}). By construction, the marginals satisfy:

µ|∆ =µ|Λ ◦ (ΠΛ∆)−1 , ∀∆⊂Λ⋐Zd , (6.3)

whereΠΛ∆ :ΩΛ→Ω∆ is the canonical projection defined byΠΛ∆
def= Π∆ ◦Π−1

Λ .
It turns out that a measure µ ∈M1(Ω) is entirely characterized by its marginals

µ|Λ, Λ ⋐ Zd , but more is true: given any collection of probability distributions
{µΛ}Λ⋐Zd , with µΛ ∈ M1(ΩΛ) for all Λ, which satisfies a compatibility condition
of the type (6.3), there exists a unique probability measure µ ∈ M1(Ω) admitting
them as marginals. This is the content of the following famous

Theorem 6.6. [Kolmogorov’s Extension Theorem] Let {µΛ}Λ⋐Zd , µΛ ∈ M1(ΩΛ), be
consistent in the sense that

for all Λ⋐Zd : µ∆ =µΛ ◦ (ΠΛ∆)−1 , ∀∆⊂Λ . (6.4)

Then there exists a unique µ ∈M1(Ω) such that µ|Λ =µΛ for all Λ⋐Zd .

Proof. See Section 6.12.

Theorem 6.6 yields an efficient way of constructing a measure in M1(Ω), provided
that one can define the desired collection {µΛ}Λ⋐Zd of candidates for its marginals.
An important such application is the construction of the product measure, that is,
of an independent field; in our setting, this covers for example the case of the Ising
model at infinite temperature, β= 0.

Exercise 6.3. (Construction of a product measure on (Ω,F )) For each i ∈Zd , let ρi

be a probability distribution on {±1} and let, for all Λ⋐Zd ,

µΛ(ωΛ)
def=

∏
j∈Λ

ρ j (ω j ) , ωΛ ∈ΩΛ .

Check that {µΛ}Λ⋐Zd is consistent. The resulting measure on (Ω,F ) whose existence

is guaranteed by Theorem 6.6, is denoted ρZ
d

.

If one tries to use Theorem 6.6 to construct infinite-volume measures for the
Ising model on Zd , we face a difficulty. Namely, the Boltzmann weight allows one
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to define finite-volume Gibbs distributions in terms of the underlying Hamiltonian.
However, as we will explain now, in general, there is no way to express the marginals
associated to an infinite-volume Gibbs measure without making explicit reference to
the latter.

Indeed, let us consider the simplest case of the marginal distribution of the spin
at the origin, σ0, and let us assume that d ≥ 2 and h = 0. Of course, σ0 follows a
Bernoulli distribution (with values in {±1}) for some parameter p ∈ [0,1]. The only
thing that needs to be determined is the value of p. However, we already know from
the results in Chapter 3 that, for all large enough values ofβ, the average value ofσ0,
and thus the relevant value of p, depends on the chosen Gibbs state. However, all
these states correspond to the same Hamiltonian and the same values of the param-
eters β and h. This means that it is impossible to determine p from a knowledge of
the Hamiltonian and the parameters β and h: one needs to know the macroscopic
state the system is in, which is precisely what we are trying to construct. This shows
that Kolmogorov’s Extension Theorem is doomed to fail for the construction of the
Ising model in infinite volume. [1]

Exercise 6.4. Consider {µ∅
Λ

}Λ⋐Zd , where µ∅
Λ

is the Gibbs distribution associated to
the two-dimensional Ising model in Λ, with free boundary condition, at parameters
β> 0 and h = 0. Show that the family obtained is not consistent.

6.2.1 The DLR approach

A key observation, made by Dobrushin, Lanford and Ruelle is that if one considers
conditional probabilities rather than marginals, then one is led to a different con-
sistency condition, much better suited to our needs. Before stating this condition
precisely (see Lemma 6.7 below), we explain it at an elementary level, using the
Ising model and the notations of Chapter 3.

Consider ∆⊂Λ⋐Zd and a boundary condition η ∈Ω:

Λ
∆

ωΛ\∆η

The Ising model in Λ with boundary condition η is described by µη
Λ;β,h . Let f be a

local function depending only on the variables ω j , j ∈ ∆, and consider the expec-
tation of f under µη

Λ;β,h . Since f only depends on the spins located inside ∆, this

expectation can be computed by first fixing the values of the spins in Λ \∆. As we
already saw in Exercise 3.11, µη

Λ;β,h , conditioned onωΛ\∆, is equivalent to the Gibbs

distribution on ∆with boundary condition ωΛ\∆ηΛc outside ∆. Therefore,

〈 f 〉η
Λ;β,h =

∑
ωΛ\∆

〈
f 1{ωΛ\∆ outside ∆}

〉η
Λ;β,h

=
∑
ωΛ\∆

〈 f 〉ωΛ\∆ηΛc

∆;β,h µ
η

Λ;β,h(ωΛ\∆ outside ∆) . (6.5)
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(Notice a slight abuse of notation in the last line.) A particular instance of (6.5) is
when f is the indicator of some event A occurring in ∆, in which case

µ
η

Λ;β,h(A) =
∑
ωΛ\∆

µ
ωΛ\∆ηΛc

∆;β,h (A)µη
Λ;β,h(ωΛ\∆ outside ∆) . (6.6)

The above discussion expresses the idea of Dobrushin, Lanford and Ruelle: the re-
lation (6.5), or its second equivalent version (6.6), can be interpreted as a consis-
tency relation between the Gibbs distributions in Λ and ∆. We can formulate (6.5)
in a more precise way:

Lemma 6.7. For all ∆⊂Λ⋐Zd and all bounded measurable f :Ω→R,

〈 f 〉η
Λ;β,h = 〈〈 f 〉·∆;β,h

〉η
Λ;β,h , ∀η ∈Ω . (6.7)

Proof of Lemma 6.7. To lighten the notations, we omit any mention of the depen-
dence on β and h. Each ω ∈Ωη

Λ
is of the form ω=ωΛηΛc , with ωΛ ∈ΩΛ. Therefore,

〈〈 f 〉·∆
〉η
Λ
=

∑
ωΛ

〈 f 〉ωΛηΛc

∆

e−HΛ(ωΛηΛc )

Zη
Λ

. (6.8)

In the same way,

〈 f 〉ωΛηΛc

∆
=

∑
ω′
∆

f (ω′
∆ωΛ\∆ηΛc )

e−H∆(ω′
∆
ω
Λ\∆

η
Λc )

ZωΛηΛc

∆

. (6.9)

In (6.8), we decompose ωΛ = ω∆ωΛ\∆, and sum separately over ωΛ\∆ and ω∆. Ob-
serve that

HΛ(ω∆ωΛ\∆ηΛc )−H∆(ω∆ωΛ\∆ηΛc ) =
HΛ(ω′

∆ωΛ\∆ηΛc )−H∆(ω′
∆ωΛ\∆ηΛc ) . (6.10)

Indeed, the difference on each side represents the interactions among the spins in-
sideΛ\∆, and between these spins and those outsideΛ, and so does not depend on
ω∆ or ω′

∆. Therefore, plugging (6.9) into (6.8), using (6.10), rearranging and calling
ω′
∆ωΛ\∆ ≡ω′

Λ, we get

〈〈 f 〉·∆
〉η
Λ
=

∑
ωΛ\∆

∑
ω′
∆

f (ω′
∆ωΛ\∆ηΛc )

e−HΛ(ω′
∆
ωΛ\∆ηΛc )

Zη
Λ

∑
ω∆ e−H∆(ω∆ωΛ\∆ηΛc )

ZωΛηΛc

∆︸ ︷︷ ︸
=1

=
∑
ω′
Λ

f (ω′
ΛηΛc )

e−HΛ(ω′
Λ
η
Λc )

Zη
Λ

= 〈 f 〉η
Λ

.

Remark 6.8. The proof given above does not depend on the details of the Ising
Hamiltonian, but rather on the property (6.10), which will be used again later. ⋄
We now explain why (6.7) leads to a natural characterization of infinite-volume
Gibbs states, more general than the one introduced in Chapter 3.

First observe that, since we are considering the Ising model in which the inter-
actions are only between nearest neighbors, the function ω 7→ 〈 f 〉ω

∆;β,h is local (it
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depends only on those ωi for which i ∈ ∂ex∆). So, if the distributions 〈·〉η
Λ;β,h con-

verge to a Gibbs state 〈·〉 when Λ ↑ Zd , in the sense of Definition 3.14, then we can
take the thermodynamic limit on both sides of (6.7), obtaining

〈 f 〉 = 〈〈 f 〉·∆;β,h

〉
, (6.11)

for all ∆ ⋐ Zd and all local functions f . We conclude that (6.11) must be satis-
fied by all states 〈·〉 obtained as limits. But this can also be used to characterize
states without reference to limits. Namely, we could extend the notion of infinite-
volume Gibbs state by saying that a state 〈·〉 (not necessarily obtained as a limit)
is an infinite-volume Gibbs state for the Ising model at (β,h) if (6.11) holds for ev-
ery ∆⋐ Zd and all local functions f . This new characterization has mathematical
advantages that will become clear later.

If one identifies a Gibbs state 〈·〉 with the corresponding measure µ given in
Theorem 6.5, then µ should satisfy the infinite-volume version of (6.6): by taking
f = 1A , for some local event A, (6.11) becomes

µ(A) =
∫
µω∆;β,h(A)µ(dω) . (6.12)

Once again, we can use (6.12) as a set of conditions that define those measures that
describe the Ising model in infinite volume. We will say that µ ∈ M1(Ω) is a Gibbs
measure for the parameters (β,h) if (6.12) holds for all ∆⋐ Zd and all local events
A. An important feature of this point of view is that it characterizes probability
measures directly on the infinite latticeZd , without assuming them being obtained
from a limiting procedure.

This characterization of probability measures for infinite statistical mechanical
systems, and the study of their properties, is often called the DLR formalism. In
Section 6.3, we establish the mathematical framework in which this formalism can
be conveniently developed.

6.3 Specifications and measures

We will formulate the DLR approach introduced in the previous section in a more
precise and more general way. The theory will apply to a large class of models,
containing the Ising model as a particular case. It will also include models with a
more complex structure, for example with long-range interactions or interactions
between larger collections of spins.

We will proceed in two steps. First, we will generalize the consistency rela-
tion (6.7) by introducing the notion of specification.

In our discussion of the Ising model, the starting ingredient was the family of
finite-volume Gibbs distributions {µ·

Λ;β,h(·)}Λ⋐Zd , whose main features we gather

as follows:

1. For a fixed boundary condition ω, µω
Λ;β,h(·) is a probability distribution on

(Ωω
Λ,P(Ωω

Λ)). It can however also be seen as a probability measure on (Ω,F )
by letting, for all A ∈F ,

µωΛ;β,h(A)
def=

∑
τΛ∈ΩΛ

µωΛ;β,h(τΛωΛc )1A(τΛωΛc ) . (6.13)



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

6.3. Specifications and measures 255

In particular,
∀B ∈FΛc , µωΛ;β,h(B) = 1B (ω) . (6.14)

2. For a fixed A ∈ F , µω
Λ;β,h(A) is entirely determined by ωΛc (actually, even by

ω∂exΛ). In particular, ω 7→µω
Λ;β,h(A) is FΛc -measurable.

3. When considering regions ∆⊂Λ⋐Zd , the consistency condition (6.7) is sat-
isfied.

The maps µ·
Λ;β,h(·) depend of course on the specific form of the Hamiltonian of the

Ising model, but the three properties above can in fact be introduced without ref-
erence to any particular Hamiltonian. In a fixed volume, we start by incorporating
the first two features in a general definition:

Definition 6.9. Let Λ ⋐ Zd . A probability kernel from FΛc to F is a map πΛ :
F ×Ω→ [0,1] with the following properties:

• For each ω ∈Ω, πΛ(· |ω) is a probability measure on (Ω,F ).

• For each A ∈F , πΛ(A | ·) is FΛc -measurable.

If, moreover,
πΛ(B |ω) = 1B (ω) , ∀B ∈FΛc (6.15)

for all ω ∈Ω, πΛ is said to be proper.

Note that, if πΛ is a proper probability kernel from FΛc to F , then the probability
measure πΛ(· |ω) is concentrated on the setΩω

Λ. Indeed, for any ω ∈Ω,

πΛ(Ωω
Λ |ω) = 1Ωω

Λ
(ω) = 1, (6.16)

since Ωω
Λ ∈FΛc . For this reason, we will call ω the boundary condition of πΛ(· |ω).

Our first example of a proper probability kernel was thus (A,ω) 7→ µω
Λ;β,h(A), de-

fined in (6.13).

For a fixed boundary condition ω, a bounded measurable function f : Ω→ R

can be integrated with respect to πΛ(· |ω). We denote by πΛ f the FΛc -measurable
function defined by

πΛ f (ω)
def=

∫
f (η)πΛ(dη |ω) .

Although this integral notation is convenient, our assumption on the finiteness of
Ω0 implies that most of the integrals that will appear in this chapter are actually
finite sums. Indeed, we will always work with proper probability kernels and the
observation (6.16) implies that the measure πΛ(· |ω) is entirely characterized by the
probability it associates to the configurations in the finite set Ωω

Λ. In particular, we
can verify thatπΛ is proper if and only if it is of the form (6.13). Namely, using (6.16),
one can compute the probability of any event A ∈F by summing over the config-
urations inΩω

Λ:
πΛ(A |ω) =

∑
η∈Ωω

Λ

πΛ({η} |ω)1A(η) .

Since each η ∈Ωω
Λ is of the form η= ηΛωΛc , this sum can equivalently be expressed

as
πΛ(A |ω) =

∑
ηΛ∈ΩΛ

πΛ({ηΛωΛc } |ω)1A(ηΛωΛc ) .
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In the sequel, all kernels πΛ to be considered will be proper, which, by the above
discussion, means that πΛ is entirely defined by the numbers πΛ({ηΛωΛc }) |ω). To
lighten the notations, we will abbreviate

πΛ({ηΛωΛc } |ω) ≡πΛ(ηΛ |ω) .

These sums will be used constantly throughout the chapter. We summarize this
discussion in the following statement.

Lemma 6.10. If πΛ is proper, then, for all ω ∈Ω,

πΛ(A |ω) =
∑

ηΛ∈ΩΛ
πΛ(ηΛ |ω)1A(ηΛωΛc ) , ∀A ∈F , (6.17)

and, for any bounded measurable function f :Ω→R,

πΛ f (ω) =
∑

ηΛ∈ΩΛ
πΛ(ηΛ |ω) f (ηΛωΛc ) . (6.18)

In order to describe an infinite system on Zd , we will actually need a fam-
ily of proper probability kernels, {πΛ}Λ⋐Zd , satisfying consistency relations of the
type (6.6)–(6.7). These consistency relations are conveniently expressed in terms of
the composition of kernels: given πΛ and π∆, set

πΛπ∆(A |η)
def=

∫
π∆(A |ω)πΛ(dω |η) .

Exercise 6.5. Let ∆ ⊂Λ⋐ Zd . Show that πΛπ∆ is a proper probability kernel from
FΛc to F .

In these terms, the generalization of (6.6) can be stated as follows.

Definition 6.11. A specification is a family π= {πΛ}Λ⋐Zd of proper probability ker-
nels that is consistent, in the sense that

πΛπ∆ =πΛ ∀∆⊂Λ⋐Zd .

In order to formulate an analogue of (6.12) for probability kernels, it is natural
to define, for every kernel πΛ and every µ ∈M1(Ω), the probability measure µπΛ ∈
M1(Ω) via

µπΛ(A)
def=

∫
πΛ(A |ω)µ(dω) , A ∈F . (6.19)

Exercise 6.6. Show that, for every bounded measurable function f , every measure
µ ∈M1(Ω) and every kernel πΛ, µπΛ( f ) =µ(πΛ f ). Hint: start with f = 1A .

With a specification at hand, we can now introduce the central definition of this
chapter. Expression (6.20) below is the generalization of (6.12).

Definition 6.12. Let π = {πΛ}Λ⋐Zd be a specification. A measure µ ∈ M1(Ω) is said
to be compatible with (or specified by) π if

µ=µπΛ ∀Λ⋐Zd . (6.20)

The set of measures compatible with π (if any) is denoted by G (π).
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The above characterization raises several questions, which we shall investigate
in quite some generality in the rest of this chapter.

• Existence. Is there always at least one measure µ satisfying (6.20)? This prob-
lem will be tackled in Section 6.4.

• Uniqueness. Can there be several such measures? The uniqueness problem
will be considered in Section 6.5, where we will introduce a condition on a
specification π which guarantees that G (π) contains exactly one probability
measure: |G (π)| = 1.

• Comparison with the former approach. We will also consider the important
question of comparing the approach based on Definition 6.12 with the ap-
proach used in Chapter 3, in which infinite-volume states were obtained as
the thermodynamic limits of finite-volume ones. We will see that Defini-
tion 6.12 yields, in general, a strictly larger set of measures than those pro-
duced by the approach via the thermodynamic limit (proof of Theorem 6.26
and Example 6.64). Nevertheless, all the relevant (in a sense to be discussed
later) measures in G (π) can in fact be obtained using the latter approach
(Section 6.8).

When the specification does not involve interactions between the spins, these
questions can be answered easily:

Exercise 6.7. For each i ∈ Zd , let ρi be a probability distribution on {±1}. For each
Λ⋐Zd , define the product distribution ρΛ onΩΛ by

ρΛ(ωΛ)
def=

∏
i∈Λ

ρi (ωi ) .

For τΛ ∈ΩΛ and η ∈Ω, let

πΛ(τΛ |η)
def= ρΛ(τΛ) . (6.21)

1. Show that π= {πΛ}Λ⋐Zd is a specification.

2. Show that the product measure ρZ
d

(remember Exercise 6.3) is the unique

probability measure specified by π: G (π) = {ρZ
d

}.

In the previous exercise, establishing existence and uniqueness of a probability
measure compatible with the specification (6.21) is straightforward, thanks to the
independence of the spins. In the next sections, we will introduce a general proce-
dure for constructing specifications corresponding to systems of interacting spins
and we will see that existence/uniqueness can be derived for abstract specifica-
tions under fairly general assumptions. (Establishing non-uniqueness, on the other
hand, usually requires a case-by-case study.)

6.3.1 Kernels vs. conditional probabilities

Before continuing, we emphasize the important relation existing between a spec-
ification and the measures it specifies (if any). We first verify the following simple
property:
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Lemma 6.13. Assume that πΛ is proper. Then, for all A ∈F and all B ∈FΛc ,

πΛ(A∩B | ·) =πΛ(A | ·)1B (·) . (6.22)

Proof. Assume first that ω ∈ B . Then, since the kernel is proper, B has probability 1
under πΛ(· |ω): πΛ(B |ω) = 1B (ω) = 1. Therefore

πΛ(A∩B |ω) =πΛ(A |ω)−πΛ(A∩B c |ω) =πΛ(A |ω) =πΛ(A |ω)1B (ω) .

Similarly, if ω ̸∈ B , πΛ(B |ω) = 0 and thus

πΛ(A∩B |ω) = 0 =πΛ(A |ω)1B (ω) .

Now, observe that if µ ∈G (π), then (6.22) implies that, for all A ∈F and B ∈FΛc ,

∫

B
πΛ(A |ω)µ(dω) =

∫
πΛ(A∩B |ω)µ(dω) =µπΛ(A∩B) =µ(A∩B) .

But, by definition of the conditional probability,

µ(A∩B) =
∫

B
µ(A |FΛc )(ω)µ(dω) .

By the almost sure uniqueness of the conditional expectation (Lemma B.50), we
thus see that

µ(A |FΛc )(·) =πΛ(A | ·) , µ-almost surely. (6.23)

Since A 7→ πΛ(A |ω) is a measure for each ω, we thus see that πΛ provides a regular
conditional distribution for µ, when conditioned with respect to FΛc . On the other
hand, if (6.23) holds, then, for allΛ⋐Zd and all A ∈F ,

µπΛ(A) =
∫
πΛ(A |ω)µ(dω) =

∫
µ(A |FΛc )µ(dω) =µ(A) ,

and so µ ∈ G (π). We have thus shown that a measure µ is compatible with a spec-
ification π = {πΛ}Λ⋐Zd if and only if each kernel πΛ provides a regular version of
µ(· |FΛc ).

6.3.2 Gibbsian specifications

Before moving on to the existence problem, we introduce the class of specifications
representative of the models studied in this book.

The Ising Hamiltonian HΛ;β,h (see (3.1)) contains two sums: the first one is

over pairs of nearest-neighbors {i , j } ∈ E b
Λ , the second one is over single vertices i ∈

Λ. It thus contains interactions among pairs, and singletons. This structure can
be generalized, including interactions among spins on sets of larger (albeit finite)
cardinality. ⋄

We will define a Hamiltonian by defining the energy of a configuration on each
subset B ⋐Zd , via the notion of potential.
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Definition 6.14. If, for each finite B ⋐ Zd , ΦB : Ω→ R is FB -measurable, then the
collection Φ = {ΦB }B⋐Zd is called a potential. The Hamiltonian in the box Λ⋐ Zd

associated to the potential Φ is defined by

HΛ;Φ(ω)
def=

∑

B⋐Zd :
B∩Λ̸=∅

ΦB (ω) , ∀ω ∈Ω . (6.24)

Since the sum (6.24) can a priori contain infinitely many terms, we must guarantee
that it converges. Let

r (Φ)
def= inf

{
R > 0 : ΦB ≡ 0 for all B with diam(B) > R

}
.

If r (Φ) < ∞, Φ has finite range and HΛ;Φ is well defined. If r (Φ) = ∞, Φ has in-
finite range and, for the Hamiltonian to be well defined, we will assume that Φ is
absolutely summable in the sense that

∑

B⋐Zd

B∋i

∥ΦB∥∞ <∞ , ∀i ∈Zd , (6.25)

(remember that ∥ f ∥∞ def= supω | f (ω)|) which ensures that the interaction of a spin
with the rest of the system is always bounded, and therefore that ∥HΛ;Φ∥∞ <∞.

We now present a few examples of models discussed in this book with the cor-
responding potentials.

• The (nearest-neighbor) Ising model on Zd can be recovered from the poten-
tial

ΦB (ω) =





−βωiω j if B = {i , j } , i ∼ j ,

−hωi if B = {i } ,

0 otherwise.

(6.26)

Observe that the corresponding specification describes a model at specific
values of its parameters: in the present case, we get a different specification
for each choice of the parameters β and h.

One can introduce an infinite-range version of the Ising model, by introduc-
ing a collection {Ji j }i , j∈Zd of real numbers and setting

ΦB (ω) =





−Ji jωiω j if B = {i , j } ,

−hωi if B = {i } ,

0 otherwise.

(6.27)

• The (nearest-neighbor) q-state Potts model corresponds to the potential

ΦB (ω) =
{
−βδωi ,ω j if B = {i , j } , i ∼ j ,

0 otherwise.
(6.28)

• The (nearest-neighbor) Blume–Capel model is characterized by the potential

ΦB (ω) =





β(ωi −ω j )2 if B = {i , j } , i ∼ j ,

−hωi −λω2
i if B = {i } ,

0 otherwise.

(6.29)

This model will be studied in Chapter 7.
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Exercise 6.8. If Ji j = ∥ j − i∥−α∞ , determine the values of α > 0 (depending on the
dimension) for which (6.27) is absolutely summable.

In the above examples, the parameters of each model have been introduced ac-
cording to different sets B . Sometimes, one might want the inverse temperature
to be introduced separately, so as to appear as a multiplicative constant in front of
the Hamiltonian. This amounts to considering an absolutely summable potential
Φ= {ΦB }B⋐Zd , and to then multiply it by β: βΦ≡ {βΦB }B⋐Zd .

We now proceed to define a specificationπΦ = {πΦΛ}Λ⋐Zd such thatπΦΛ(· |ω) gives
to each configuration τΛωΛc a probability proportional to the Boltzmann weight
prescribed by equilibrium statistical mechanics:

πΦΛ(τΛ|ω)
def= 1

Zω
Λ;Φ

e−HΛ;Φ(τΛωΛc ) , (6.30)

where we have written explicitly the dependence on ωΛc , and where the partition
function ZωΛ;Φ is given by

ZωΛ;Φ
def=

∑
τΛ∈ΩΛ

exp(−HΛ;Φ(τΛωΛc )) . (6.31)

Lemma 6.15. πΦ = {πΦΛ}Λ⋐Zd is a specification.

Proof. To lighten the notations, let us omitΦ everywhere from the notations. It will
also help to change momentarily the way we denote partition functions, namely, in
this proof, we will write

ZΛ(ωΛc ) ≡ ZωΛ;Φ .

The fact that each πΛ defines a proper kernel follows by what was said earlier, so it
remains to verify consistency. We fix ∆ ⊂ Λ⋐ Zd , and show that πΛπ∆ = πΛ. The
proof follows the same steps as the one of Lemma 6.7. Using Lemma 6.10,

πΛπ∆(A |ω) =
∑
τΛ

πΛ(τΛ |ω)π∆(A |τΛωΛc )

=
∑
τΛ

∑
η∆

1A(η∆τΛ\∆ωΛc )πΛ(τΛ |ω)π∆(η∆ |τΛ\∆ωΛc ) .

We split the first sum in two, writing τΛ = τ′∆τ′′Λ\∆. Using the definition of the kernels
πΛ and π∆, the above becomes

∑
τ′′
Λ\∆

∑
η
∆

1A(η∆τ
′′
Λ\∆ωΛc )

e−H∆(η
∆
τ′′
Λ\∆

ω
Λc )

ZΛ(ω
Λc )Z∆(τ′′

Λ\∆ωΛc )

∑
τ′
∆

e−HΛ(τ′
∆
τ′′
Λ\∆

ω
Λc ) .

But, exactly as in (6.10),

HΛ(τ′∆τ
′′
Λ\∆ωΛc )−H∆(τ′∆τ

′′
Λ\∆ωΛc ) =HΛ(η∆τ

′′
Λ\∆ωΛc )−H∆(η∆τ

′′
Λ\∆ωΛc ) ,

which gives
∑
τ′
∆

e−HΛ(τ′
∆
τ′′
Λ\∆

ω
Λc ) = Z∆(τ′′Λ\∆ωΛc )e−HΛ(η

∆
τ′′
Λ\∆

ω
Λc )eH∆(η

∆
τ′′
Λ\∆

ω
Λc ) .

Inserting this in the above expression, and renaming η∆τ
′′
Λ\∆ ≡ η′Λ, we get

πΛπ∆(A |ω) =
∑
η′
Λ

1A(η′ΛωΛc )
e−HΛ(η′

Λ
ω
Λc )

ZΛ(ωΛc )
=πΛ(A |ω) .
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We can now state the general definition of a Gibbs measure.

Definition 6.16. The specification πΦ associated to a potential Φ is said to be Gibb-
sian. A probability measure µ compatible with the Gibbsian specification πΦ is said
to be an infinite-volume Gibbs measure (or simply a Gibbs measure) associated to
the potential Φ.

It is customary to use the abbreviation G (Φ) ≡ G (πΦ). Actually, when the potential
is parametrized by a few variables, we will write them rather than Φ. For example,
in the case of the (nearest-neighbor) Ising model, whose specification depends on
β and h, we will simply write G (β,h).

Remark 6.17. Notice that different potentials can lead to the same specification.
For example, in the case of the Ising model, one could as well have considered the
potential

Φ̃B (ω) =
{
−βωiω j − h

2d (ωi +ω j ) if B = {i , j } , i ∼ j ,

0 otherwise.

Since they give rise to the same Hamiltonian, up to a term depending only on ωΛc ,
these potentials also give rise to the same specification. They thus describe pre-
cisely the same physics. For this reason, they are said to be physically equivalent.

⋄
When introducing a model, it is often quite convenient, instead of giving the

corresponding potential {ΦB }B⋐Zd , to provide its formal Hamiltonian

H (ω)
def=

∑
B⋐Zd

ΦB (ω) .

Of course, this notation is purely formal and does not specify a well-defined func-
tion on Ω. It is however possible to read from H the corresponding potential (up
to physical equivalence).

As an example, the effective Hamiltonian of the Ising model on Zd may be de-
noted by

−β
∑

{i , j }∈E
Zd

σiσ j −h
∑

i∈Zd

σi .

In view of what we saw in Chapter 3, the following is a natural definition of
phase transition, in terms of non-uniqueness of the Gibbs measure:

Definition 6.18. If G (Φ) contains at least two distinct Gibbs measures, |G (Φ)| > 1,
we say that there is a first-order phase transition for the potential Φ.

6.4 Existence

Going back to the case of a general specification, we now turn to the problem of de-
termining conditions that ensure the existence of at least one measure compatible
with a given specification. As in many existence proofs in analysis and probability
theory, this will be based on a compactness argument, and thus requires that we in-
troduce a few topological notions. We will take advantage of the fact that the spins
take values in a finite set to provide elementary proofs.
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The approach is similar to the construction of Gibbs states in Chapter 3. We fix
an arbitrary boundary conditionω ∈Ω and consider the sequence (µn)n≥1 ⊂M1(Ω)
defined by

µn(·) def= πB(n)(· |ω) , (6.32)

where, as usual, B(n) = {−n, . . . ,n}d . To study this sequence, we will first introduce
a suitable notion of convergence for sequences of measures (Definition 6.23). This
will make M1(Ω) sequentially compact; in particular, there always exists µ ∈M1(Ω)
and a subsequence of (µn)n≥1, say (µnk )k≥1, such that (µnk )k≥1 converges toµ (The-
orem 6.24). To guarantee that µ ∈ G (π), we will impose a natural condition on π,
called quasilocality.

6.4.1 Convergence on Ω

We first introduce a topology on Ω, that is, a notion of convergence for sequences
of configurations.

Definition 6.19. A sequence ω(n) ∈Ω converges to ω ∈Ω if

lim
n→∞ω

(n)
j =ω j , ∀ j ∈Zd .

We then write ω(n) →ω.

Since {±1} is a finite set, this convergence can be reformulated as follows: ω(n) →ω

if and only if, for all N , there exists n0 such that

ω(n)
B(N )

=ω
B(N )

for all n ≥ n0 .

The notion of neighborhood in this topology should thus be understood as follows:
two configurations are close to each other if they coincide on a large region con-
taining the origin. The following exercise shows that this topology is metrizable.

Exercise 6.9. For ω,η ∈Ω, let

d(ω,η)
def=

∑
i∈Zd

2−∥i∥∞1{ωi ̸=ηi } . (6.33)

Show that d(·, ·) is a distance onΩ, and that ω(n) →ω∗ if and only if d(ω(n),ω∗) → 0.

Another consequence of the finiteness of the spin space is thatΩ is compact in the
topology just introduced:

Proposition 6.20 (Compactness of Ω). With the above notion of convergence, Ω is
sequentially compact: for every sequence (ω(n))n≥1 ⊂ Ω, there exists ω∗ ∈ Ω and a
subsequence (ω(nk ))k≥1 such that ω(nk ) →ω∗ when k →∞.

Proof. We use a standard diagonalization argument. Consider (ω(n))n≥1 ⊂ Ω and
let i1, i2, . . . be an arbitrary enumeration ofZd . Then (ω(n)

i1
)n≥1 is a sequence in {±1},

from which we can extract a subsequence (ω
(n1, j )
i1

) j≥1 which converges (in fact, it
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can be taken constant). We then consider (ω
(n1, j )
i2

) j≥1, from which we extract a con-

verging subsequence (ω
(n2, j )
i2

) j≥1, etc., until we have, for each k, a converging sub-

sequence (ω
(nk, j )

ik
) j≥1. Let ω∗ ∈Ω be defined by

ω∗
ik

def= lim
j→∞

ω
(nk, j )

ik
, ∀k ≥ 1.

Now, the diagonal subsequence (ω(n j , j )) j≥1 is a subsequence of (ω(n))n≥1 and satis-
fies ω(n j , j ) →ω∗ as j →∞.

We can now define a function f : Ω→ R to be continuous if ω(n) → ω implies
f (ω(n)) → f (ω). The set of continuous functions onΩ is denoted by C (Ω).

Exercise 6.10. Show that each f ∈ C (Ω) is measurable. Hint: first show that
C ⊂ {open sets} ⊂F , where the open sets are those associated to the topology defined
above.

We say that f is uniformly continuous (see Appendix B.4) if

∀ϵ> 0, there exists δ> 0 such that d(ω,η) ≤ δ implies | f (ω)− f (η)| ≤ ϵ.

Exercise 6.11. Using Proposition 6.20, give a direct proof of the following facts: if f
is continuous, it is also uniformly continuous, bounded, and it attains its supremum
and its infimum.

Local functions are clearly continuous (since they do not depend on remote spins);
they are in fact dense in C (Ω) [2]:

Lemma 6.21. f ∈C (Ω) if and only if it is quasilocal, that is, if and only if there exists
a sequence of local functions (gn)n≥1 such that ∥gn − f ∥∞ → 0.

Proof. Let f :Ω→ R be continuous. Fix some ϵ> 0. Since f is also uniformly con-
tinuous, there exists some Λ⋐ Zd such that | f (ω)− f (η)| ≤ ϵ for any pair η and ω

coinciding onΛ. Therefore, if one chooses some arbitrary ω̃ ∈Ω and introduces the

local function g (ω)
def= f (ωΛω̃Λc ), we have that | f (ω)− g (ω)| ≤ ϵ ∀ω ∈Ω. Conversely,

let (gn)n≥1 be a sequence of local functions such that ∥gn − f ∥∞ → 0. Fix ϵ> 0 and
let n be such that ∥gn − f ∥∞ ≤ ϵ. Since gn is uniformly continuous, let δ> 0 be such
that d(ω,η) ≤ δ implies |gn(ω)− gn(η)| ≤ ϵ. For each such pair ω,η we also have

| f (ω)− f (η)| ≤ | f (ω)− gn(ω)|+ |gn(ω)− gn(η)|+ |gn(η)− f (η)| ≤ 3ϵ .

Since this can be done for all ϵ> 0, we have shown that f ∈C (Ω).

We will often use the fact that probability measures on (Ω,F ) are uniquely de-
termined by their action on cylinders, or by the value they associate to the expecta-
tion of local or continuous functions.

Lemma 6.22. If µ,ν ∈M1(Ω), then the following are equivalent:

1. µ= ν

2. µ(C ) = ν(C ) for all cylinders C ∈C .

3. µ(g ) = ν(g ) for all local functions g .

4. µ( f ) = ν( f ) for all f ∈C (Ω).
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Proof. 1⇒2 is trivial, and 2⇒1 is a consequence of the Uniqueness Theorem for
measures (Corollary B.37). 2⇔3 is immediate, since the indicator of a cylinder is a
local function. 3⇒4: Let f ∈ C (Ω) and let (gn)n≥1 be a sequence of local functions
such that ∥gn − f ∥∞ → 0 (Lemma 6.21). This implies |µ(gn)−µ( f )| ≤ ∥gn − f ∥∞ → 0.
Similarly, |ν(gn)−ν( f )|→ 0. Therefore,

µ( f ) = lim
n→∞µ(gn) = lim

n→∞ν(gn) = ν( f ) .

Finally, 4⇒3 holds because local functions are continuous.

6.4.2 Convergence on M1(Ω)

The topology on M1(Ω) will be the following:

Definition 6.23. A sequence (µn)n≥1 ⊂M1(Ω) converges to µ ∈M1(Ω) if

lim
n→∞µn(C ) =µ(C ) , for all cylinders C ∈C .

We then write µn ⇒µ.

The fact that the convergence of a sequence of measures is tested on local events
(the cylinders) should remind the reader of the convergence encountered in Chap-
ter 3 (Definition 3.14), where a similar notion of convergence was introduced to
define Gibbs states.

Before pursuing, we let the reader check the following equivalent characteriza-
tions of convergence on M1(Ω).

Exercise 6.12. Show the equivalence between:

1. µn ⇒µ

2. µn( f ) →µ( f ) for all local functions f .

3. µn( f ) →µ( f ) for all f ∈C (Ω).

4. ρ(µn ,µ) → 0, where we defined, for all µ,ν ∈M1(Ω), the distance

ρ(µ,ν)
def= sup

k≥1

1

k
max

C∈C (B(k))
|µ(C )−ν(C )| .

Theorem 6.24 (Compactness of M1(Ω)). With the above notion of convergence,
M1(Ω) is sequentially compact: for every sequence (µn)n≥1 ⊂ M1(Ω), there exist
µ ∈M1(Ω) and a subsequence (µnk )k≥1 such that µnk ⇒µ when k →∞.

Since the proof of this result is similar, in spirit, to the one used in the proof of the
compactness ofΩ, we postpone it to Section 6.12.

6.4.3 Existence and quasilocality

We will see below that the following condition on a specification π guarantees that
G (π) ̸=∅.
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Definition 6.25. A specification π = {πΛ}Λ⋐Zd is quasilocal if each kernel πΛ is
continuous with respect to its boundary condition. That is, if for all C ∈ C , ω 7→
πΛ(C |ω) is continuous.

Λ

ω ̸= η
ω= η

D

Λ′

πΛ(A | ·) ωi

Figure 6.1: Understanding quasilocality: when D is large, πΛ(A |ω) depends
weakly on the values ofωi for all i at distance larger than D fromΛ (assuming
all closer spins are fixed). In other words, for all ϵ> 0, if ω and η coincide on
a sufficiently large regionΛ′ ⊃Λ, then |πΛ(A |ω)−πΛ(A |η)| ≤ ϵ.

The next exercise shows that quasilocal specifications map continuous (and, in par-
ticular, local) functions to continuous functions.

Exercise 6.13. Let π = {πΛ}Λ⋐Zd be quasilocal and fix some Λ ⋐ Zd . Show that
f ∈ C (Ω) implies πΛ f ∈ C (Ω). (This property is sometimes referred to as the Feller
property.)

We can now state the main existence theorem.

Theorem 6.26. If π= {πΛ}Λ⋐Zd is quasilocal, then G (π) ̸=∅.

Proof. Fix an arbitrary ω ∈Ω and let µn(·) def= πB(n)(· |ω). (One could also choose a
different ω for each n.) Observe that, by the consistency assumption of the kernels
forming π, we have that, once n is so large that B(n) ⊃Λ,

µnπΛ =πB(n)πΛ(· |ω) =πB(n)(· |ω) =µn . (6.34)

By Theorem 6.24, there exist µ ∈ M1(Ω) and a subsequence (µnk )k≥1 such that
µnk ⇒ µ as k → ∞. We prove that µ ∈ G (π). Fix f ∈ C (Ω), Λ ⋐ Zd . Since π is
quasilocal, Exercise 6.13 shows that πΛ f ∈C (Ω). Therefore,

µπΛ( f ) =µ(πΛ f ) = lim
k→∞

µnk (πΛ f ) = lim
k→∞

µnkπΛ( f ) = lim
k→∞

µnk ( f ) =µ( f ) .

We used Exercise 6.6 for the first and third identities. The fourth identity follows
from (6.34). By Lemma 6.22, we conclude that µπΛ = µ. Since this holds for all
Λ⋐Zd , this shows that µ ∈G (π).

Sinceω should be interpreted as a boundary condition, a Gibbs measure µ con-
structed as in the above proof,

πB(nk )(· |ω) ⇒µ ,
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is said to be prepared with the boundary condition ω. A priori, µ can depend on
the chosen boundary condition, and should therefore be denoted by µω. A funda-
mental question, of course, is to determine whether uniqueness holds, or whether
under certain conditions there exist distinct boundary conditions ω,ω′ for which
µω ̸=µω′

.

Adapting the proof of the above theorem allows to obtain the following topo-
logical property of G (π) (completing the proof is left as an exercise):

Lemma 6.27. Let π be a quasilocal specification. Then, G (π) is a closed subset of
M1(Ω).

A class of quasilocal specifications of central importance is provided by the
Gibbsian specifications:

Lemma 6.28. If Φ is absolutely summable, then πΦ is quasilocal.

Proof. Fix Λ ⋐ Zd . Let ω be fixed, and ω′ another configuration which coincides
with ω on a region ∆⊃Λ. Let τΛ ∈ΩΛ. We can write

∣∣πΦΛ(τΛ |ω)−πΦΛ(τΛ |ω′)
∣∣=

∣∣∣
∫ 1

0

{ d

dt

e−ht (τΛ)

zt

}
dt

∣∣∣ , (6.35)

where we have set, for 0 ≤ t ≤ 1, ht (τΛ)
def= tHΛ;Φ(τΛωΛc )+ (1− t )HΛ;Φ(τΛω

′
Λc ), and

zt
def= ∑

τΛ e−ht (τΛ). As can be easily verified,

∣∣∣ d

dt

e−ht (τΛ)

zt

∣∣∣≤ 2 max
ηΛ∈ΩΛ

∣∣HΛ;Φ(ηΛωΛc )−HΛ;Φ(ηΛω
′
Λc )

∣∣

≤ 4|Λ|max
i∈Λ

∑

B⋐Zd ,B∋i
diam(B)≥D

∥ΦB∥∞ ,

where D is the distance between Λ and ∆c. Due to the absolute summability of Φ,
this last series goes to 0 when D →∞. As a consequence, πΦΛ(τΛ | ·) is continuous at
ω. This implies that πΦΛ(C | ·) is continuous for all C ∈C .

Lemma 6.28 provides an efficient solution to the problem of constructing quasi-
local specifications. Coupled with Theorem 6.26, it provides a general approach to
the construction of Gibbs measures. [3]

In Chapter 3, we considered also other types of boundary conditions, namely
free and periodic. It is not difficult to show, arguing similarly as in the proof of
Theorem 6.26, that these also lead to Gibbs measures:

Exercise 6.14. Use the finite-volume Gibbs distributions of the Ising model with free
boundary condition, µ∅

Λ;β,h , and the thermodynamic limit, to construct a measure

µ∅
β,h . Show that µ∅

β,h ∈G (β,h).

The following exercise [4] shows that existence is not guaranteed in the absence of
quasilocality.
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Exercise 6.15. Let η− denote the configuration in which all spins are −1, and let η−,i

denote the configuration in which all spins are −1, except at the vertex i , at which it
is +1. For Λ⋐Zd , let

πΛ(A |ω)
def=

{
1
|Λ|

∑
i∈Λ1A(η−,i ) if ωΛc = η−Λc

1A(η−ΛωΛc ) otherwise.

Show that π= {πΛ}Λ⋐Zd is a specification and explain why it describes a system con-

sisting of a single + spin, located anywhere on Zd , in a sea of − spins. Show that π
is not quasilocal and that G (π) = ∅. Hint: Let N+(ω) denote the number of ver-
tices i ∈ Zd at which ωi = +1. Assume µ ∈ G (π), and show that µ({N+ = 0}∪ {N+ =
1}∪ {N+ ≥ 2}) = 0, which gives µ(Ω) = 0.

6.5 Uniqueness

Now that we have a way of ensuring that G (π) contains at least one measure, we de-
scribe further conditions onπwhich ensure that this measure is actually unique. As
will be seen later, the measure, when it is unique, inherits several useful properties.

Remark 6.29. We continue using Ising spins, but emphasize, however, that all state-
ments and proofs in this section remain valid for any finite single-spin space. This
matters, since, in contrast to most results in this chapter, some of the statements
below are not of a qualitative nature, but involve quantitative criteria. The point is,
then, that these criteria still apply verbatim to this more general setting. ⋄

6.5.1 Uniqueness vs. sensitivity to boundary conditions

The following result shows that when (and only when) there is a unique Gibbs mea-
sure, the system enjoys a very strong form of lack of sensitivity to boundary condi-
tion: any sequence of finite-volume Gibbs distributions converges.

Lemma 6.30. The following are equivalent.

1. Uniqueness holds: G (π) = {µ}.

2. For all ω, all Λn ↑Zd and all local functions f ,

πΛn f (ω) →µ( f ) . (6.36)

The convergence for all ω is essential here. We will see later, in Section 6.8.2, that
convergence can also be guaranteed to occur in other important situations, but
only for suitable sets of boundary conditions.

Proof. Fix some boundary conditionω. Remember from the proof of Theorem 6.26
that, from any sequence (πΛn (· |ω))n≥1, one can extract a subsequence converging
to some element of G (π). If G (π) = {µ}, all these subsequences must have the same
limit µ. Therefore, the sequence itself converges to µ.
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On the other hand, if µ,ν ∈G (π), then one can write, for all local functions f ,

|µ( f )−ν( f )| =
∣∣µπΛ( f )−νπΛ( f )

∣∣

=
∣∣∣
∫ {

πΛ f (ω)−πΛ f (η)
}
µ(dω)ν(dη)

∣∣∣

≤
∫ ∣∣πΛ f (ω)−πΛ f (η)

∣∣µ(dω)ν(dη) .

Since |πΛ f (·)| ≤ ∥ f ∥∞, we can use dominated convergence and (6.36) to conclude
that µ( f ) = ν( f ). Since this holds for all local functions, it follows that µ= ν.

6.5.2 Dobrushin’s Uniqueness Theorem

Our first uniqueness criterion will be formulated in terms of the one-vertex kernels
π{i }(· |ω), which for simplicity will be denoted by πi . Each πi (· |ω) should be con-
sidered as a distribution for the spin at vertex i , with boundary condition ω. We
will measure the dependence of πi (· |ω) on the value of the boundary condition ω

at other vertices. We will measure the proximity between two such distributions
using the total variation distance (see Section B.10)

∥πi (· |ω)−πi (· |ω′)∥T V
def=

∑
ηi=±1

∣∣πi (ηi |ω)−πi (ηi |ω′)
∣∣ .

We can then introduce

ci j (π)
def= sup

ω,ω′∈Ω:
ωk=ω′

k ∀k ̸= j

∥πi (· |ω)−πi (· |ω′)∥T V ,

and
c(π)

def= sup
i∈Zd

∑
j∈Zd

ci j (π) .

Theorem 6.31. Let π be a quasilocal specification satisfying Dobrushin’s Condition
of Weak Dependence:

c(π) < 1. (6.37)

Then the probability measure specified by π is unique: |G (π)| = 1.

Before starting the proof, we need to introduce a few notions. Define the oscillation
of f :Ω→R at i ∈Zd by

δi ( f )
def= sup

ω,η∈Ω
ωk=ηk ∀k ̸=i

| f (ω)− f (η)| . (6.38)

The oscillation enables us to quantify the variation of f (ω) when one changes ω
into another configuration by successive spin flips. Namely, if ωΛc = ηΛc , then

| f (ω)− f (η)| ≤
∑
i∈Λ

δi ( f ) . (6.39)

It is thus natural to define the total oscillation of f by

∆( f )
def=

∑
i∈Zd

δi ( f ) . (6.40)
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We denote the space of functions with finite total oscillation by O(Ω). All local func-
tions have finite total oscillation; by Lemma 6.21, this implies that O(Ω) is dense in
C (Ω). Nevertheless,

Exercise 6.16. Show that O(Ω) ̸⊂C (Ω) and O(Ω) ̸⊃C (Ω).

Intuitively, ∆( f ) measures how far f is from being a constant. This is made clear in

the following lemma. Letting CO(Ω)
def= C (Ω)∩O(Ω), we have:

Lemma 6.32. Let f ∈CO(Ω). Then ∆( f ) ≥ sup f − inf f .

Proof. Let f ∈CO(Ω). By Exercise 6.11, f attains its supremum and its infimum. In
particular there exist, for all ϵ > 0, two configurations ω1,ω2 such that ω1

Λc = ω2
Λc

for some sufficiently large box Λ, and such that sup f ≤ f (ω1)+ ϵ, inf f ≥ f (ω2)− ϵ.
Then, using (6.39),

sup f − inf f ≤ f (ω1)− f (ω2)+2ϵ≤
∑
i∈Λ

δi ( f )+2ϵ≤∆( f )+2ϵ .

Using Lemma 6.32, we can always write

|µ( f )−ν( f )| ≤∆( f ) , ∀ f ∈CO(Ω) . (6.41)

Proposition 6.33. Assume (6.37). Let µ,ν ∈G (π) be such that

|µ( f )−ν( f )| ≤α∆( f ) , ∀ f ∈CO(Ω) , (6.42)

for some constant α≤ 1. Then,

|µ( f )−ν( f )| ≤ c(π)α∆( f ) , ∀ f ∈CO(Ω) . (6.43)

Assuming, for the moment, the validity of this proposition, we can easily conclude
the proof of Theorem 6.31.

Proof of Theorem 6.31: Let µ,ν ∈ G (π) and let f be a local function. (6.41) shows
that (6.42) holds with α = 1. Since c(π) < 1, we can apply repeatedly Proposi-
tion 6.33:

|µ( f )−ν( f )| ≤∆( f ) =⇒ |µ( f )−ν( f )| ≤ c(π)∆( f )

=⇒ |µ( f )−ν( f )| ≤ c(π)2∆( f )

=⇒ |µ( f )−ν( f )| ≤ c(π)n∆( f ) , ∀n ≥ 0.

Since ∆( f ) <∞ and c(π) < 1, taking n →∞ leads to µ( f ) = ν( f ). By Lemma 6.22,
µ= ν.

The proof of Proposition 6.33 relies on a technical estimate:

Lemma 6.34. Let f ∈CO(Ω). Then, δ j (π j f ) = 0 for all j and, for any i ̸= j ,

δi (π j f ) ≤ δi ( f )+ c j i (π)δ j ( f ) . (6.44)
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The content of this lemma can be given an intuitive meaning, as follows. If f
is constant, then δi ( f ) = 0 for all i ∈Zd . If f is non-constant, each oscillation δi ( f )
can be seen as a quantity of dust present at i , measuring how far f is from being
constant: the less dust, the closer f is to a constant function. With this interpretation,
the map f 7→π j f can be interpreted as a dusting of f at vertex j . Namely, before the
dusting at j , the oscillation at any given point i is δi ( f ). After the dusting at j ,
Lemma 6.34 says that the amount of dust at j becomes zero (δ j (π j f ) = 0) and that
the total amount of dust every other point i ̸= j is incremented, at most, by a fraction
c j i (π) of the dust present at j before the dusting. For this reason, Lemma 6.34 is often
called the dusting lemma. ⋄

Proof of Lemma 6.34: If i = j , then δ j (π j f ) = 0 (remember that the function π j f is
F{ j }c -measurable). Let us thus assume that i ̸= j . Let ω,ω′ be two configurations
which agree everywhere outside i . We write

π j f (ω)−π j f (ω′) =
∑

η j =±1

{
π j (η j |ω) f (η jω{ j }c )−π j (η j |ω′) f (η jω

′
{ j }c )

}

=
∑

η j =±1

{
π j (η j |ω) f̃ (η jω{ j }c )−π j (η j |ω′) f̃ (ηω′

{ j }c )
}

,

where f̃ (·) def= f (·)−m, for some constant m to be chosen later. We add and subtract
π j (η j |ω) f̃ (η jω

′
{ j }c ) from each term of the last sum and use

| f̃ (η jω{ j }c )− f̃ (η jω
′
{ j }c )| = | f (η jω{ j }c )− f (η jω

′
{ j }c )| ≤ δi ( f ) ,

∑
η j =±1

|π j (η j |ω)−π j (η j |ω′)| = ∥π j (· |ω)−π j (· |ω′)∥T V ≤ c j i (π) .

Since
∑
η j
π j (η j |ω) = 1,

δi (π j f ) ≤ δi ( f )+ c j i (π)max
η j

| f̃ (η jω
′
{ j }c )| .

Choosing m = f ((+1)jω
′
{ j }c ), we have maxη j | f̃ (η jω

′
{ j }c )| ≤ δ j ( f ) and (6.44) follows.

Proof of Proposition 6.33: Fix an arbitrary total order on Zd , denoted ≻, in which
the smallest element is the origin. We first prove that, when (6.42) holds, one has,
for all i ∈Zd ,

|µ( f )−ν( f )| ≤ c(π)α
∑
k≺i

δk ( f )+α
∑
k⪰i

δk ( f ) , ∀ f ∈CO(Ω) . (6.45)

When i = 0, the first sum is empty and the claim reduces to our assumption (6.42).
Let us thus assume that (6.45) has been proved for i .

Observe that, for all k, πk f ∈CO(Ω). Indeed, on the one hand, πk f is continu-
ous since π is quasilocal. On the other hand, by (6.44),

∆(πk f ) =
∑

j
δ j (πk f ) ≤

∑
j
δ j ( f )+ c(π)δk ( f ) <∞ .

Using (6.45) with f replaced by πi f , and since δi (πi f ) = 0,

|µ( f )−ν( f )| = |µ(πi f )−ν(πi f )| ≤ c(π)α
∑
k≺i

δk (πi f )+α
∑
k≻i

δk (πi f ) .
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Using again (6.44),

|µ( f )−ν( f )| ≤ c(π)α
∑
k≺i

δk ( f )+α
∑
k≻i

δk ( f )

+αδi ( f )c(π)
∑
k≺i

ci k (π)+αδi ( f )
∑
k≻i

ci k (π) .

Now, observe that, since c(π) < 1,

c(π)
∑
k≺i

ci k (π)+
∑
k≻i

ci k (π) ≤
∑

k∈Zd

ci k (π) ≤ c(π) ,

which yields

|µ( f )−ν( f )| ≤ c(π)α
∑
k≺i

δk ( f )+α
∑
k≻i

δk ( f )+ c(π)αδi ( f )

= c(π)α
∑
k⪯i

δk ( f )+α
∑
k≻i

δk ( f ) .

This shows that (6.45) holds for all i ∈ Zd . Since
∑

k δk ( f ) = ∆( f ) <∞, (6.43) now
follows by letting i increase to infinity (with respect to ≻) in (6.42).

6.5.3 Application to Gibbsian specifications

Theorem 6.31 is very general. We will now apply it to several Gibbsian specifica-
tions. We will start with regimes in which the Gibbs measure is unique despite
possibly strong interactions between the spins.

Exercise 6.17. Consider the Ising model (d ≥ 1) with a magnetic field h > 0 and ar-
bitrary inverse temperature β. Use Theorem 6.31 to show that |G (β,h)| = 1 for all
large enough h. (Contrast this result with the corresponding one obtained in Theo-
rem 3.25, where it was shown that uniqueness holds for all h ̸= 0.)

Exercise 6.18. Consider the Blume–Capel model in d ≥ 1 (see (6.29)).

1. Consider first (λ,h) = (0,0), and give a range of values of β for which unique-
ness holds.

2. Then, fix (λ,h) = te, with t > 0. Show that if e ∈ S1 points in any direction
different from (1,0), (−1,1) or (−1,−1), then for all β> 0, the Gibbs measure is
unique as soon as t is sufficiently large. (See Figure 6.2.)

λ

h

e

Figure 6.2: The Blume–Capel with parameters (λ,h) = te has a unique Gibbs
measure when t > 0 is large enough, and when e points to any direction dis-
tinct from those indicated by the bold line.
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Exercise 6.19. The (nearest-neighbor) Potts antiferromagnet on Zd at inverse tem-

perature β≥ 0 has single spin space Ω0
def= {0, . . . , q −1} and is associated to the poten-

tial

ΦB (ω) =
{
+βδωi ,ω j if B = {i , j } , i ∼ j ,

0 otherwise.

Show that this model has a unique Gibbs measure for all β ∈ R≥0, provided that
q > 6d.

Let us now formulate the criterion of Theorem 6.31 in a form better suited to
the treatment of weak interactions. Let δ( f )

def= supη′,η′′ | f (η′)− f (η′′)|.

Theorem 6.35. Assume that Φ= {ΦB }B⋐Zd is absolutely summable and satisfies

sup
i∈Zd

∑
j ̸=i

∑
B⊃{i , j }

δ(ΦB ) < 1. (6.46)

Then Dobrushin’s condition of weak dependence is satisfied, and therefore there is a
unique Gibbs measure specified by πΦ.

Proof. Fix some i ∈Zd , and letω andω′ coincide everywhere except at some vertex
j ̸= i . Starting as in the proof of Lemma 6.28,

∥πΦi (· |ω)−πΦi (· |ω′)∥T V ≤
∫ 1

0

{∑
ηi

∣∣∣dνt (ηi )

dt

∣∣∣
}

dt

where, for 0 ≤ t ≤ 1, νt (ηi )
def= e−ht (ηi )

zt
, with

ht (ηi )
def= tH{i };Φ(ηiω{i }c )+ (1− t )H{i };Φ(ηiω

′
{i }c ) ,

and zt
def= ∑

ηi
e−ht (ηi ). A straightforward computation shows that

dνt (ηi )

dt
= {
∆Hi −Eνt [∆Hi ]

}
νt (ηi ) ,

where ∆Hi (ηi )
def= H{i };Φ(ηiω

′
{i }c )−H{i };Φ(ηiω{i }c ). We therefore have

∑
ηi

∣∣∣dνt (ηi )

dt

∣∣∣= Eνt

[∣∣∆Hi −Eνt [∆Hi ]
∣∣
]

≤ Eνt

[(
∆Hi −Eνt [∆Hi ]

)2
]1/2

≤ Eνt

[(
∆Hi −m

)2]1/2 ,

where the first inequality follows from the Cauchy-Schwartz Inequality, and we in-
troduced an arbitrary number m ∈ R (remember that m 7→ E [(X −m)2] is minimal
when m = E [X ]). Choosing m = (max∆Hi +min∆Hi )/2, we have

|∆Hi −m| ≤ 1
2 max
ηi ,η′i

∣∣∆Hi (ηi )−∆Hi (η′i )
∣∣ .
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Each ∆Hi (·) contains a sum over sets B ∋ i , and notice that those sets B which do
not contain j do not contribute. We can thus restrict to those sets B ⊃ {i , j } and get

|∆Hi (ηi )−∆Hi (η′i )|
≤

∑
B⊃{i , j }

{|ΦB (ηiω
′
{i }c )−ΦB (η′iω

′
{i }c )|+ |ΦB (ηiω{i }c )−ΦB (η′iω{i }c )|}

≤2
∑

B⊃{i , j }
δ(ΦB ) .

This proves (6.37).

Let us give a simple example of application of the above criterion.

Example 6.36. Consider first the nearest-neighbor Ising model with h = 0 on
Zd , whose potential was given in (6.26). The only sets B that contribute to the
sum (6.46) are the nearest neighbors B = {i , j }, i ∼ j , for which δ(ΦB ) = 2β. (6.46)
therefore reads, since each i has 2d neighbors,

2β ·2d < 1.

In d = 1, this means that uniqueness holds when β< 1
4 , although we know from the

results of Chapter 3 that uniqueness holds at all temperatures. In d = 2, the above
guarantees uniqueness when β < 1

8 = 0.125, which should be compared with the
exact range, known to be β≤βc(2) = 0.4406.... ⋄

We will actually see in Corollary 6.41 that, for finite-range models, uniqueness
holds at all temperatures when d = 1.

More generally, the above criterion allows one to prove uniqueness at suffi-
ciently high temperature for a wide class of models. A slight rewriting of the condi-
tion makes the application more immediate. If one changes the order of summa-
tion in the double sum in (6.46), the latter becomes

∑
j ̸=i

∑
B⊃{i , j }

δ(ΦB ) =
∑
B∋i

(|B |−1)δ(ΦB ) . (6.47)

We can thus state a general, easily applicable high-temperature uniqueness re-
sult. Remember that the inverse temperature β can always be associated to a po-

tentialΦ
def= {ΦB }B⋐Zd , by multiplication: βΦ

def= {βΦB }B⋐Zd .

Corollary 6.37. Let Φ= {ΦB }B⋐Zd be an absolutely summable potential satisfying

b
def= sup

i∈Zd

∑
B∋i

(|B |−1)∥ΦB∥∞ <∞ , (6.48)

and let β0
def= 1

2b . Then, for all β<β0, there is a unique measure compatible withπβΦ.

Proof. It suffices to use (6.47) in Theorem 6.35, with δ(ΦB ) ≤ 2∥ΦB∥∞.

Exercise 6.20. Consider the long-range Ising model introduced in (6.27), with h = 0
and Ji j = ∥ j−i∥−α∞ . Find a range of values of α> 0 (depending on the dimension) for
which (6.48) holds, and deduce a range of values of 0 <β<∞ for which uniqueness
holds.

In dimension 1, the previous exercise guarantees that uniqueness holds at suffi-
ciently high temperature whenever α > 1. We will prove later that, when α > 2,
uniqueness actually holds for all positive temperatures; see Example 6.42.
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6.5.4 Uniqueness at high temperature via cluster expansion

In this section, we consider an alternative approach, relying on the cluster expan-
sion, to establish uniqueness of the Gibbs measure at sufficiently high temperature.
We have seen in Lemma 6.30 that G (βΦ) = {µ} if and only if

π
βΦ
Λn

f (ω) →µ( f ) , ∀ω ∈Ω , (6.49)

for every local function f . Here we provide a direct way of proving such a conver-
gence.

Theorem 6.38. Assume that Φ= {ΦB }B⋐Zd satisfies

sup
i∈Zd

∑
B∋i

∥ΦB∥∞e4|B | <∞ . (6.50)

Then, there exists 0 < β1 < ∞ such that, for all β ≤ β1, (6.49) holds. As a conse-
quence: G (βΦ) = {µ}. Moreover, whenΦ has finite range, the convergence in (6.49) is
exponential: for all sufficiently large Λ,

∣∣πβΦ
Λ

f (ω)−µ( f )
∣∣≤ D∥ f ∥∞e−C d(supp( f ),Λc) , ∀ω ∈Ω , (6.51)

where C > 0 and D depend onΦ.

Since µ( f ) = ∫
π
βΦ
Λ

( f |ω)µ(dω) for any µ ∈ G (βΦ), Theorem 6.38 is a conse-
quence of the following proposition, whose proof relies on the cluster expansion
and provides an explicit expression for µ( f ). In order not to delve here into the
technicalities of the cluster expansion, we postpone this proof to the end of Sec-
tion 6.12.

Proposition 6.39. If (6.50) holds, then there exists 0 < β1 < ∞ such that, for all
β≤ β1, the following holds. Fix some ω. For every local function f , there exists c( f )
(independent of ω) such that

lim
Λ↑Zd

π
βΦ
Λ

f (ω) = c( f ) . (6.52)

Moreover, if Φ has finite range,

∣∣πβΦ
Λ

f (ω)− c( f )
∣∣≤ D∥ f ∥∞e−C d(supp( f ),Λc) , (6.53)

where C and D depend onΦ.

6.5.5 Uniqueness in one dimension

In one dimension, the criterion (6.46) implies uniqueness for any model with abso-
lutely convergent potential, but only at sufficiently high temperatures (small values
of β).

We know that the nearest-neighbor Ising model on Z has a unique Gibbs mea-
sure at all temperatures, so the proof given above, relying on Dobrushin’s Condi-
tion of Weak Dependence, ignores some important features of one-dimensional
systems. We now establish another criterion, of less general applicability, but pro-
viding considerably stronger results when d = 1.
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Theorem 6.40. Let Φ be an absolutely summable potential such that

D
def= sup

n
sup
ωB(n)

η
B(n)c ,η′

B(n)c

∣∣HB(n);Φ(ωB(n)ηB(n)c )−HB(n);Φ(ωB(n)η
′
B(n)c )

∣∣<∞ . (6.54)

Then there is a unique Gibbs measure compatible with πΦ.

Since

∣∣HB(n);Φ(ωB(n)ηB(n)c )−HB(n);Φ(ωB(n)η
′
B(n)c )

∣∣≤ 2
∑

A∩B(n )̸=∅
A∩B(n)c ̸=∅

∥ΦA∥∞ , (6.55)

condition (6.54) will be satisfied for one-dimensional systems in which the inter-
action between the inside and the outside of any interval B(n) = {−n, . . . ,n} is uni-
formly bounded in n, meaning that boundary effects are negligible.

The sum in the right-hand side of (6.55) is of course finite when Φ has finite
range, which allows to state a general uniqueness result for one-dimensional sys-
tems:

Corollary 6.41. (d = 1) If Φ is any finite-range potential, then |G (Φ)| = 1.

However, the sum in the right-hand side of (6.55) can contain infinitely many terms,
as long as these decay sufficiently fast, as the next example shows.

Example 6.42. Consider the one-dimensional long-range Ising model (6.27), with

Ji j = | j − i |−(2+ϵ) ,

with ϵ> 0. Using (6.55),

∣∣HB(n);βΦ(ωB(n)ηB(n)c )−HB(n);βΦ(ωB(n)η
′
B(n)c )

∣∣≤ 2
∑

i∈B(n)

∑
j∈B(n)c

β

| j − i |2+ϵ

≤ 2β
∑
k≥1

∑
i∈B(n):

d(i ,B(n)c)=k

∑
r≥k

1

r 2+ϵ

≤ 2βcϵ
∑
k≥1

1

k1+ϵ <∞

Theorem 6.40 implies uniqueness for all finite values of β ≥ 0 whenever ϵ > 0. Re-
markably, this is a sharp result, as it can be shown that uniqueness fails at large
values of β whenever ϵ≤ 0 [5]. ⋄

Since we do not yet have all the necessary tools, we postpone the proof of Theo-
rem 6.40 to the end of Section 6.8.4 (p. 296). It will rely on the following ingredient:

Lemma 6.43. Let D be defined as in (6.54). Then, for all ω,η ∈Ω and all cylinders
C ∈C , for all large enough n,

e−2DπΦB(n)(C |η) ≤πΦB(n)(C |ω) ≤ e2DπΦB(n)(C |η) . (6.56)

Proof. Using (6.54) in the Boltzmann weight, we obtain

e−D e−HB(n);Φ(τB(n)ηB(n)c ) ≤ e−HB(n);Φ(τB(n)ωB(n)c ) ≤ eD e−HB(n);Φ(τB(n)ηB(n)c ) .
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This yields Zω
B(n);Φ

≤ Zη
B(n);Φ

eD . Thus, πΦ
B(n)

(τB(n) |ω) ≥ e−2DπΦ
B(n)

(τB(n) |η). Let C ∈
C . If n is large enough for B(n) to contain the base of C , then 1C (τB(n)ωB(n)c ) =
1C (τB(n)ηB(n)c ). Therefore,

πΦB(n)(C |ω) =
∑
τB(n)

πΦB(n)(τB(n) |ω)1C (τB(n)ωB(n)c )

≥ e−2D
∑
τB(n)

πΦB(n)(τB(n) |η)1C (τB(n)ηB(n)c ) = e−2DπΦB(n)(C |η) .

6.6 Symmetries

In this section, we study how the presence of symmetries in a specification π can
extend to the measures in G (π). We do not assume that the single-spin space Ω0 is
necessarily {±1}.

We will be interested in the action of a group (G, ·) on the set of configurations
Ω. That is, we consider a family (τg)g∈G of maps τg :Ω→Ω such that

1. (τg1 ◦τg2 )ω= τg1·g2ω for all g1,g2 ∈G, and

2. τeω=ω for all ω ∈Ω, where e is the neutral element of G.

Note that τ−1
g = τg−1 for all g ∈G. The action of the group can be extended to func-

tions and measures. For all g ∈ G, all functions f : Ω→ R and all µ ∈ M1(Ω), we
define

τg f (ω)
def= f (τ−1

g ω) , τgµ(A)
def= µ(τ−1

g A) ,

for all ω ∈Ω and all A ∈ F . Of course, we then have τgµ( f ) = µ(τ−1
g f ), for all inte-

grable functions f .

We will use τg to act on a specification π = {πΛ}Λ⋐Zd , and turn it into a new
specification τgπ= {τgπΛ}Λ⋐Zd . We will mainly consider two types of transforma-
tions, internal and spatial.

1. An internal transformation starts with a group G acting on the single-spin
space Ω0. The action of G is then extended to Ω by setting, for all g ∈ G and
all ω ∈Ω,

(τgω)i
def= τgωi ∀i ∈Zd .

(We use the same notation for the action on both Ω0 and Ω as this will never
lead to ambiguity.) The action of τg on a kernel πΛ is defined by

(τgπ)Λ(A |ω)
def= πΛ(τ−1

g A |τ−1
g ω) . (6.57)

2. In the case of a spatial transformation, we start with a group G acting on Zd

and we extend its action toΩ by setting, for all g ∈G and all ω ∈Ω,

(τgω)i
def= ωτ−1

g i ∀i ∈Zd .

Basic examples of spatial transformations are: translations, rotations and re-
flections. The action of τg on πΛ is defined by

(τgπ)Λ(A |ω)
def= πτ−1

g Λ(τ−1
g A |τ−1

g ω) . (6.58)
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A general transformation is then a composition of these two types of transfor-
mations. To simplify the exposition, for the rest of this section, we focus on internal
transformations. However, everything can be extended in a straightforward way to
the other cases. Invariance under translations will play an important role in the rest
of the book. For that reason, we will describe this type of spatial transformation in
more detail in Section 6.7, together with translation-invariant specifications and
Gibbs measures.

So, until the end of this section, we assume that the actions τg are associated to
an internal transformation group.

Definition 6.44. π is G-invariant if (τgπ)Λ =πΛ for all Λ⋐Zd and all g ∈G.

The most important example is that of a Gibbsian specification associated to
a potential that is invariant under the action of G. Namely, consider an absolutely
summable potentialΦ= {ΦA}A⋐Zd , and let us assume that τgΦA =ΦA for all A ⋐Zd

and all g ∈G. It then follows that, for allΛ⋐Zd and all g ∈G,

HΛ(ω) =HΛ(τgω) ∀ω ∈Ω .

As a consequence, the associated specification is G-invariant: τgπΦ = πΦ for all
g ∈G. Let us mention a few specific examples.

• The Ising model with h = 0. In this case, the internal symmetry group is
given by the cyclic group Z2, that is, the group with two elements: the neutral
element e and the spin flip f which acts on Ω0 via τfω0 = −ω0. As already
discussed in Chapter 3, the Hamiltonian is invariant under the global spin
flip,

HΛ;β,0(ω) =HΛ;β,0(τfω) .

and the specification of the Ising model with h = 0 is therefore invariant un-
der the action of Z2. When h ̸= 0, this is of course no longer true.

• The Potts model. In this case, the internal symmetry group is Sq , the group
of all permutations on the setΩ0 = {0, . . . , q −1}. It is immediate to check that
the potential defining the Potts model (see (6.28)) is Sq -invariant.

• The Blume–Capel model with h = 0. As in the Ising model, the potential is
invariant under the action of Z2, the spin flip acting again on Ω0 = {−1,0,1}
via τfω0 = −ω0. That is, the model is invariant under the interchange of +
and − spins (leaving the 0 spins unchanged).

At the end of the chapter, we will also consider models in which the spin-space is
not a finite set.

6.6.1 Measures compatible with a G-invariant specification

Theorem 6.45. Let G be an internal transformation group and π be a G-invariant
specification. Then, G (π) is preserved by G:

µ ∈G (π) ⇒ τgµ ∈G (π) ∀g ∈G .
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Proof. Let g ∈G,Λ⋐Zd , ω ∈Ω and A ∈F . Since (τgµ)( f ) =µ( f ◦τg),

(τgµ)πΛ(A) =
∫
πΛ(A |τgω)µ(dω)

=
∫
πΛ(τ−1

g A |ω)µ(dω) =µπΛ(τ−1
g A) =µ(τ−1

g A) = τgµ(A) .

It follows that τgµ ∈G (π).

The above result does not necessarily mean that τgµ=µ for all g ∈G, but this prop-
erty is of course verified when uniqueness holds: in this case, the unique Gibbs
measure inherits all the symmetries of the Hamiltonian.

Corollary 6.46. Assume that G (π) = {µ}. If π is G-invariant, then µ is G-invariant:
τgµ=µ for all g ∈G.

However, when there are multiple measures compatible with a given specification,
it can happen that some of these measures are not G-invariant.

Definition 6.47. Let π be G-invariant. If there exists µ ∈G (π) for which τgµ ̸=µ, the
associated symmetry is said to be spontaneously broken under µ.

“Spontaneous” is used here to distinguish this phenomenon from an explicit
symmetry breaking. The latter occurs, for example, when one introduces a nonzero
magnetic field h in the Ising model, thereby deliberately destroying the symmetry
present when h = 0. ⋄

Example 6.48. We have seen that, when h = 0, the interactions of the Ising model
treat + and − spins in a completely symmetric way: HΛ;β,0(τfω) =HΛ;β,0(ω), where
f denotes the global spin flip. Nevertheless, when d ≥ 2 andβ>βc(d), we know that
the associated Gibbs measures µ+

β,0 ̸=µ−
β,0 are not invariant under a global spin flip,

since 〈σ0〉+β,0 > 0 > 〈σ0〉−β,0: the symmetry is spontaneously broken. We nevertheless

have that τfµ
+
β;0 =µ−

β;0, in complete accordance with the claim of Theorem 6.45. ⋄

6.7 Translation invariant Gibbs measures

The theory of Gibbs measures often becomes simpler once restricted to translation-
invariant measures. We will see for instance in Section 6.9 that, in this framework,
Gibbs measures can be characterized in an alternative way, allowing us to establish
a close relation between the DLR formalism and thermostatics.

Translations on Zd are a particular type of spatial transformation group, as de-
scribed in the previous section. Remember from Chapter 3 (see (3.15)) that the
translation by j ∈Zd , denoted θ j :Zd →Zd , is defined by

θ j i
def= i + j ,

and can be seen as an action of Zd on itself. Notice that θ−1
j = θ− j .

Definition 6.49. µ ∈M1(Ω) is translation invariant if θ jµ=µ for all j ∈Zd .
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Example 6.50. The product measure ρZ
d

obtained with ρi ≡ ρ0 (some fixed distri-
bution onΩ0) is translation invariant. ⋄
Example 6.51. The Gibbs measures of the Ising model, µ+

β,h and µ−
β,h , are transla-

tion invariant. Namely, we saw in Theorem 3.17 that 〈·〉+
β,h is invariant under any

translation θ j . Therefore, for each cylinder C ∈C , since 1C is local,

θ jµ
+
β,h(C ) =µ+

β,h(θ−1
j C ) = 〈1C ◦θ j 〉+β,h = 〈1C 〉+β,h =µ+

β,h(C ) .

This implies that θ jµ
+
β,h and µ+

β,h coincide on cylinders. Since the cylinders gener-

ate F , Corollary B.37 implies θ jµ
+
β,h =µ+

β,h . The same can be done with µ−
β,h . ⋄

We will sometimes use the following notation:

M1,θ(Ω)
def= {

µ ∈M1(Ω) : µ is translation invariant
}

.

The study of translation-invariant measures is simplified thanks to the fact that
spatial averages of local observables,

lim
n→∞

1

|B(n)|
∑

j∈B(n)

θ j f ,

exist almost surely and can be related to their expectation. To formulate this pre-
cisely, let I denote the σ-algebra of translation-invariant events:

I
def= {

A ∈F : θ j A = A , ∀ j ∈Z}
.

The following result is called the multidimensional ergodic theorem. We state it
without proof. [6]

Theorem 6.52. Let µ ∈M1,θ(Ω). Then, for any f ∈ L1(µ),

1

|B(n)|
∑

j∈B(n)

θ j f →µ( f |I ) µ-a.s. and in L1(µ) . (6.59)

Note that the limit (6.59) remains random in general. However, it becomes deter-
ministic if one assumes that µ satisfies one further property.

Definition 6.53. µ ∈ M1,θ(Ω) is ergodic if each translation-invariant event A has
probability µ(A) = 0 or 1.

Theorem 6.54. If µ ∈M1,θ(Ω) is ergodic, then, for any f ∈ L1(µ),

1

|B(n)|
∑

j∈B(n)

θ j f →µ( f ) µ-a.s. and in L1(µ) .

Proof. By Theorem 6.52, we only need to show that µ( f |I ) = µ( f ) almost surely.

Notice that g
def= µ( f |I ) is I -measurable, and therefore {g ≤ α} ∈ I for all α ∈ R,

giving µ(g ≤ α) ∈ {0,1}. Since α 7→ µ(g ≤ α) is non-decreasing, there exists some
α∗ ∈R for which µ(g =α∗) = 1. But since µ(g ) =µ( f ), we have α∗ =µ( f ).
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6.7.1 Translation invariant specifications

The action of a translation θ j on a kernel πΛ takes the form (see (6.58))

(θ jπ)Λ(A |ω)
def= πθ−1

j Λ(θ−1
j A |θ−1

j ω) . (6.60)

Say thatπ= {πΛ}Λ⋐Zd is translation invariant if θ jπΛ =πΛ for allΛ and all j ∈Zd .

Theorem 6.45 and its corollary also hold in this situation:

Exercise 6.21. Show that if π is translation invariant and µ ∈G (π), then θ jµ ∈G (π)
for all j ∈Zd . In particular, if G (π) = {µ}, then µ is translation invariant.

For example, if Φ = {ΦB }B⋐Zd is a translation-invariant (for all B ⋐ Zd , Φθ j B (ω) =
ΦB (θ− jω)) absolutely summable potential, then πΦ is translation invariant, and
θ jµ ∈G (Φ) for each µ ∈G (Φ).

We will sometimes use the following notation:

Gθ(π)
def= {

µ ∈G (π) : µ translation invariant
}

.

We leave it as an exercise to check that translation-invariant measures compatible
with a translation-invariant quasilocal specification always exist:

Exercise 6.22. Show that if π is translation invariant and quasilocal, then Gθ(π) ̸=
∅. Hint: Take µ ∈G (π), and use µn

def= 1
|B(n)|

∑
j∈B(n)θ jµ.

Let us stress, as we did in the previous section in the case of internal transforma-
tions, that translation-invariant specifications do not necessarily yield translation-
invariant measures:

Example 6.55. The specification associated to the Ising antiferromagnet defined
in (3.76) is clearly translation invariant. Nevertheless, neither of the Gibbs mea-
sures µeven

β
and µodd

β
constructed in Exercise 3.33 is translation invariant. ⋄

6.8 Convexity and Extremal Gibbs measures

We now investigate general properties of G (π), without assuming either symmetry
or uniqueness, and derive fundamental properties of the measures µ ∈G (π).

Let ν1,ν2 ∈M1(Ω), and λ ∈ [0,1]. Then the convex combination λν1 + (1−λ)ν2

is defined as follows: for A ∈F ,
(
λν1 + (1−λ)ν2

)
(A)

def= λν1(A)+ (1−λ)ν2(A).

A set M ′ ⊂M1(Ω) is convex if it is stable under convex combination of its elements,
that is, if ν1,ν2 ∈M ′ and λ ∈ (0,1) imply λν1 + (1−λ)ν2 ∈M ′.

The following is a nice feature of the DLR approach, which the definition of
Gibbs states in Chapter 3 does not enjoy in general. Let π be any specification.

Theorem 6.56. G (π) is convex.

Proof. Let µ=λν1 + (1−λ)ν2, with ν1,ν2 ∈G (π). For allΛ⋐Zd ,

µπΛ =λν1πΛ+ (1−λ)ν2πΛ =λν1 + (1−λ)ν2 =µ ,

and so µ ∈G (π).
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Since G (π) is convex, it is natural to distinguish the measures that cannot be
expressed as a non-trivial convex combination of other measures of G (π).

Definition 6.57. µ ∈G (π) is extremal if any decomposition of the form µ=λν1+(1−
λ)ν2 (with λ ∈ (0,1) and ν1,ν2 ∈ G (π)) implies that µ= ν1 = ν2. The set of extremal
elements of G (π) is denoted by exG (π).

This in turn raises the following questions:

1. Is exG (π) non-empty?

2. Are there properties that distinguish the elements of exG (π) from the non-
extremal ones?

3. Do extremal measures have special physical significance?

We will first answer the last two questions.

6.8.1 Properties of extremal Gibbs measures

We will see that extremal Gibbs measures are characterized by the fact that they
possess deterministic macroscopic properties. The latter properties correspond to
the following family of events, called the tail-σ-algebra:

T∞
def=

⋂
Λ⋐Zd

FΛc ; (6.61)

its elements are called tail (or macroscopic) events. Remembering that FΛc is the
σ-algebra of events that only depend on spins located outside Λ, we see that tail
events are those whose occurrence is not altered by local changes: if A ∈T∞ and if ω
and ω′ coincide everywhere but on a finite set of vertices, then

1A(ω) = 1A(ω′) .

The σ-algebra T∞ contains many important events. For example, particularly
relevant in view of what we saw in Chapter 3, the event “the infinite-volume mag-
netization exists and is positive”,

{
ω ∈Ω : lim

n→∞
1

|B(n)|
∑

j∈B(n)

ω j exists and is positive
}

belongs to T∞. Indeed, neither the existence nor the sign of the limit are al-
tered if any finite number of spins are changed. The T∞-measurable functions
f : Ω→ R are also called macroscopic observables, since they are not altered by
local changes in a configuration. As the following exercise shows, their behavior
contrasts sharply with that of local functions.

Exercise 6.23. Show that non-constant T∞-measurable functions are everywhere
discontinuous.

We now present the main features that characterize the elements of exG (π).
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Theorem 6.58. Let π be a specification. Let µ ∈ G (π). The following conditions are
equivalent characterizations of extremality.

1. µ is extremal.

2. µ is trivial on T∞: if A ∈T∞, then µ(A) is either 1 or 0.

3. All T∞-measurable functions are µ-almost surely constant.

4. µ has short-range correlations: for all A ∈F (or, equivalently, for all A ∈C ),

lim
Λ↑Zd

sup
B∈FΛc

∣∣µ(A∩B)−µ(A)µ(B)
∣∣= 0. (6.62)

A few remarks need to be made:

• These characterizations all express the fact that, whenever a system is de-
scribed by an extremal Gibbs measure, its macroscopic properties are de-
terministic: every macroscopic event occurs with probability 0 or 1. This is
clearly a very desirable feature: as discussed at the beginning of Chapter 1,
all observables associated to a given phase of a macroscopic system in ther-
modynamic equilibrium are determined once the thermodynamic parame-
ters characterizing the macrostate (for example, (β,h) for an Ising ferromag-
net) are fixed. Note however that, as mentioned there, the macrostate does
not fully characterize the macroscopic state of the system when there is a
first-order phase transition. The reason for that is made clear in the present
context: all macroscopic observables are deterministic under each extremal
measure, but the macrostate does not specify which of these measures is re-
alized.

• The statement (6.62) implies that local events become asymptotically inde-
pendent as the distance separating their support diverges. In fact, it even
applies to non-local events, although the interpretation of the statement be-
comes more difficult.

• Notice also that condition 2 above provides a remarkable and far-reaching
generalization of a famous result in probability theory: Kolmogorov’s 0-1 law.
Indeed, combined with Exercise 6.7, Theorem 6.58 implies triviality of the
tail-σ-algebra associated to a collection of independent random variables in-
dexed by Zd .

To prove Theorem 6.58, we first need two preliminary propositions. Since it will
be convenient to specify the σ-algebra on which measures are defined, we tem-
porarily write M1(Ω,F ) instead of M1(Ω).

LetΛ⋐Zd . We define the restriction rΛ : M1(Ω,F ) →M1(Ω,FΛc ) by

rΛµ(B)
def= µ(B) , ∀B ∈FΛc .

Observe that if g :Ω→R is FΛc -measurable, then rΛµ(g ) =µ(g ). Using a specifica-
tion π, one can define for each Λ⋐Zd the extension tπΛ : M1(Ω,FΛc ) →M1(Ω,F )
by

tπΛν(A)
def= νπΛ(A) , ∀A ∈F .

Note that the composition of tπΛ with rΛ is such that tπΛrΛ : M1(Ω,F ) →M1(Ω,F ).
We will prove the following new characterization of G (π):
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Proposition 6.59. µ ∈G (π) if and only if µ= tπΛrΛµ for all Λ⋐Zd .

This characterization [7] of G (π) can be interpreted as follows. Given a mea-
sure µ on (Ω,F ), the restriction rΛ results in a loss of information: from the measure
rΛµ, nothing can be said about what happens inside Λ. However, when µ ∈ G (π),
that lost information can be recovered using tπΛ: tπΛrΛµ=µ. ⋄

Proof of Proposition 6.59: Composing tπΛ with rΛ gives, for all A ∈F ,

tπΛrΛµ(A) = (rΛµ)πΛ(A) =
∫
πΛ(A |ω)rΛµ(dω) =

∫
πΛ(A |ω)µ(dω) =µπΛ(A) .

In the third identity, we used the FΛc -measurability of πΛ(A | ·).

Let F̂ be a sub-σ-algebra of F and let µ ∈ M1(Ω,F̂ ). For a nonnegative F̂ -
measurable function f : Ω→ R that satisfies µ( f ) = 1, let f µ ∈ M1(Ω,F̂ ) denote
the probability measure whose density with respect to µ is f :

f µ(A)
def=

∫

A
f (ω)µ(dω) , ∀A ∈ F̂ .

Observe that f1µ= f2µ if and only if f1 = f2 µ-almost surely (Lemma B.42).

Lemma 6.60. Let Λ⋐Zd .

1. Let µ ∈ M1(Ω,F ) and let f : Ω → R≥0 be an F -measurable function such
that µ( f ) = 1. Then

rΛ( f µ) =µ( f |FΛc )rΛµ .

2. Let ν ∈M1(Ω,FΛc ) and let g :Ω→R≥0, be an FΛc -measurable function such
that ν(g ) = 1. Then

tπΛ(gν) = g · tπΛν .

Proof. For the first item, take B ∈FΛc and use the definition of conditional expec-
tation:

rΛ( f µ)(B) =
∫

B
f (ω)µ(dω) =

∫

B
µ( f |FΛc )(ω)µ(dω) =

∫

B
µ( f |FΛc )(ω)rΛµ(dω) .

For the second item, take A ∈F and compute:

tπΛ(gν)(A) = (gν)πΛ(A) = g (νπΛ)(A) = g · tπΛν(A) . (6.63)

Exercise 6.24. Justify the second identity in (6.63).

Proposition 6.61. Let π be a specification.

1. Let µ ∈ G (π). Let f : Ω → R≥0, F -measurable, such that µ( f ) = 1. Then
f µ ∈ G (π) if and only if f is equal µ-almost everywhere to a T∞-measurable
function.

2. Let µ,ν ∈ G (π) be two probability measures that coincide on T∞: µ(A) = ν(A)
for all A ∈T∞. Then µ= ν.
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We will need the following classical result, called the backward martingale conver-
gence theorem: for all measurable f :Ω→R, integrable with respect to µ,

µ( f |FB(n)c )
n→∞−→ µ( f |T∞) , µ-a.s. and in L1(µ) . (6.64)

See also Theorem B.52 in Appendix B.5.

Proof of Proposition 6.61: 1. If f µ ∈G (π), we use Lemma 6.60 and Proposition 6.59
to get, for allΛ⋐Zd ,

f µ= tπΛrΛ( f µ) = tπΛ
{
µ( f |FΛc )rΛµ

}=µ( f |FΛc ) · tπΛ{rΛµ} =µ( f |FΛc ) ·µ .

Therefore, again by Lemma B.42, this implies f = µ( f |FΛc ) µ-almost surely. Since
this holds in particular when Λ = B(n), and since µ( f |FB(n)c ) → µ( f |T∞) almost
surely as n → ∞ (see (6.64)), we have shown that f = µ( f |T∞) µ-almost surely.
The latter is T∞-measurable, which proves the claim. Inversely, if f coincides µ-
almost surely with a T∞-measurable function f̃ , then f µ= f̃ µ, and, since f̃ is FΛc -
measurable for allΛ⋐Zd ,

( f µ)πΛ(A) = ( f̃ µ)πΛ(A) = f̃ (µπΛ)(A) = f̃ µ(A) = f µ(A) ,

for all A ∈F (we used Exercise 6.24 for the second identity) and so f µ ∈G (π).

2. Define λ
def= 1

2 (µ+ν). Then, λ ∈G (π) and both µ and ν are absolutely continu-
ous with respect to λ. By the Radon–Nikodým Theorem (Theorem B.41), there exist
f , g ≥ 0, λ( f ) =λ(g ) = 1, such that µ= f λ, ν= gλ. For all A ∈T∞,

∫

A
( f − g )dλ=µ(A)−ν(A) = 0.

But, by item 1, there exist two T∞-measurable functions f̃ and g̃ , λ-almost surely
equal to f , respectively g . Since A = { f̃ > g̃ } ∈ T∞, we conclude that λ( f > g ) =
λ( f̃ > g̃ ) = 0. In the same way, λ( f < g ) = 0 and therefore f = g λ-almost surely,
which implies that µ= ν.

Proof of Theorem 6.58: 1 ⇒ 2: Assume there exists A ∈ T∞ such that α = µ(A) ∈
(0,1). By item 1 of Proposition 6.61, µ1

def= 1
α1Aµ and µ2

def= 1
1−α1Acµ are both in G (π).

But since µ=αµ1 + (1−α)µ2, µ cannot be extremal.
2 ⇒ 1: Let µ be trivial on T∞, and assume that µ=αµ1+(1−α)µ2, withα ∈ (0,1)

and µ1,µ2 ∈G (π). Then µ1 and µ2 are absolutely continuous with respect to µ. Let
now A ∈T∞. Then, since µ(A) can be either 0 or 1, µ1(A) and µ2(A) are either both
0, or both 1. By item 2 of Proposition 6.61, µ=µ1 =µ2.

2 ⇒ 3: If f is T∞-measurable, each { f ≤ c} ∈T∞ and thus µ( f ≤ c) ∈ {0,1} for all
c. Setting c∗ = inf{c :µ( f ≤ c) = 1}, we get µ( f = c∗) = 1.

3 ⇒ 2: If A ∈ T∞, then 1A is T∞-measurable. Since it must be µ-almost surely
constant, we necessarily have that µ(A) ∈ {0,1}.

2 ⇒ 4: Let A ∈ F , ϵ > 0. Using (6.64) with f = 1A , one can take n large enough
so that

∥µ(A |FB(n)c )−µ(A |T∞)∥1 ≤ ϵ . (6.65)

Since µ(A |T∞) is T∞-measurable, item 3 implies that it is µ-almost surely con-
stant. This constant can only be µ(A), since µ(µ(A |T∞)) = µ(A). Then, for all
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B ∈FB(n)c ,

∣∣µ(A∩B)−µ(A)µ(B)
∣∣=

∣∣∣
∫

B
{1A −µ(A)}dµ

∣∣∣

=
∣∣∣
∫

B
{µ(A |FB(n)c )−µ(A |T∞)}dµ

∣∣∣≤ ϵ .

4 ⇒ 2: Suppose that (6.62) holds for all A ∈C . Then, µ(A∩B) =µ(A)µ(B) for all
A ∈C and all B ∈T∞ (since B ∈FΛc for allΛ⋐Zd ). If this can be extended to

µ(A∩B) =µ(A)µ(B) , ∀A ∈F ,B ∈T∞ , (6.66)

then, taking A = B implies µ(B) = µ(B ∩B) = µ(B)2, which is only possible if µ(B) ∈
{0,1} for all B ∈T∞, that is, if µ is trivial on T∞.

To prove (6.66), fix B ∈T∞ and define

D
def= {

A ∈F : µ(A∩B) =µ(A)µ(B)
}

.

If A, A′ ∈D , with A ⊂ A′, then µ
(
(A′ \ A)∩B

)= µ(A′∩B)−µ(A∩B) = µ(A′ \ A)µ(B),
showing that A′ \ A ∈ D . Moreover, for any sequence (An)n≥1 ⊂ D such that An ↑
A, we have that µ(A ∩ B) = limn µ(An ∩ B) = limn µ(An)µ(B) = µ(A)µ(B), and so
A ∈ D . This implies that D is a Dynkin system (see Appendix B.5). Since C ⊂
D by assumption, and since C is an algebra, we conclude that, D = σ(C ) = F
(Theorem B.36), so (6.66) holds.

In the following exercise, we consider a non-extremal measure for the Ising
model, and we provide an example of events for which the property of short-range
correlations does not hold.

Exercise 6.25. Consider the two-dimensional Ising model with h = 0 and β>βc(2).
Take any λ ∈ (0,1) and consider the (non-extremal) Gibbs measure

µ=λµ+
β,0 + (1−λ)µ−

β,0 .

Show that µ does not satisfy (6.62), by taking A = {σ0 = 1}, Bi = {σi = 1} and verifying
that

liminf
∥i∥1→∞

∣∣µ(A∩Bi )−µ(A)µ(Bi )
∣∣> 0.

Hint: Use the symmetry between µ+
β,0 and µ−

β,0 and the FKG inequality.

To end this section, we mention that extremal measures of G (π) can be distin-
guished from each other by only considering tail events:

Lemma 6.62. Distinct extremal measures µ,ν ∈ exG (π) are singular: there exists a
tail event A ∈T∞ such that µ(A) = 0 and ν(A) = 1.

Proof. If µ,ν ∈ G (π) are distinct, then item 2 of Proposition 6.61 shows that there
must exist A ∈T∞ such that µ(A) ̸= ν(A). But if µ and ν are extremal, they are trivial
on T∞ (Theorem 6.58, item 2), so either µ(A) = 0 and ν(A) = 1, or µ(Ac) = 0 and
ν(Ac) = 1.
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6.8.2 Extremal Gibbs measures and the thermodynamic limit

Since real macroscopic systems are always finite (albeit very large), the most physi-
cally relevant Gibbs measures are those that can be approximated by finite-volume
Gibbs distributions, that is, those that can be obtained by a thermodynamic limit
with some fixed boundary condition. It turns out that all extremal Gibbs measures
enjoy this property:

Theorem 6.63. Let µ ∈ exG (π). Then, for µ-almost all ω,

πB(n)(· |ω) ⇒µ .

Proof. We need to prove that, for µ-almost all ω,

πB(n)(C |ω)
n→∞−→ µ(C ) ∀C ∈C . (6.67)

Let C ∈ C . On the one hand (see (6.23)), there exists Ωn,C , µ(Ωn,C ) = 1, such that
πB(n)(C |ω) = µ(C |FB(n)c )(ω) for all ω ∈ Ωn,C . On the other hand, the extremality
of µ (see item 3 of Theorem 6.58) guarantees that there exists ΩC , µ(ΩC ) = 1, such
that µ(C ) = µ(C |T∞)(ω) for all ω ∈ΩC . Using (6.64) with f = 1C , there also exists
Ω̃C , µ(Ω̃C ) = 1, such that

µ(C |FB(n)c )(ω) →µ(C |T∞)(ω) ∀ω ∈ Ω̃C .

Therefore, for all ω that belong to the countable intersection of all the sets ΩC , Ω̃C

andΩn,C , which has µ-measure 1, (6.67) holds.

The above theorem shows yet another reason that extremal Gibbs measures are
natural to consider: they can be prepared by taking limits of finite-volume systems.
However, we will see in Example 6.68 that the converse statement is not true: not
all limits of finite-volume systems lead to extremal states.

A more basic question at this stage is whether all Gibbs measures can be ob-
tained with the thermodynamic limit. The following example shows that this is not
the case: G (π) can contain measures that do not appear in the approach of Chap-
ter 3 relying on the thermodynamic limit.

Example 6.64. [8] Let us consider the 3-dimensional Ising model, with β > βc(3)
and h = 0, in the box B(n). We have seen in Section 3.10.7 that the sequence of
finite-volume Gibbs distributions with Dobrushin boundary condition admits a
converging subsequence, defining a Gibbs measure µDob

β,0 satisfying, for any ϵ> 0,

〈σ(0,0,0)σ(0,0,−1)〉Dob
β,0 ≤−1+ϵ , (6.68)

once β is large enough (see Theorem 3.60). Let us denote by µDob
β,0 the correspond-

ing Gibbs measure. Applying a global spin flip, we obtain another Gibbs measure,

µ−Dob
β,0

def= τfµ
Dob
β,0 , also satisfying (6.68). Since G (β,0) is convex, µ

def= 1
2µ

Dob
β,0 + 1

2µ
−Dob
β,0 ∈

G (β,0). We show that it cannot be obtained as a thermodynamic limit. Notice that
〈σi 〉µ = 0 for all i ∈Zd and that one has, for any ϵ> 0,

〈σ(0,0,0)σ(0,0,−1)〉µ ≤−1+ϵ , (6.69)

once β is large enough. Suppose there exists a sequence (µηk

B(nk );β,0
)k≥1 converging

to µ. By the FKG inequality, for all k ≥ 1,

〈σ(0,0,0)σ(0,0,−1)〉ηk

B(nk );β,0
≥ 〈σ(0,0,0)〉ηk

B(nk );β,0
〈σ(0,0,−1)〉ηk

B(nk );β,0
,
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and thus

〈σ(0,0,0)σ(0,0,−1)〉µ ≥ 〈σ(0,0,0)〉µ〈σ(0,0,−1)〉µ = 0.

This contradicts (6.69). ⋄
So far, we have described general properties of extremal Gibbs measures. We

still need to determine whether such measures exist in general, and what role they
play in the description of G (π). Before pursuing with the general description of the
theory, we illustrate some of the ideas presented so far on our favorite example.

6.8.3 More on µ+
β,h , µ

−
β,h and G (β,h)

In this section, using tools specific to the Ising model, we provide more informa-
tions about µ+

β,h and µ−
β,h .

Lemma 6.65. µ+
β,h ,µ−

β,h are extremal.

Proof. We consider µ+
β,h . We start by showing that, for any ν ∈G (β,h),

ν( f ) ≤µ+
β,h( f ) for every nondecreasing local function f . (6.70)

Remember that, for all Λ ⋐ Zd and all boundary condition η, the FKG inequal-
ity implies that µη

Λ;β,h( f ) ≤ µ+
Λ;β,h( f ) for every nondecreasing local function f (see

Lemma 3.23). Therefore,

ν( f ) =
∫
µ
η

Λ;β,h( f )ν(dη) ≤µ+
Λ;β,h( f ) .

Since limΛ↑Zd µ+
Λ;β,h( f ) = µ+

β,h( f ), this establishes (6.70). Now assume that µ+
β,h is

not extremal:

µ+
β,h =λν1 + (1−λ)ν2 ,

where λ ∈ (0,1) and ν1,ν2 ∈ G (β,h) are both distinct from µ+
β,h . We use (6.70) as

follows. First, since ν1 ̸=µ+
β,h , there must exist a local function f∗ such that ν1( f∗) ̸=

µ+
β,h( f∗). From Lemma 3.19, we can assume that f∗ is nondecreasing. Therefore,

(6.70) implies that ν1( f∗) <µ+
β,h( f∗) and ν2( f∗) ≤µ+

β,h( f∗). Consequently,

µ+
β,h( f∗) =λν1( f∗)+ (1−λ)ν2( f∗) <µ+

β,h( f∗) ,

a contradiction. We conclude that µ+
β,h is extremal.

Since µ+
β,h is extremal, it inherits all the properties described in Theorem 6.58. For

example, property (4) of that theorem implies that the truncated 2-point function,

〈σi ;σ j 〉+β,h
def= 〈σiσ j 〉+β,h −〈σi 〉+β,h〈σ j 〉+β,h ,

tends to zero when ∥ j − i∥∞ → ∞. (Note that this claim was already established,
by other means, in Exercise 3.15.) This can be used to obtain a Weak Law of Large
Numbers:
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Exercise 6.26. Consider

mB(n)
def= 1

|B(n)|
∑

j∈B(n)

σ j .

Show that mB(n) →µ+
β,h(σ0) in µ+

β,h-probability. That is, for all ϵ> 0,

µ+
β,h

(|mB(n) −µ+
β,h(σ0)| ≥ ϵ)→ 0 when n →∞ .

Hint: Show that the variance of mB(n) vanishes as n →∞.

One may wonder whether the convergence of mB(n) to µ+
β,h(σ0) proved in the

previous exercise also holds almost surely. Actually, we know that

m
def= limsup

n→∞
mB(n) (6.71)

is almost surely constant, since it is a macroscopic observable. To show that the
limsup in (6.71) is a true limit, we will use a further property of µ+

β,h .

Lemma 6.66. µ+
β,h and µ−

β,h are ergodic.

We start by proving the following general fact:

Lemma 6.67. Let µ ∈ M1(Ω,F ) be invariant under translations. Then, for all A ∈
I , there exists B ∈T∞ such that µ(A△B) = 0; in particular, µ(A) =µ(B).

Proof. By Lemma B.34, there exists a sequence (Cn)n≥1 ⊂ C such that µ(A△Cn) ≤
2−n . For each n, let Λ(n) ⋐ Zd be such that Cn ∈ C (Λ(n)). By a property already
used in Lemma 6.2, we can assume that Λ(n) ↑ Zd . For each n, let in ∈ Zd be such
thatΛ(n)∩θinΛ(n) =∅. Let C ′

n = θin Cn . Since A and µ are invariant,

µ(A△C ′
n) =µ(θin (θ−in A△Cn)) =µ(θin (A△Cn)) =µ(A△Cn) ≤ 2−n .

Since C ′
n ∈FΛ(n)c , we have B

def= ⋂
n

⋃
m≥n C ′

m ∈T∞. Moreover,

µ(A△B) ≤ lim
n→∞

∑
m≥n

µ(A△C ′
m) = 0.

Proof of Lemma 6.66: Since the measure µ+
β,h is invariant under translations, it fol-

lows from Lemma 6.67 that, for all A ∈ I , there exists B ∈ T∞ such that µ+
β,h(A) =

µ+
β,h(B). But µ+

β,h is extremal, therefore µ+
β,h(B) ∈ {0,1}.

Since µ+
β,h is ergodic, and since one can always write σ j =σ0 ◦θ− j , we deduce from

Theorem 6.54 that the infinite-volume magnetization

m = lim
n→∞

1

|B(n)|
∑

j∈B(n)

σ j

exists µ+
β,h-almost surely, and equals µ+

β,h(σ0). A similar statement holds for µ−
β,h .

Since µ+
β,0 ̸= µ−

β,0 when β > βc(d), we know from Lemma 6.62 that they are also

singular. The events {m > 0} and {m < 0} thus provide examples of two tail events
on which these measures differ.
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Digression: on the significance of non-extremal Gibbs measures

With the properties of extremal measures described in detail above, we can now
understand better the significance of non-extremal Gibbs measures. We continue
illustrating things on the Ising model, but this discussion applies to more general
situations.

Let λ ∈ (0,1) and consider the convex combination

µ
def= λµ+

β,0 + (1−λ)µ−
β,0 .

Assume that d ≥ 2 and β> βc(d), so that µ+
β,0 ̸= µ−

β,0. As explained below, a natural

interpretation of the coefficient λ (respectively 1−λ) is as the probability that a
configuration sampled fromµ is “typical” ofµ+

β,0 (respectivelyµ−
β,0). The only minor

difficulty is to give a reasonable meaning to the word “typical”. One possible way to
do that is to consider two tail-measurable events T + and T − such that

µ+
β,0(T +) =µ−

β,0(T −) = 1, µ+
β,0(T −) =µ−

β,0(T +) = 0.

In other words the event T + encodes macroscopic properties that are typically (that
is, almost surely) verified under µ+

β,0, and similarly for T −; moreover T + and T −

allow us to distinguish between these two measures. A configuration ω ∈ Ω will
then be said to be typical for µ+

β,0 (resp. µ−
β,0) if ω ∈ T + (resp. T −).

Since µ+
β,h and µ−

β,h are extremal and distinct, we know by Lemma 6.62 that

events like T + and T − always exist. In the case of the Ising model, we can be more
explicit. For example, since µ+

β,0 and µ−
β,0 are characterized by the probability they

associate to cylinders, one can take

T ± =
⋂

C∈C

{
lim
Λ↑Zd

1

|Λ|
∑
i∈Λ

1C ◦θi exists and equals µ±
β,0(C )

}
.

It is easy to verify that T + and T − enjoy all the desired properties. First, Theo-
rem 6.54 guarantees that µ±

β,0(T ±) = 1. Moreover, T +∩T − =∅, since for example

µ+
β,0(σ0) > 0 >µ−

β,0(σ0).

Let us then check that if we sample a configuration according to µ, then it will
be almost surely typical for either µ+

β,0 or µ−
β,0:

µ(T +∪T −) ≥λµ+
β,0(T +)+ (1−λ)µ−

β,0(T −) = 1.

Moreover, λ is the probability that the sampled configuration is typical for µ+
β,0:

µ(T +) =λµ+
β,0(T +) =λ ∈ (0,1) .

In the same way, 1−λ is the probability that the sampled configuration is typical
of µ−

β,0. Let us then ask the following question: If the configuration sampled (under

µ) was in T +, what else can be said about its properties? Since µ+
β,0(T +) = 1 and

µ−
β,0(T +) = 0, we have, for all B ∈F ,

µ(B ∩T +) =λµ+
β,0(B ∩T +) =λµ+

β,0(B) =µ(T +)µ+
β,0(B) .

Therefore,
µ(B |T +) =µ+

β,0(B) .
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In other words, conditionally on the fact that one observes a configuration typical
for µ+

β,0, the distribution is precisely given by µ+
β,0.

For example, taking T + = {m > 0}, T − = {m < 0},

µ(· |m > 0) =µ+
β,0 , µ(· |m < 0) =µ−

β,0 .

This discussion shows that non-extremal Gibbs measures do not bring any new
physics: everything that can be observed under such a measure is typical for one of
the extremal Gibbs measures that appears in its decomposition. In this sense, the
physically relevant elements of G (π) are the extremal ones. [9]

Digression: on the simplex structure for the Ising Model in d = 2

The nearest-neighbor Ising model on Z2 happens to be one of the very few models
of equilibrium statistical mechanics for which the exact structure G (π) is known.
We make a few comments on this fact, whose full description is beyond the scope
of this book, as it might help the reader to understand the following section on
the extreme decomposition. This is also very closely related to the discussion in
Section 3.10.8.

We continue with h = 0. The following can be proved for any β>βc(2):

1. µ+
β,0 and µ−

β,0 are the only extremal Gibbs states:

exG (β,0) = {µ−
β,0,µ+

β,0} .

This follows from the discussion in Section 3.10.8.

2. Any non-extremal Gibbs measure can be expressed in a unique manner as a
convex combination of those two extremal elements: if µ ∈ G (β,0), then there
exists λ ∈ [0,1] such that

∀B ∈F , µ(B) =λµ+
β,0(B)+ (1−λ)µ−

β,0(B) . (6.72)

This representation induces in fact a one-to-one correspondence between
measures in G (β) and the corresponding coefficient λ ∈ [0,1]. Indeed, taking
B = {σ0 = 1} in (6.72) shows that the coefficient λ associated to a measure
µ ∈G (β) can be expressed as

λ=
µ(σ0 =+1)−µ−

β,0(σ0 =+1)

µ+
β,0(σ0 =+1)−µ−

β,0(σ0 =+1)
.

In view of the discussion of the previous subsection, it is natural to interpret
the pair (λ,1−λ) as a probability distribution on exG (β,0).

All this can be compactly summarized by writing

G (β,0) = {
λµ+

β,0 + (1−λ)µ−
β,0, λ ∈ [0,1]

}
. (6.73)

This means that G (β,0) is a simplex: it is a closed (Lemma 6.27), convex subset of
M1(Ω), which is the convex hull of its extremal elements (that is, each of its ele-
ments can be written, in a unique way, as a convex combination of the extremal
elements). Schematically,
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M1(Ω)

µ+
β,0G (β,0)

µ−
β,0

Accepting (6.73), we can clarify a point raised after Theorem 6.63: the thermo-
dynamic limit does not always lead to an extremal state.

Example 6.68. Let µ∅
β,0 be the Gibbs measure of the nearest-neighbor Ising model

onZ2 prepared with free boundary condition, which is constructed in Exercise 6.14.
By (6.73), µ∅

β,0 must be a convex combination of µ+
β,0 and µ−

β,0. But by symmetry,

the only possibility is that µ∅
β,0 = 1

2µ
+
β,0 + 1

2µ
−
β,0. Therefore, µ∅

β,0 is not extremal as

soon as µ+
β,0 ̸= µ−

β,0 (that is, when β> βc(2)), although it was constructed using the

thermodynamic limit. ⋄

6.8.4 Extremal decomposition

There are unfortunately very few non-trivial specifications π for which G (π) can be
determined explicitly. However, as will explained now, one can show in great gener-
ality that something similar to what we just saw in the case of the two-dimensional
Ising model occurs: the set exG (π) ̸= ∅ and G (π) is always a simplex (although
often an infinite-dimensional one).

Heuristics

Throughout the section, we assume that π is a specification for which G (π) ̸= ∅.
(One can assume, for example, that π is quasilocal, but quasilocality itself is not
necessary for the forthcoming results.) Our aim is to show that exG (π) ̸= ∅, and
that any µ ∈ G (π) can be expressed in a unique way as a convex combination of
elements of exG (π). A priori, there can be uncountably many extremal Gibbs mea-
sures, so one can expect the combination to take the form of an integral:

∀B ∈F , µ(B) =
∫

exG (π)
ν(B)λµ(dν) . (6.74)

Here, λµ(·) is a probability distribution on exG (π) (the measurable structure on
sets of probability measures will be introduced later) that plays the role of the coef-
ficients (λ,1−λ) in (6.72); in particular,

λµ(exG (π)) = 1. (6.75)

The main steps leading to (6.74) will be as follows. To start, for each B ∈F , the
definition of the conditional expectation allows us to write

µ(B) =
∫
µ(B |T∞)(ω)µ(dω) .

The central ingredient will be to show that there exists a regular version of µ(· |T∞).
This means that one can associate to each ω a probability measure Qω ∈M1(Ω) in
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such a way that

µ(· |T∞)(ω′) =Qω′
(·) , for µ-almost every ω′.

When such a family of measures Qω exists,

µ(B) =
∫

Qω(B)µ(dω) , (6.76)

which is a first step towards the decomposition of µ(B) we are after.

The idea behind the construction of Q· given below can be illustrated as fol-
lows (although the true construction will be more involved). Consider the basic local
property characterizing the measures of G (π), written in its integral form: for all
Λ⋐Zd ,

µ(B) =
∫
πΛ(B |ω)µ(dω) .

Then, taking Λ ↑Zd formally in the previous display yields

µ(B) =
∫

lim
Λ↑Zd

πΛ(B |ω)

︸ ︷︷ ︸
Qω(B)

µ(dω) .

⋄

Let us give two arguments in favor of the fact that, under the mapω 7→Qω, most
of the configurations ω are mapped to a Qω ∈ exG (π), in the sense that

µ(Q· ∈ exG (π)) = 1.

1. We have already seen (remember (6.64)) that µ(· |T∞) can be expressed as a
limit:

µ(· |FB(n)c ) →µ(· |T∞) .

But since µ ∈ G (π), we have µ(· |FB(n)c )(ω) = πB(n)(· |ω) for µ-almost all ω
and for all n. We have also seen in Theorem 6.26 that the limits of sequences
πB(n)(· |ω), when they exist, belong to G (π). We therefore expect that

Qω(·) ∈G (π) , µ-a.a.ω . (6.77)

2. Moreover, if A ∈T∞, then 1A is T∞-measurable and so µ(A |T∞) = 1A almost
surely, which suggests that Qω(A) = 1A(ω); in other words, Qω(·) should be
trivial on T∞, which by Theorem 6.58 means that

Qω ∈ exG (π) , µ-a.a.ω .

The implementation of the above argument leads to a natural way of obtaining
extremal elements: first take any µ ∈G (π), then condition it with respect to T∞ and
get (almost surely): µ(· |T∞) ∈ exG (π). ⋄

One should thus consider ω 7→Qω, roughly, as a mapping fromΩ to exG (π):
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Ω

Qω

G (π)

µ λµ

exG (π)

M1(Ω)

pushforward

We would like to push µ forward onto G (π). Leaving aside the measurability
issues, we proceed by letting, for M ⊂G (π),

λµ(M)
def= µ(Q· ∈ M) . (6.78)

We then proceed as in elementary probability, and push the integration of µ overΩ
onto an integration of λµ over exG (π). Namely 1, for a function ϕ : M1(Ω) →R,

∫

Ω
ϕ(Qω)µ(dω) =

∫

exG (π)
ϕ(ν)λµ(dν) . (6.79)

If one defines, for all B ∈F , the evaluation map eB : M1(Ω) → [0,1] by

eB (ν)
def= ν(B) , (6.80)

then (6.79) with ϕ= eB and (6.76) give (6.74).

Implementing the idea exposed in the two arguments given above is not triv-
ial (albeit mostly technical); it will be rigorously established in Propositions 6.69
and 6.70 below.

Construction and properties of the kernel Q·

The family {Qω}ω∈Ω is nothing but a regular conditional distribution for µ(· |T∞); it
will be constructed using only the kernels of π. Q· will be defined by a probability
kernel from T∞ to F , which, similarly to the kernels introduced in Definition 6.9,
is a mapping F ×Ω→ [0,1], (B ,ω) 7→Qω(B) with the following properties:

• For each ω ∈Ω, B 7→Qω(B) is a probability measure on (Ω,F ).

• For each B ∈F , ω 7→Qω(B) is T∞-measurable.

Proposition 6.69. There exists, for each ω ∈ Ω, a probability kernel Qω from T∞
to F such that, for each µ ∈G (π),

1. For every bounded measurable f :Ω→R,

µ( f |T∞)(·) =Q·( f ) , µ-almost surely , (6.81)

2. {Q· ∈G (π)} ∈T∞, and µ(Q· ∈G (π)) = 1.
1What we are doing here is the exact analogue of the standard operation in probability theory.

There, one defines the distribution of a random variable X , λX (·) def= P (X ∈ ·), and uses it to express
the expectation of functions of X as integrations over R:∫

Ω
g (X (ω))P (dω) =

∫

R
g (x)λX (dx) .
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Proof. ▶ Construction of Qω. Let π= {πΛ}Λ⋐Zd and let

Ωπ
def=

⋂
C∈C

{
ω ∈Ω : lim

n→∞πB(n)(C |ω) exists
}

.

Clearly,Ωπ ∈T∞. Whenω ∈Ωc
π, we define Qω def= µ0, where µ0 is any fixed probabil-

ity measure onΩ. When ω ∈Ωπ, we define

Qω(C )
def= lim

n→∞πB(n)(C |ω) ,

for each C ∈ C . By construction, Qω is a probability measure on C . By Theo-
rem 6.96, it extends uniquely to F . To prove T∞-measurability, let

D
def= {

B ∈F : ω 7→Qω(B) is T∞-measurable
}

.

When C ∈ C , we have, for all α, {Q·(C ) ≤ α} = (
{Q·(C ) ≤ α}∩Ωπ

)∪ (
{Q·(C ) ≤ α}∩

Ωc
π

) ∈T∞. Therefore, C ⊂D . We verify that D is a Dynkin class (see Appendix B.5):
if B ,B ′ ∈D , with B ⊂ B ′, then Q·(B ′ \ B) =Q·(B ′)−Q·(B) is T∞-measurable, giving
B ′ \ B ∈ D . Then, if (Bn)n≥1 ⊂ D , Bn ⊂ Bn+1, Bn ↑ B , then Q·(B) = limn Q·(Bn), and
so B ∈D . Since C is stable under intersections, Theorem B.36 implies that D =F .

▶ Relating Qω to G (π). Let now µ ∈ G (π). We have already seen in the proof of
Theorem 6.63 that, on a set of µ-measure 1,

πB(n)(C | ·) =µ(C |FB(n)c )(·) n→∞−−−−→µ(C |T∞)(·) for all C ∈C .

In particular, µ(Ωπ) = 1 and µ(C |T∞) =Q·(C ) µ-almost surely, for all C ∈C . Again,
we can show that

D ′ def= {
B ∈F : µ(B |T∞) =Q·(B)µ-a.s.

}

is a Dynkin class containing C , giving D ′ =F . To show (6.81), one can assume that
f is non-negative, and take any sequence of simple functions fn ↑ f . Since each
fn is a finite sum of indicators and since µ(B |T∞) = Q·(B) µ-a.s. for all B ∈ F , it
follows that µ( fn |T∞) = Q·( fn) almost surely. The result follows by the monotone
convergence theorem.

To show that {Q· ∈G (π)} ∈T∞, we observe that

{Q· ∈G (π)} =
⋂

Λ⋐Zd

⋂
A∈F

{Q·πΛ(A) =Q·(A)}

=
⋂

Λ⋐Zd

⋂
C∈C

{Q·πΛ(C ) =Q·(C )} . (6.82)

We used Lemma 6.22 in the second equality to obtain a countable intersection (over
C ∈ C ). Since each Q·(C ) is T∞-measurable, Q·πΛ(C ) also is. Indeed, one can
consider a sequence of simple functions fn ↑πΛ(C | ·), giving Q·πΛ(C ) = limn Q·( fn).
Since each Q·( fn) is T∞-measurable, its limit also is. This implies that each set
{Q·πΛ(C ) =Q·(C )} ∈T∞ and, therefore, {Q· ∈G (π)} ∈T∞.

Now, if µ ∈ G (π), we will show that µ(Q·πΛ(C ) =Q·(C )) = 1 for all C ∈C , which
with (6.82) implies µ(Q· ∈ G (π)) = 1, thus completing the proof of the proposi-
tion. Using (6.81), FΛc ⊃ T∞ and the tower property of conditional expectation
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(the third to fifth inequalities below hold for µ-almost all ω),

QωπΛ(C ) =Qω
(
πΛ(C | ·))

=Qω
(
µ(C |FΛc )

)

=µ(
µ(C |FΛc ) |T∞

)
(ω)

=µ(C |T∞)(ω)

=Qω(C ) .

Proposition 6.70. If µ ∈G (π), then µ(Q· ∈ exG (π)) = 1.

Note that this result has the following immediate, but crucial, consequence:

Corollary 6.71. If G (π) ̸=∅, then exG (π) ̸=∅.

The proof of Proposition 6.70 will rely partly on the characterization of T∞ given in
Theorem 6.58: extremal measures of G (π) are those that are trivial on T∞. Further-
more, we have:

Exercise 6.27. Show that ν ∈ M1(Ω) is trivial on T∞ if and only if, for all B ∈ F ,
ν(B |T∞) = ν(B) ν-almost surely. Hint: half of the claim was already given in the
proof of Theorem 6.58.

Proof of Proposition 6.70: Using Exercise 6.27,

exG (π) = {
ν ∈G (π) : ν is trivial on T∞

}

= {
ν ∈G (π) : ∀A ∈F ,ν(A |T∞) = ν(A) ,ν-a.s.

}

= {
ν ∈G (π) : ∀C ∈C ,ν(C |T∞) = ν(C ) ,ν-a.s.

}

= {
ν ∈G (π) : ∀C ∈C ,Q·(C ) = ν(C ) ,ν-a.s.

}
. (6.83)

To prove the third identity, define D ′′ def= {
A ∈F : ν(A |T∞) = ν(A) ,ν-a.s.

}
. Since

D ′′ ⊃C and since D ′′ is a Dynkin class (as can be verified easily), we have D ′′ =F .
For all C ∈C , ν ∈M1(Ω), let VC (ν) denote the variance of Q·(C ) under ν:

VC (ν)
def= Eν

[
(Q·(C )−Eν[Q·(C )])2] .

If ν ∈G (π), then Eν[Q·(C )] = ν(C ) (because of (6.81)), and so

exG (π) =G (π)∩
⋂

C∈C

{
ν ∈M1(Ω) : VC (ν) = 0

}
.

Let µ ∈ G (π). Since µ(Q· ∈ G (π)) = 1 (Proposition 6.69), we need to show that
µ(VC (Q·) = 0) = 1 for each C ∈C . Since VC ≥ 0, it suffices to show thatµ(VC (Q·)) = 0:

µ(VC (Q·)) =
∫ {

EQω [Q·(C )2]−Qω(C )2}µ(dω)

=
∫ {

Eµ[Q·(C )2 |T∞](ω)−Qω(C )2}µ(dω) = 0,

where we used (6.81) for the second identity.
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Construction and uniqueness of the decomposition

Let µ ∈G (π). Since we are interested in having (6.79) valid for the evaluation maps
eB , we consider the smallestσ-algebra on M1(Ω) for which all the maps {eB , B ∈F }
are measurable. λµ in (6.78) then defines a probability measure on this σ-algebra,
and satisfies (6.75).

Theorem 6.72. For all µ ∈G (π),

∀B ∈F , µ(B) =
∫

exG (π)
ν(B)λµ(dν) . (6.84)

Moreover, λµ is the unique measure on M1(Ω) for which such a representation holds.

Proof. The construction of (6.79) is standard. The definition λµ(M)
def= µ(Q· ∈ M)

can be expressed in terms of indicators:
∫

Ω
1M (Qω)µ(dω) =

∫

exG (π)
1M (ν)λµ(dν).

An arbitrary bounded measurable functionϕ : M1(Ω) →R can be approximated by
a sequence of finite linear combinations of indicator functions 1M . Applying this
with ϕ= eB yields (6.84).

Assume now that there exists another measure λ′
µ such that (6.84) holds with

λ′
µ in place of λµ. Observe that any ν ∈ exG (π) satisfies ν(Q· = ν) = 1 (see (6.83)).

This implies that, for a measurable M ⊂M1(Ω), ν(Q· ∈ M) = 1M (ν). Therefore,

λ′
µ(M) =

∫

exG (π)
1M (ν)λ′

µ(dν)

=
∫

exG (π)
ν(Q· ∈ M)λ′

µ(dν) =µ(Q· ∈ M) =λµ(M) ,

where we used (6.84) for the third identity. This shows that λµ =λ′
µ.

The fact that any µ ∈ G (π) can be decomposed over the extremal elements of
G (π) is convenient when trying to establish uniqueness. Indeed, to show that G (π)
is a singleton, by Theorem 6.72, it suffices to show that it contains a unique extremal
element. Since the latter have distinguishing properties, proving that there is only
one is often simpler. This is seen in the following proof of our result on uniqueness
for one-dimensional systems, stated in Section 6.5.5.

Proof of Theorem 6.40: The proof consists in showing that G (Φ) has a unique ex-
tremal measure. By Theorem 6.72, this implies that G (Φ) is a singleton.

Let therefore µ,ν ∈ exG (Φ). By Theorem 6.63, µ and ν can be constructed as
thermodynamic limits. Let ω (respectively η) be such that πΦ

B(N )
(· |ω) ⇒ µ (respec-

tively πΦ
B(N )

(· |η) ⇒ ν) as N → ∞. By Lemma 6.43, we thus have, for all cylinders
C ∈C ,

µ(C ) = lim
N→∞

πΦB(N )(C |ω) ≥ e−2D lim
N→∞

πΦB(N )(C |η) = e−2Dν(C ) .

It is easy to verify that D = {
A ∈F : µ(A) ≥ e−2Dν(A)

}
is a monotone class. Since it

contains the algebra C , it also coincides with F , and so µ ≥ e−2Dν. In particular,
ν is absolutely continuous with respect to µ. Since two distinct extremal measures
are mutually singular (see Lemma 6.62), we conclude that µ= ν.
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6.9 The variational principle

The DLR formalism studied in the present chapter characterizes the Gibbs mea-
sures describing infinite systems through a collection of local conditions: µπΦΛ = µ
for all Λ⋐ Zd . In this section, we present an alternative, variational characteriza-
tion of translation-invariant Gibbs measures, that allows to establish a relationship
between the DLR formalism and the way equilibrium is described in thermostatics,
as had been presented in the introduction.

The idea behind the variational principle is of a different nature, and has a more
thermodynamical flavor. It will only apply to translation-invariant Gibbs measures,
and consists in defining an appropriate functional on the set of all translation-
invariant probability measures, W : M1,θ(Ω) →R, of the form

µ 7→W (µ) = Entropy(µ)−β×Energy(µ) . (6.85)

By analogy with (1.17) of Chapter 1, − 1
βW (µ) can be interpreted as the free en-

ergy. As seen at various places in Chapter 1, in particular in Section 1.3, equilib-
rium states are characterized as those that minimize the free energy; here, we will
see that translation-invariant Gibbs measures are the minimizers of − 1

βW (·).

Remark 6.73. Since the relation between the material presented in this chapter and
thermostatics is important from the physical point of view, we will again resort to
the physicists’ conventions regarding the inverse temperature and write, in partic-
ular, the potential as βΦ. To ease notations, the temperature will usually not be
explicitly indicated. ⋄

6.9.1 Formulation in the finite case

To illustrate the content of the variational principle, let us consider the simplest
case of a system living in a finite set Λ ⋐ Zd . Let M1(ΩΛ) denote the set of all
probability distributions on ΩΛ and let HΛ :ΩΛ→R be a Hamiltonian. Define, for
each µΛ ∈M1(ΩΛ),

WΛ(µΛ)
def= SΛ(µΛ)−β〈HΛ〉µΛ , (6.86)

where SΛ(µΛ) is the Shannon entropy ofµΛ, which was already considered in Chap-
ter 1. Here, we denote it by

SΛ(µΛ)
def= −

∑
ωΛ∈ΩΛ

µΛ(ωΛ) logµΛ(ωΛ) , (6.87)

and 〈HΛ〉µΛ represents the average energy underµΛ. Our goal is to maximize WΛ(·)
over all probability distributions µΛ ∈M1(ΩΛ).

Notice that, at high temperature (small β), the dominant term is the entropy
and WΛ is maximal for the uniform distribution (remember Lemma 1.9). On the
other hand, at low temperature (β large) the dominant term is the energy and WΛ is
maximal for distributions with a minimal energy. ⋄

As we have already seen in Chapter 1, when µΛ is the Gibbs distribution associ-

ated to the Hamiltonian HΛ, µGibbs
Λ

(ωΛ)
def= e−βHΛ(ωΛ)

ZΛ
, a simple computation shows

that W (µGibbs
Λ

) coincides with the pressure of the system:

WΛ(µGibbs
Λ ) = log ZΛ .
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Lemma 6.74 (Variational principle, finite version). For all µΛ ∈M1(ΩΛ),

WΛ(µΛ) ≤WΛ(µGibbs
Λ ) .

Moreover, µGibbs
Λ

is the unique maximizer of WΛ(·).

Proof. Since log(·) is concave, Jensen’s inequality gives, for all µΛ ∈M1(ΩΛ),

WΛ(µΛ) =
∑

ωΛ∈ΩΛ
µΛ(ωΛ) log

e−βHΛ(ωΛ)

µΛ(ωΛ)
≤ log

∑
ωΛ∈ΩΛ

e−βHΛ(ωΛ) = log ZΛ ,

and equality holds if and only if e−βHΛ(ωΛ)

µΛ(ωΛ) is constant, that is, if µΛ =µGibbs
Λ

.

The variational principle can be expressed in a slightly different form, useful
to understand what will be done later. Let us define the relative entropy of two
distributions µΛ,νΛ ∈M1(ΩΛ) by

HΛ(µΛ |νΛ)
def=

{∑
ωΛ∈ΩΛ µΛ(ωΛ) log µΛ(ωΛ)

νΛ(ωΛ) if µΛ≪ νΛ ,

+∞ otherwise.
(6.88)

(The interested reader can find a discussion of relative entropy and its basic prop-
erties in Appendix B.12.) First, HΛ can be related to SΛ by noting that, if λΛ denotes
the uniform measure onΩΛ,

HΛ(µΛ |λΛ) = log |ΩΛ|−SΛ(µΛ) . (6.89)

Observe also that
HΛ(µΛ |µGibbs

Λ ) =WΛ(µGibbs
Λ )−WΛ(µΛ) , (6.90)

so that the variational principle above can be reformulated as follows:

HΛ(µΛ |µGibbs
Λ ) ≥ 0, with equality if and only if µΛ =µGibbs

Λ . (6.91)

Exercise 6.28. Let H per

Vn ;β,h be the Hamiltonian of the Ising model in Vn
def=

{0, . . . ,n −1}d with periodic boundary condition. Show that, among all product
probability measures µVn = ⊗

i∈Vn ρi on {±1}Vn (where all ρi are equal), the unique
measure maximizing

WVn (µVn )
def= SVn (µVn )−β〈

H per

Vn ;β,h

〉
µVn

is the measure such that ρi = ν for all i ∈ Vn , where ν is the probability measure on
{±1} with mean m satisfying m = tanh(2dβm +h). In other words, the maximum is
achieved by the product measure obtained through the “naive mean-field approach”
of Section 2.5.1. In this sense, the latter is the best approximation of the original
model among all product measures.

The rest of this section consists in extending this point of view to infinite sys-
tems. To formulate the variational principle for infinite-volume Gibbs measures,
we will need to introduce notions playing the role of the entropy and average en-
ergy for infinite systems. This will be done by considering the corresponding den-
sities:

lim
Λ↑Zd

1

|Λ|SΛ(µΛ) , lim
Λ↑Zd

1

|Λ| 〈HΛ〉µΛ .
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The existence of these two limits will be established when µΛ is the marginal of a
translation-invariant measure, in Propositions 6.75 and 6.78.

Remember that G (βΦ) denotes the set of all probability measures compatible

with the Gibbsian specification πβΦ, and Gθ(βΦ)
def= G (βΦ)∩M1,θ(Ω).

In the following sections, we will define a functional W : M1,θ(Ω) 7→ R, using
the densities mentioned above, and characterize the Gibbs measures of Gθ(βΦ) as
maximizers of W (·). Notice that, since first-order phase transitions can occur on
the infinite lattice, we do not expect uniqueness of the maximizer to hold in general.

6.9.2 Specific entropy and energy density

Remember from the beginning of the chapter that the marginal of µ ∈ M1(Ω) on

Λ⋐ Zd is µ|Λ def= µ ◦Π−1
Λ ∈ M1(ΩΛ). Since no confusion will be possible below, we

will write µΛ instead of µ|Λ, to lighten the notations. One can then define the Shan-
non entropy ofµ inΛ by

SΛ(µ)
def= SΛ(µΛ) ,

where SΛ(µΛ) was defined in (6.87) (bearing in mind that µΛ is now the marginal of
µ inΛ).

Proposition 6.75 (Existence of the specific entropy). For all µ ∈M1,θ(Ω),

s(µ)
def= lim

n→∞
1

|B(n)|SB(n)(µ) (6.92)

exists and is called the specific entropy of µ. Moreover,

s(µ) = inf
Λ∈R

SΛ(µ)

|Λ| , (6.93)

and µ 7→ s(µ) is affine: for all µ,ν ∈M1,θ(Ω) and α ∈ (0,1),

s(αµ+ (1−α)ν) =αs(µ)+ (1−α)s(ν) .

Given µ,ν ∈ M1(Ω), let us use (6.88) to define the relative entropy of µ with
respect to ν (onΛ):

HΛ(µ |ν)
def= HΛ(µΛ |νΛ) .

Lemma 6.76. For all µ,ν ∈M1(Ω) and all Λ⋐Zd ,

1. HΛ(µ |ν) ≥ 0, with equality if and only if µΛ = νΛ,

2. (µ,ν) 7→HΛ(µ,ν) is convex, and

3. if ∆⊂Λ, then H∆(µ |ν) ≤HΛ(µ |ν).

Proof. The first and second items are proved in Proposition B.66, so let us consider
the third one. We can assume that µΛ≪ νΛ, otherwise the claim is trivial. Then,

HΛ(µ |ν) =
∑
ωΛ

φ
(µΛ(ωΛ)

νΛ(ωΛ)

)
νΛ(ωΛ) ,
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where φ(x)
def= x log x (x ≥ 0) is convex. We then split ωΛ into ωΛ = τ∆ηΛ\∆, and

consider the summation over ηΛ\∆, for a fixed τ∆. Using Jensen’s inequality for the
distribution νΛ conditioned on τ∆, we get

HΛ(µ |ν) ≥
∑
τ∆

φ
(µ∆(τ∆)

ν∆(τ∆)

)
ν∆(τ∆) =H∆(µ |ν) .

Corollary 6.77. µ 7→ −SΛ(µ) is convex and, when Λ,Λ′ ⋐Zd are disjoint,

SΛ∪Λ′ (µ) ≤ SΛ(µ)+SΛ′ (µ) .

Proof. The first claim follows from (6.89) and Lemma 6.76. A straightforward com-

putation shows that, introducing ν
def= µΛ⊗λΛc with λΛc the uniform product mea-

sure onΩΛc , one gets

SΛ(µ)−SΛ∪Λ′ (µ) =HΛ∪Λ′ (µ|ν)− log |ΩΛ′ | ≥HΛ′ (µ|ν)− log |ΩΛ′ | = −SΛ′ (µ) .

We used again Lemma 6.76 in the inequality.

Proof of Proposition 6.75: By Corollary 6.77, the set function a(Λ)
def= SΛ(µ) is both

translation invariant and subadditive (see Section B.1.3): for all pairs of disjoint
paralellepipeds Λ,Λ′, a(Λ∪Λ′) ≤ a(Λ) + a(Λ′). The existence of the limit defin-
ing s(µ) is therefore guaranteed by Lemma B.6. By Corollary 6.77, SΛ(·) is concave,

which implies that s(·) is concave too. To verify that it is also convex, consider µ′ def=
αµ+(1−α)ν. Since logµ′

Λ(ωΛ) ≥ log(αµΛ(ωΛ)) and logµ′
Λ(ωΛ) ≥ log((1−α)νΛ(ωΛ)),

SΛ(µ′) ≤αSΛ(µ)+ (1−α)SΛ(ν)−α log(1−α)− (1−α) log(1−α) .

This implies that s(·) is also convex, proving the second claim of the proposition.

Exercise 6.29. Show that s(·) is upper semicontinuous, that is,

µk ⇒µ implies limsup
k→∞

s(µk ) ≤ s(µ) .

Let us now turn our attention to Gibbs measures and consider a potential
Φ = {ΦB }B⋐Zd . Until the end of the section, we will assume Φ to be absolutely
summable and translation invariant, like the potentials considered in Section 6.7.1.
Notice that translation invariance implies that Φ is in fact uniformly absolutely
summable:

sup
i∈Zd

∑

B⋐Zd :
B∋i

∥ΦB∥∞ =
∑

B⋐Zd :
B∋0

∥ΦB∥∞ <∞ .

Proposition 6.78 (Existence of the average energy density). For all µ ∈M1,θ(Ω),

lim
n→∞

1

|B(n)|
〈
HB(n);Φ

〉
µ = 〈uΦ〉µ , (6.94)

where

uΦ
def=

∑

B⋐Zd :
B∋0

1

|B |ΦB . (6.95)
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Proof. First,

∣∣HB(n);Φ−
∑

j∈B(n)

θ j uΦ
∣∣≤

∑
j∈B(n)

∑
B∋ j :

B ̸⊂B(n)

∥Φ∥∞
def= rB(n);Φ . (6.96)

The uniform absolute summability of Φ implies that rB(n);Φ = o(|B(n)|) (see Exer-
cise 6.30 below). By translation invariance, 〈θ j uΦ〉µ = 〈uΦ〉µ, which concludes the
proof.

Exercise 6.30. Show that, when Φ is absolutely summable and translation invari-
ant,

lim
n→∞

rB(n);Φ

|B(n)| = 0. (6.97)

The last object whose existence in the thermodynamic limit needs to be proved
is the pressure.

Theorem 6.79. When Φ is absolutely summable and translation invariant,

ψ(Φ)
def= lim

n→∞
1

β|B(n)| logZη
B(n);βΦ

exists and does not depend on the boundary condition η; it is called the pressure.
Moreover, Φ 7→ ψ(Φ) is convex on the space of absolutely summable, translation-
invariant potentials: if Φ1,Φ2 are two such potentials and t ∈ (0,1), then

ψ
(
tΦ1 + (1− t )Φ2)≤ tψ(Φ1)+ (1− t )ψ(Φ2) .

We will actually see, as a byproduct of the proof, that the pressure equals

βψ(Φ) = s(µ)−β〈uΦ〉µ , ∀µ ∈Gθ(βΦ) , (6.98)

which is the analogue of the Euler relation (1.9).
We will show existence of the pressure by using the convergence proved above

for the specific entropy and average energy. To start:

Lemma 6.80. Let µ ∈ M1,θ(Ω) and (νn)n≥1, (ν̃n)n≥1 be two arbitrary sequences in
M1(Ω). If either of the sequences

( 1

|B(n)|HB(n)(µ |νnπ
βΦ

B(n)
)
)

n≥1
,

( 1

|B(n)|HB(n)(µ | ν̃nπ
βΦ

B(n)
)
)

n≥1
(6.99)

has a limit as n →∞, then the other one also does, and the limits are equal.

Proof. By the absolute sommability of Φ, we have πβΦ
B(n)

(ωB(n) |η) > 0 for all n, uni-

formly in ωB(n) and η. This guarantees that µB(n) ≪ νnπ
βΦ

B(n)
and µB(n) ≪ ν̃nπ

βΦ

B(n)
.

Therefore,

HB(n)(µ |νnπ
βΦ

B(n)
)−HB(n)(µ | ν̃nπ

βΦ

B(n)
) =

∑
ωB(n)

µB(n)(ωB(n)) log
ν̃nπ

βΦ

B(n)
(ωB(n))

νnπ
βΦ

B(n)
(ωB(n))

.
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Since

sup
ωB(n),η,η̃

∣∣HB(n);Φ(ωB(n)ηB(n)c )−HB(n);Φ(ωB(n)η̃B(n)c )
∣∣≤ 2rB(n);Φ , (6.100)

where rB(n);Φ was defined in (6.96), we have,

e−4βrB(n);Φ ≤
ν̃nπ

βΦ

B(n)
(ωB(n))

νnπ
βΦ

B(n)
(ωB(n))

≤ e4βrB(n);Φ .

By Exercise 6.30, rB(n);Φ = o(|B(n)|), which proves the claim.

Proof of Proposition 6.79: We use Lemma 6.80 with µ ∈ Gθ(βΦ), νn = µ, and ν̃n =
δω, for some arbitrary fixed ω ∈Ω. Then νnπ

βΦ

B(n)
=µ, so the first sequence in (6.99)

is identically equal to zero. Therefore, the second sequence must converge to zero.
By writing it explicitly, the second sequence becomes

1

|B(n)|HB(n)
(
µ | ν̃nπ

βΦ

B(n)

)=
1

|B(n)| logZωB(n);βΦ− 1

|B(n)|
{
SB(n)(µ)−β〈

HB(n);Φ( ·ωB(n)c )
〉
µ

}
.

(6.101)

By Propositions 6.75 and 6.78, the second and third terms on the right-hand side are
known to have limits, and the limit of the third one does not depend on ω, since,
by (6.100), 〈

HB(n);Φ( ·ωB(n)c )
〉
µ =

〈
HB(n);Φ

〉
µ+O(rB(n);Φ) .

Since the whole sequence on the right-hand side of (6.101) must converge to zero,
this proves the existence of the pressure and justifies (6.98). As in the proof of
Lemma 3.5, convexity follows from Hölder’s inequality.

6.9.3 Variational principle for Gibbs measures

Proposition 6.81. Let Φ be absolutely convergent and translation invariant. Let
ν ∈Gθ(βΦ). Then, for all µ ∈M1,θ(Ω), the Gibbs free energy

h(µ |Φ)
def= lim

n→∞
1

|B(n)|HB(n)(µ |ν) (6.102)

exists and does not depend on ν (only on Φ). Moreover, h(µ |Φ) is non-negative and
satisfies

h(µ |Φ) =βψ(Φ)− {s(µ)−β〈uΦ〉µ} . (6.103)

Proof. If ν ∈ Gθ(βΦ), then HB(n)(µ |ν) = HB(n)(µ |νπβΦB(n)
). Therefore, to show the

existence of the limit (6.102), we can use Lemma 6.80 with νn = ν. As earlier, we
choose ν̃n = δω, for which we know that the limit of the second sequence in (6.99)
exists and equals βψ(Φ)− {s(µ)−β〈uΦ〉µ}, as seen after (6.101).

We can now formulate the infinite-volume version of (6.91).

Theorem 6.82 (Variational principle). Let µ ∈M1,θ(Ω). Then

µ ∈Gθ(βΦ) if and only if h(µ |Φ) = 0. (6.104)
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The variational principle stated above establishes the analogy between translation
invariant Gibbs measures and the basic principles of thermostatics, as announced
at the beginning of the section.

We already know from (6.98) that µ ∈ Gθ(βΦ) implies h(µ |Φ) = 0. The proof of
the converse statement is trickier; it will rely on the following lemma.

Lemma 6.83. Let µ,ν ∈M1,θ(Ω) be such that

lim
n→∞

1

|B(n)|HB(n)(µ |ν) = 0. (6.105)

Fix ∆ ⋐ Zd . Then, for all δ > 0 and for all k for which B(k) ⊃ ∆, there exists some
finite regionΛ⊃B(k) such that

0 ≤HΛ(µ |ν)−HΛ\∆(µ |ν) ≤ δ . (6.106)

We know from item 1 of Lemma 6.76 that, in a finite region, HΛ(µ |ν) = 0
implies µΛ = νΛ. Although (6.105) does not necessarily imply that µ= ν, (6.106) will
imply that µ and ν can be compared to each other on arbitrarily large regions Λ (see
the proof of Theorem 6.82 below). ⋄

Proof. We will use repeatedly the monotonicity of HΛ in Λ, proved in Lemma 6.76.
Fix δ> 0 and k so that B(k) ⊃∆, and let n be such that

1

|B(n)|HB(n)(µ |ν) ≤ δ

2|B(k)| .

If m = ⌊(2n +1)/(2k +1)⌋, then at least md adjacent disjoint translates of B(k) can
be arranged to fit in B(n); we denote them by B1(k), . . . ,Bmd (k). We assume for
simplicity that B1(k) = B(k). For each ℓ ∈ {2, . . . ,md }, let iℓ be such that Bℓ(k) =
iℓ+B(k). Define now ∆(ℓ)

def= iℓ+∆ and Λ(ℓ)
def= B1(k)∪·· ·∪Bℓ(k). For commodity,

let H∅(µ |ν)
def= 0. SinceΛ(ℓ) \Bℓ(k) ⊂Λ(ℓ) \∆(ℓ),

1

md

md∑
ℓ=1

{
HΛ(ℓ)(µ |ν)−HΛ(ℓ)\∆(ℓ)(µ |ν)

}≤ 1

md

md∑
ℓ=1

{
HΛ(ℓ)(µ |ν)−HΛ(ℓ)\Bℓ(k)(µ |ν)

}

= 1

md
HΛ(md )(µ |ν)

≤ 1

md
HB(n)(µ |ν)

≤ δ .

In the last line, we used the fact that md ≥ |B(n)|/(2|B(k)|). Since the first sum over
ℓ corresponds to the arithmetic mean of a collection of non-negative numbers, at
least one of them must satisfy

HΛ(ℓ)(µ |ν)−HΛ(ℓ)\∆(ℓ)(µ |ν) ≤ δ .

One can thus takeΛ
def= θ−1

iℓ
Λ(ℓ); translation invariance of µ and ν yields the desired

result.
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Proof of Theorem 6.82: Let µ ∈ M1,θ(Ω) be such that h(µ |Φ) = 0. We need to show
that, for any ∆⋐Zd and any local function f ,

µπ
βΦ
∆

( f ) =µ( f ) . (6.107)

By Proposition 6.81, h(µ |Φ) = 0 means that we can take any ν ∈Gθ(βΦ) and assume
that

lim
n→∞

1

|B(n)|HB(n)(µ |ν) = 0.

In particular, µΛ ≪ νΛ for all Λ ⋐ Zd ; we will denote the corresponding Radon–

Nikodým derivative by ρΛ
def= dµΛ

dνΛ
. Observe that ρΛ is FΛ-measurable and that, for

all FΛ-measurable functions g , µ(g ) = ν(ρΛg ).

Fix ϵ > 0. To start, µπβΦ
∆

( f ) = µ(πβΦ
∆

f ) and, since πβΦ
∆

f is quasilocal and F∆c -

measurable, we can find some F∆c -measurable local function g∗ such that ∥πβΦ
∆

f −
g∗∥∞ ≤ ϵ. Let then k be large enough to ensure that B(k) contains ∆, as well as the
supports of f and g∗. In this way, g∗ is FB(k)\∆-measurable.

Let δ
def= r ϵ

2 , and takeΛ⊃B(k), as in Lemma 6.83. We write

µπ
βΦ
∆

( f )−µ( f ) =µ(πβΦ
∆

f − g∗)

+ (
µ(g∗)−ν(ρΛ\∆g∗)

)

+ν(
ρΛ\∆(g∗−πβΦ∆ f )

)

+ν(
ρΛ\∆(πβΦ

∆
f − f )

)

+ν(
(ρΛ\∆−ρΛ) f

)

+ (
ν(ρΛ f )−µ( f )

)
.

We consider one by one the terms on the right-hand side of this last display. Since

∥πβΦ
∆

f − g∗∥∞ ≤ ϵ, the first and third terms are bounded by ϵ. The second term
is zero since g∗ is FΛ\∆-measurable, and the sixth term is zero since f is FΛ-
measurable. Now the fourth term is zero too, since ρΛ\∆ is F∆c -measurable and
since ν ∈Gθ(βΦ) implies that

ν
(
ρΛ\∆(πβΦ

∆
f )

)= ν(
π
βΦ
∆

(ρΛ\∆ f )
)= νπβΦ

∆
(ρΛ\∆ f ) = ν(ρΛ\∆ f ) .

Finally, consider the fifth term. First, notice that

δ≥HΛ(µ |ν)−HΛ\∆(µ |ν) =µ
(
log

ρΛ

ρΛ\∆

)
= ν

(
ρΛ log

ρΛ

ρΛ\∆

)
= ν(

ρΛ\∆φ(ρΛ/ρΛ\∆)
)

,

where φ(x)
def= 1−x +x log x. It can be verified that there exists r > 0 such that

φ(x) ≥ r (|x −1|−ϵ/2) ∀x ≥ 0. (6.108)

Using (6.108),

ν
(
ρΛ\∆φ(ρΛ/ρΛ\∆)

)≥ rν(|ρΛ−ρΛ\∆|)−
r ϵ

2
.

By definition of δ, this implies that ν(|ρΛ −ρΛ\∆|) ≤ ϵ. The fifth term is therefore

bounded by ϵ∥ f ∥∞. Altogether, |µπβΦ
∆

( f )−µ( f )| ≤ (2+∥ f ∥∞)ϵ, which proves (6.107)
since ϵ was arbitrary.
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We have completed the program described at the beginning of the section:

Theorem 6.84. Let Φ be an absolutely summable, translation-invariant potential.
Define the affine functional W : M1,θ(Ω) →R by

µ 7→W (µ)
def= s(µ)−β〈uΦ〉µ .

Then the maximizers of W (·) are the translation-invariant Gibbs measures compat-
ible with πβΦ.

6.10 Continuous spins

As we said at the beginning of the chapter, the DLR formalism can be developed for
much more general single-spin spaces. In this section, we briefly discuss some of
these extensions.

As long as the single-spin space remains compact, most of the results stated and
proved in the previous sections hold, although some definitions and some of the
proofs given forΩ0 = {±1} need to be slightly adapted. In contrast, when the single-
spin space is not compact, even the existence of Gibbs measures is not guaranteed
(even for very reasonable interactions, as will be discussed in Chapter 8).

We discuss these issues briefly; for details on more general settings in which the
DLR formalism can be developed, we refer the reader to [134].

6.10.1 General definitions

Let (Ω0,d) be a separable metric space. Two guiding examples that the reader
should keep in mind are S1 = {

x ∈R2 : ∥x∥2 = 1
}

equipped with the Euclidean dis-
tance, or Rwith the usual distance | · |.

The distance induces the Borelσ-algebra B0 onΩ0, generated by the open sets.
Let

ΩΛ
def= ΩΛ0 , Ω

def= ΩZ
d

0 .

The measurable structure onΩΛ is the product σ-algebra

BΛ
def=

⊗
i∈Λ

B0 ,

which is the smallest σ-algebra on ΩΛ generated by the rectangles, that is, the sets
of the form ×i∈ΛAi , Ai ∈B0 for all i ∈Λ. The projections ΠΛ :Ω→ΩΛ are defined
as before. For allΛ⋐Zd ,

C (Λ)
def= Π−1

Λ (BΛ)

denotes theσ-algebra of cylinders with base inΛ and, for S ⊂Zd (possibly infinite),

CS
def=

⋃
Λ⋐S

C (Λ)

is the algebra of cylinders with base in S, FS
def= σ(CS ). As we did earlier, we let C

def=
CZd , F

def= FZd , and denote the set of probability measures on (Ω,F ) by M1(Ω).

Rather than consider general specifications, we focus only on Gibbsian speci-
fications. Let therefore Φ = {ΦB }B⋐Zd be a collection of maps ΦB : Ω→ R, where
eachΦB is FB -measurable, and absolutely summable, as in (6.25). We present two
important examples.
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• The O(N ) model. This model has single-spin space Ω0 = {
x ∈RN : ∥x∥2 = 1

}

and its potential can be taken as

ΦB (ω) =
{
−βωi ·ω j if B = {i , j }, i ∼ j ,

0 otherwise,
(6.109)

where x · y denotes the scalar product of x, y ∈ RN . The case N = 2 corre-
sponds to the X Y model, N = 3 corresponds to the Heisenberg model. These
models, and their generalizations, will be discussed in Chapters 9 and 10.

• The Gaussian Free Field. Here, as already mentioned,Ω0 =R and

ΦB (ω) =





β(ωi −ω j )2 if B = {i , j } , i ∼ j ,

λω2
i if B = {i } ,

0 otherwise.

This model will be discussed in Chapter 8, and some generalizations in Chap-
ter 9.

Let HΛ;Φ denote the Hamiltonian associated to Φ, in a region Λ⋐ Zd , defined
as in (6.24). For spins taking values in {±1}, a Gibbsian specification associated to a
Hamiltonian was defined pointwise in (6.30) through the numbers πΦΛ(τΛ |ω). Due
to the a priori continuous nature of Ω0 (as in the case Ω0 = S1), the finite-volume
Gibbs distribution must be defined differently, since even configurations in a finite
volume will usually have zero probability.

Assume therefore we are given a measure λ0 on (Ω0,B0), called the reference
measure. λ0 need not necessarily be a probability measure. In the case of S1 and
R, the most natural choice for λ0 is the Lebesgue measure 2. The product measure
on (ΩΛ,BΛ), usually denoted

⊗
i∈Λλ0 but which we will here abbreviate by λΛ0 , is

defined by setting, for all rectangles ×i∈ΛAi ,

λΛ0 (×i∈ΛAi )
def=

∏
i∈Λ

λ0(Ai ) .

We then define the Gibbsian specification πΦ = {πΦΛ}Λ⋐Zd by setting, for all A ∈
F and all boundary conditions η ∈Ω (compare with (6.30)),

πΦΛ(A |η)
def= 1

Zη
Λ

∫

ΩΛ

1A(ωΛηΛc )e−HΛ;Φ(ωΛηΛc )λΛ0 (dωΛ) , (6.110)

where

Zη
Λ;Φ

def=
∫

ΩΛ

e−HΛ;Φ(ωΛηΛc )λΛ0 (dωΛ) .

For convenience, we will sometimes use the following abbreviation:

πΦΛ(dω |η) = e−HΛ;Φ(ω)

Zη
Λ;Φ

λΛ0 ⊗δη(dω) , (6.111)

2In the case Ω0 = {−1,1}, the (implicitly used) reference measure λ0 was simply the counting mea-
sure λ0 = δ−1 +δ1.
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in which δη denotes the Dirac mass on ΩΛc concentrated at ηΛc . The expectation
of a function f :Ω→ R with respect to πΦΛ(· |η) thus becomes, after integrating out
over δη,

πΦΛ f (η) =
∫

ΩΛ

e−HΛ;Φ(ωΛηΛc )

Zη
Λ;Φ

f (ωΛηΛc )λΛ0 (dωΛ) .

All the notions introduced earlier, in particular the notion of consistency of ker-
nels, of Gibbsian specificationπΦ and of the set of probability measures compatible
with a specification πΦ, G (Φ), extend immediately to this more general setting.

The topological notions related toΩhave immediate generalizations. Letω ∈Ω.
A sequence (ω(n))n≥1 ⊂Ω converges to ω if, for all j ∈Zd ,

d(ω(n)
j ,ω j ) → 0 as n →∞ .

In the present general context, a sequence µn ∈ M1(Ω) is said to converge to µ ∈
M1(Ω), which we write µn ⇒µ, if [2]

µn( f ) →µ( f ) for all bounded local functions f .

6.10.2 DLR formalism for compact spin space

WhenΩ0 is compact, most of the important results of this chapter have immediate
analogues. The starting point is that (as in the caseΩ0 = {±1}, see Proposition 6.20)
the notions of convergence for configurations and measures make Ω and M1(Ω)
sequentially compact. Proceeding exactly as in the proof of Theorem 6.26, the com-
pactness of M1(Ω) and the Feller property allow to show that there exists at least
one Gibbs measure compatible with πΦ: G (Φ) ̸=∅. Although some proofs need to
be slightly adapted, all the main results presented on the structure of G (Φ) when
Ω0 = {±1} remain true when Ω0 is a compact metric space. In particular, G (Φ) is
convex and its extremal elements enjoy the same properties as before:

Theorem 6.85. (Compact spin space) Let Φ be an absolutely summable potential.
Let µ ∈G (Φ). The following conditions are equivalent characterizations of extremal-
ity.

1. µ is extremal.

2. µ is trivial on T∞: if A ∈T∞, then µ(A) is either 1 or 0.

3. All T∞-measurable functions are µ-almost surely constant.

4. µ has short-range correlations: for all A ∈F (or, equivalently, for all A ∈C ),

lim
Λ↑Zd

sup
B∈FΛc

∣∣µ(A∩B)−µ(A)µ(B)
∣∣= 0. (6.112)

Extremal elements can also be constructed using limits:

Theorem 6.86. (Compact spin space) Let µ ∈ exG (Φ). Then, for µ-almost all ω,

πΦB(n)(· |ω) ⇒µ .
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As in the case of finite single-spin space, to each µ ∈G (Φ) corresponds a unique
probability distribution λµ on M1(Ω), concentrated on the extremal measures of
G (Φ), leading to the following extremal decomposition:

Theorem 6.87. (Compact spin space) For all µ ∈G (Φ),

∀B ∈F , µ(B) =
∫

exG (π)
ν(B)λµ(dν) . (6.113)

Moreover, λµ is the unique measure on M1(Ω) for which such a representation holds.

Finally, uniqueness results similar to Theorems 6.31 and 6.40 hold.

6.10.3 Symmetries

Let (G, ·) be a group acting on Ω0 (this action can then be extended to Ω in the
natural way as explained in Section 6.6). The notion of G-invariant potential is the
same as before, but, in order to state the main result about symmetries, we will need
to assume that the reference measure is also invariant under G, that is, τgλ0 = λ0

for all g ∈G.
To illustrate this, let us return to the two examples introduced above.

• For the O(N ) models, the potential is invariant under the action of the or-
thogonal group O(N ), which acts on Ω0 via its representation as the set of
all N × N orthogonal matrices. Observe that the reference measure is then
O(N )-invariant since the determinant of each such matrix is ±1.

• For the Gaussian Free Field, the potential is invariant under the action of the
group (R,+) (that is, under the addition of the same arbitrary real number to
all spins of the configuration). Since the reference measure is the Lebesgue
measure, its invariance is clear.

One then gets:

Theorem 6.88. Let G be an internal transformation group under which the reference
measure is invariant. Let π be a G-invariant specification. Then, G (π) is preserved
by G:

µ ∈G (π) ⇒ τgµ ∈G (π) ∀g ∈G .

6.11 A criterion for non-uniqueness

The results on uniqueness and on the extremal decomposition mentioned earlier
hold for of a very general class of specifications. Unfortunately, it is much harder to
establish non-uniqueness in a general setting and one usually has to resort to more
model-specific methods. Two such approaches will be presented in Chapters 7 (the
Pirogov–Sinai theory) and 10 (reflection positivity).

In the present section, we derive a criterion relating non-uniqueness to the
non-differentiability of a suitably-defined pressure [10]. This provides a vast gen-
eralization of the corresponding discussion in Section 3.2.2. This criterion will be
used in Chapter 10 to establish non-uniqueness in models with continuous spin.
For simplicity, we will restrict our attention to translation-invariant potentials of
finite range and assume thatΩ0 is compact.
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Let Φ be a translation invariant and finite-range potential, and g be any local

function. For each Λ⋐ Zd , let Λ(g )
def= {

i ∈Zd : supp(g ◦θi )∩Λ ̸=∅
}
. Then define,

for each ω ∈Ω,

ψω
Λ(λ)

def= 1

|Λ(g )| log
〈

exp
{
λ

∑
j∈Λ(g )

g ◦θ j

}〉ω
Λ;Φ

, (6.114)

where 〈·〉ωΛ;Φ denotes expectation with respect to the kernel πΦΛ(· |ω).

Lemma 6.89. For any sequence Λn ⇑ Zd and any sequence of boundary conditions
(ωn)n≥1, the limit

ψ(λ)
def= lim

n→∞ψ
ωn
Λn

(λ) (6.115)

exists and is independent of the choice of (Λn)n≥1 and (ωn)n≥1. Moreover, λ 7→ψ(λ)
is convex.

Although it could be adapted to the present situation, the existence of the pres-
sure proved in Theorem 6.79 does not apply since, here, we do not assume that Ω0

contains finitely many elements.

Proof. Notice that |Λn(g )|/|Λn | → 0. Using the fact that Φ has finite range and that
g is local, one can repeat the same steps as in the proof of Theorem 3.6. Using the
Hölder Inequality as we did in the proof of Lemma 3.5, we deduce that λ 7→ψω

Λ(λ)
is convex.

Exercise 6.31. Complete the details of the proof of Lemma 6.89.

Remark 6.90. In (6.114), the expectation with respect to πΦΛ(· |ω) can be substituted
by the expectation with respect to any Gibbs measure µ ∈G (Φ). Namely, let

ψ
µ

Λ
(λ)

def= 1

|Λ(g )| log
〈

exp
{
λ

∑
j∈Λ(g )

g ◦θ j

}〉
µ

. (6.116)

Observe that, since 〈 f 〉µ = 〈〈 f 〉·Λ;Φ〉µ, there exist ω′,ω′′ (depending on Λ, Φ, etc.)
such that

〈
exp

{
λ

∑
j∈Λ(g )

g ◦θ j

}〉ω′

Λ;Φ
≤

〈
exp

{
λ

∑
j∈Λ(g )

g ◦θ j

}〉
µ
≤

〈
exp

{
λ

∑
j∈Λ(g )

g ◦θ j

}〉ω′′

Λ;Φ
.

(The existence ofω′,ω′′ follows from the fact that, for any local function f , the func-
tion ω 7→ 〈 f 〉ωΛ;Φ is continuous and bounded and therefore attains its bounds.) Us-

ing Lemma 6.89, it follows that ψ(λ) = limn→∞ψ
µ

Λn
(λ). ⋄

Remember that convexity guarantees that ψ possesses one-sided derivatives
with respect to λ. As we did for the Ising model in Theorem 3.34 and Proposi-
tion 3.29, we can relate these derivatives to the expectation of g .

Proposition 6.91. For all µ ∈Gθ(Φ),

∂ψ

∂λ−

∣∣∣
λ=0

≤ 〈g 〉µ ≤
∂ψ

∂λ+

∣∣∣
λ=0

. (6.117)

Moreover, there exist µ+,µ− ∈Gθ(Φ), such that

∂ψ

∂λ+

∣∣∣
λ=0

= 〈g 〉µ+ ,
∂ψ

∂λ−

∣∣∣
λ=0

= 〈g 〉µ− . (6.118)
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In practice, this result is used to obtain non-uniqueness (namely, the existence of
distinct measures µ+,µ−) by finding a local function g for which ψ is not differen-
tiable at λ= 0. In the Ising model, that function was g =σ0.

Proof. We first use the fact that ψ= limn→∞ψ
µ

Λn
(λ) (see Remark 6.90). Since ψµ

Λ
is

convex, it follows from (B.9) that, for all λ> 0,

ψ
µ

Λ
(λ)−ψµ

Λ
(0)

λ
≥
∂ψ

µ

Λ

∂λ+

∣∣∣
λ=0

= 1

|Λ(g )|
〈 ∑

j∈Λ(g )
g ◦θ j

〉
µ
= 〈g 〉µ ,

where the last identity is a consequence of the translation invariance of µ. Taking
Λ ⇑ Zd followed by λ ↓ 0, we get the upper bound in (6.117). The lower bound is
obtained similarly.

Let us turn to the second claim. We now use the fact that ψ= limn→∞ψω
Λn

, for
any ω. We fix λ> 0, and use again convexity: for all small ϵ> 0,

ψω
Λ(λ)−ψω

Λ(λ−ϵ)

ϵ
≤
∂ψω

Λ

∂λ−

∣∣∣
λ
= 1

|Λ(g )|

〈(∑
i∈Λ(g ) g ◦θi

)
eλ

∑
i∈Λ(g ) g◦θi

〉ω
Λ;Φ〈

eλ
∑

i∈Λ(g ) g◦θi
〉ω
Λ;Φ

= 1

|Λ(g )|
〈 ∑

i∈Λ(g )
(g ◦θi )

〉ω
Λ;Φλ

, (6.119)

where the (translation-invariant) potentialΦλ = {ΦλB }B⋐Zd is defined by

ΦλB
def=

{
ΦB +λg ◦θi if B = θi (suppg ) ,

ΦB otherwise.

Let now µλ ∈G (Φλ) be translation invariant (this is always possible by adapting the
construction of Exercise 6.22). Integrating both sides of (6.119) with respect to µλ,

〈ψ·
Λ(λ)−ψ·

Λ(λ−ϵ)

ϵ

〉
µλ

≤ 1

|Λ(g )|
〈 ∑

i∈Λ(g )
g ◦θi

〉
µλ

= 〈g 〉µλ .

Notice that ∥ψ·
Λ(λ)∥∞ ≤ |λ|∥g∥∞ <∞. TakingΛ ⇑Zd , followed by ϵ ↓ 0, we get

〈g 〉µλ ≥
∂ψ

∂λ−

∣∣∣
λ
≥ ∂ψ

∂λ+

∣∣∣
λ=0

, ∀λ> 0.

In the last step, we used item 3 of Theorem B.12. Consider now any sequence
(λk )k≥1 decreasing to 0. By compactness (Theorem 6.24 applies here too), there
exists a subsequence (λkm )m≥1 and a probability measure µ+ such that µλkm ⇒ µ+

as m → ∞. Clearly, µ+ is also translation invariant and, by Exercise 6.32 below,
µ+ ∈ G (Φ). Since g is local, 〈g 〉

µλk → 〈g 〉µ+ . Applying (6.117) to µ+, we conclude

that 〈g 〉µ+ = ∂ψ
∂λ+

∣∣
λ=0.

Remark 6.92. It can be shown that the measures µ+,µ− in the second claim are in
fact ergodic with respect to lattice translations. ⋄

Exercise 6.32. Let (Φk )k≥1,Φ be translation-invariant potentials of range at most r
and such that ∥Φk

B −ΦB∥∞ → 0 when k →∞, for all B ⋐Zd . Let µk ∈G (Φk ) and µ be

a probability measure such that µk ⇒µ. Then µ ∈G (Φ). Hint: use a trick like (6.35).
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Exercise 6.33. Consider the Ising model on Zd . Prove that β 7→ ψIsing(β,h) is dif-
ferentiable whenever |G (β,h)| = 1. Hint: To prove differentiability at β0, combine
Theorem 3.25 and Proposition 6.91 with λ=β−β0 and g = 1

2d

∑
i∼0σ0σi .

Remark 6.93. As a matter of fact, it can be proved [11] that the pressure of the Ising
model onZd is differentiable with respect to β for any values of β≥ 0 and h ∈R, not
only in the uniqueness regime. ⋄

Exercise 6.34. Consider a one-dimensional model with a finite-range potential Φ,

and let ψ(λ) denote the pressure defined in (6.115), with g
def= σ0. Use Proposi-

tion 6.91, combined with Theorem 6.40, to show that ψ is differentiable at λ= 0.

Remark 6.94. It can be shown that in one-dimension, the pressure of a model with
finite-range interactions is always real-analytic in its parameters [12]. ⋄

6.12 Some proofs

6.12.1 Proofs related to the construction of probability measures

The existence results of this chapter rely on the sequential compactness of Ω. This
implies in particular the following property, actually equivalent to compactness:

Lemma 6.95. Let (Cn)n≥1 ⊂ C be a decreasing (Cn+1 ⊂ Cn) sequence of cylinders
such that

⋂
n Cn =∅. Then Cn =∅ for all large enough n.

Proof. Let each cylinder Cn be of the form Cn = Π−1
Λ(n)(An), where Λ(n) ⋐ Zd and

An ∈ P(ΩΛ(n)). With no loss of generality, we can assume that Λ(n) ⊂ Λ(n + 1)
(remember the hint of Exercise 6.2). Assume that Cn ̸=∅ for all n, and letω(n) ∈Cn .
Since Cm ⊂Cn for all m > n,

ΠΛ(n)(ω
(m)) ∈ An for all m > n .

By compactness ofΩ, there exists a configurationω∗ and a subsequence (ω(nk ))k≥1

such that ω(nk ) →ω∗. Of course,

ΠΛ(n)(ω
∗) ∈ An for all n ,

which implies ω∗ ∈Cn for all n. Therefore,
⋂

n Cn ̸=∅.

Theorem 6.96. A finitely additive set function µ : C → R≥0 with µ(Ω) < ∞ always
has a unique extension to F .

Proof. To use Carathéodory’s Extension Theorem B.33, we must verify that if µ is
finitely additive on C , then it is also σ-additive on C , in the sense that if (Cn)n≥1 ⊂
C is a sequence of pairwise disjoint cylinders such that C = ⋃

n≥1 Cn ∈ C , then
µ(C ) = ∑

n≥1µ(Cn). For this, it suffices to write
⋃

n≥1 Cn = AN ∪BN , where AN =⋃N
n=1 Cn ∈ C , BN = ⋃

n>N Cn ∈ C . Notice that, as N → ∞, AN ↑ C , and BN ↓ ∅.
Since BN+1 ⊂ BN , Lemma 6.95 implies that there exists some N0 such that BN =∅
when N > N0. This also implies that Cn =∅ for all n > N0, and so µ(C ) = µ(AN0 ) =∑N0

n=1µ(Cn) =∑
n≥1µ(Cn).
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6.12.2 Proof of Theorem 6.5

We will prove Theorem 6.5 using the following classical result:

Theorem 6.97 (Riesz–Markov–Kakutani Representation Theorem on Ω = {±1}Z
d

).
Let L : C (Ω) →R be a positive normalized linear functional, that is:

1. If f ≥ 0, then L( f ) ≥ 0.

2. For all f , g ∈C (Ω), α,β ∈R, L(α f +βg ) =αL( f )+βL(g ).

3. L(1) = 1.

Then, there exists a unique measure µ ∈M1(Ω) such that

L( f ) =
∫

f dµ , for all f ∈C (Ω) .

This result holds in a much broader setting; its proof can be found in many text-
books. For the sake of concreteness, we give an elementary proof that makes use of

the simple structure ofΩ= {−1,1}Z
d

.

Proof of Theorem 6.97: We use some of the notions developed in Section 6.4. Since
−∥ f ∥∞ ≤ f ≤ ∥ f ∥∞, linearity and positivity of L yield |L( f )| ≤ ∥ f ∥∞. We have already
seen that, for each cylinder C ∈C , 1C ∈C (Ω). Let then

µ(C )
def= L(1C ) .

Observe that 0 ≤ µ(C ) ≤ 1, and that if C1,C2 ∈ C are disjoint, then µ(C1 ∪C2) =
µ(C1)+µ(C2). By Theorem 6.96, µ extends uniquely to a measure on (Ω,F ). To
show that µ( f ) = L( f ) for all f ∈C (Ω), let, for each n, fn be a finite linear combina-
tion of the form

∑
i ai 1Ci , Ci ∈ C , such that ∥ fn − f ∥∞ → 0. Then µ( fn) = L( fn) for

all n, and therefore

|µ( f )−L( f )| ≤ |µ( f )−µ( fn)|+ |L( fn)−L( f )| ≤ 2∥ fn − f ∥∞ → 0

as n →∞.

We can now prove Theorem 6.5. Since a state 〈·〉 is defined only on local func-
tions, we must first extend it to continuous functions. Let f ∈C (Ω) and let ( fn)n≥1

be a sequence of local functions converging to f : ∥ fn − f ∥∞ → 0. Define 〈 f 〉 def=
limn〈 fn〉. This definition does not depend on the choice of the sequence ( fn)n≥1.
Namely, if (gn)n≥1 is another such sequence, then |〈 fn〉−〈gn〉| ≤ ∥ fn −gn∥∞ ≤ ∥ fn −
f ∥∞+∥gn − f ∥∞ → 0. The linear map 〈·〉 : C (Ω) →R then satisfies all the hypotheses
of Theorem 6.97, which proves the result.

6.12.3 Proof of Theorem 6.6

We first define a probability measure on C and then extend it to F using Carathéo-
dory’s Extension Theorem (Theorem B.33). Consider a cylinder C ∈ C (Λ). Then C
can be written in the form C =Π−1

Λ (A) where A ∈P(ΩΛ). Let then

µ(C )
def= µΛ(A) .
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The consistency condition (6.4) guarantees that this number is well defined. Name-
ly, if C can also be written as C = π−1

Λ′ (A′), where A′ ∈ P(ΩΛ′ ), we must show that
µΛ(A) = µΛ′ (A′). But (remember Exercise 6.2), if ∆ is large enough to contain both
Λ andΛ′, one can write C =π−1

∆ (B), for some B ∈P(Ω∆). But then A =ΠΛ(Π−1
∆ (B)),

and so

µΛ(A) =µΛ
(
ΠΛ(Π−1

∆ (B))
)=µΛ(Π∆Λ(A)) =µ∆(B) .

The same with A′ gives µΛ(A) =µΛ′ (A′) =µ∆(B).
One then verifies that µ, defined as above, defines a probability measure on

cylinders. For instance, if C1,C2 ∈ C are disjoint, then one can find some ∆⋐ Zd

such that C1 = Π−1
∆ (A1), C2 = Π−1

∆ (A2), where A1, A2 ∈ P(Ω∆) are also disjoint.
Then,

µ(C1 ∪C2) =µ(Π−1
∆ (A1 ∪ A2)) =µ∆(A1 ∪ A2)

=µ∆(A1)+µ∆(A2)

=µ(Π−1
∆ (A1))+µ(Π−1

∆ (A2)) =µ(C1)+µ(C2) .

By Theorem 6.96, µ extends uniquely to a probability measure on F , and (6.4)
holds by construction.

Remark 6.98. Kolmogorov’s Extension Theorem holds in more general settings, in
particular for much more general single-spin spaces. ⋄

6.12.4 Proof of Theorem 6.24

Let {C1,C2, . . . } be an enumeration of all the cylinders of C (Exercise 6.2). First,
we can extract from the sequence (µn(C1))n≥1 ⊂ [0,1] a convergent subsequence
(µn1, j (C1)) j≥1 such that

µ(C1)
def= lim

j→∞
µn1, j (C1) exists.

Then, we extract from (µn1, j (C2)) j≥1 ∈ [0,1] a convergent subsequence (µn2, j (C2)) j≥1

such that

µ(C2)
def= lim

j→∞
µn2, j (C2) exists.

This process continues until we have, for each k ≥ 1, a subsequence (nk, j ) j≥1 such
that

µ(Ck )
def= lim

j→∞
µnk, j (Ck ) .

By considering the diagonal sequence (n j , j ) j≥1, we have that µn j , j (C ) → µ(C ) for
all C ∈ C . Proceeding as in the proof of Theorem 6.97, using Lemma 6.95, we can
verify that µ is a probability measure on C and use again Theorem 6.96 to extend it
to a measure µ on F . Obviously, µn j , j ⇒µ.

6.12.5 Proof of Proposition 6.39

To lighten the notations, we will omit βΦ most of the time. Let S∗ denote the sup-

port of f . Assume that Λ is sufficiently large to contain S∗, and let Λ′ def= Λ \ S∗.
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Writing ηΛ = ηS∗ηΛ′ , we have, by definition,

πΛ f (ω) = 1

Zω
Λ

∑
ηΛ

f (ηS∗ )e−βHΛ(ηΛωΛc )

= 1

Zω
Λ

∑
ηS∗

Fω
Λ (ηS∗ )

∑
ηΛ′

e−βHΛ′ (ηΛ′ηS∗ωΛc )

=
∑
ηS∗

Fω
Λ (ηS∗ )

Zω
′

Λ′

Zω
Λ

, (6.120)

where we have abbreviated ηS∗ωΛc by ω′, and defined

Fω
Λ (ηS∗ )

def= f (ηS∗ )exp
{
−β

∑
B∩S∗ ̸=∅
B∩Λ′=∅

ΦB (ηS∗ωΛc )
}

.

First, observe that

lim
Λ↑Zd

Fω
Λ (ηS∗ ) = f (ηS∗ )exp

{
−β

∑
B⊂S∗

ΦB (ηS∗ )
}

, (6.121)

the latter expression being independent of Λ and ω. Indeed, by the absolute
summability of the potentialΦ,

∀i , lim
r→∞

∑
B∋i

diam(B)>r

∥ΦB∥∞ = 0 so that lim
Λ↑Zd

∑
B∩S∗ ̸=∅
B∩Λc ̸=∅

∥ΦB∥∞ = 0.

Fω
Λ (η∗) thus becomes independent of ω in the limit Λ ↑ Zd . We will now prove

that the same is true of the ratio appearing in (6.120). In order to do this, we will
show that, when β is small, the ratio can be controlled using convergent cluster
expansions, leading to crucial cancellations. We discuss explicitly only the case of
ZωΛ, the analysis being the same for Zω

′
Λ′ .

An application of the “+1−1 trick” (see Exercise 3.22) yields

e−βHΛ =
∏

B∩Λ̸=∅
e−βΦB =

∑
B

∏
B∈B

(
e−βΦB −1

)
,

where the sum is over all finite collections B of finite sets B such that B ∩Λ ̸=∅.
Of course, we can assume that the only sets B used are those for whichΦB ̸≡ 0 (this
will be done implicitly from now on). We associate to each collection B a graph, as
follows. To each B ∈B is associated an abstract vertex x. We add an edge between
two vertices x, x ′ if and only if they are associated to sets B ,B ′ for which B ∩B ′ ̸=∅.
The resulting graph is then decomposed into maximal connected components. To
each such component, say with vertices {x1, . . . , xk }, corresponds a collection γ =
{B1, . . . ,Bk }, called a polymer. The support of γ is defined by γ

def= B1 ∪·· ·∪Bk . In
ZωΛ, one can interchange the summations over ωΛ ∈ΩΛ and B and obtain

ZωΛ = 2|Λ|
∑
Γ

∏
γ∈Γ

w(γ) ,

where the sum is over families Γ such that γ∩γ′ =∅ whenever γ= {B1, . . . ,Bk } and
γ′ = {B ′

1, . . . ,B ′
k ′ } are two distinct collections in Γ. The weight of γ is defined by

w(γ)
def= 2−|γ∩Λ|

∑
ηγ∩Λ

∏
B∈γ

(
e−βΦB (ηγ∩ΛωΛc ) −1

)
.
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To avoid too heavy notations, we have not indicated the possible dependence of
these weights on ω and Λ. Observe that, when γ ⊂Λ, w(γ) does not depend on ω.
The following bound always holds:

|w(γ)| ≤
∏
B∈γ

∥e−βΦB −1∥∞ . (6.122)

We now show that, when β is small, the polymers and their weights satisfy condi-
tion (5.10) that guarantees convergence of the cluster expansion for logZωΛ. We will

use the function a(γ)
def= |γ|.

Lemma 6.99. Let ϵ≥ 0. Assume that

α
def= sup

i∈Zd

∑
B∋i

∥e−βΦB −1∥∞e(3+ϵ)|B | ≤ 1. (6.123)

Then, for all γ0, uniformly in ω and Λ,

∑
γ:γ∩γ0 ̸=∅

|w(γ)|e(1+ϵ)|γ| ≤ |γ0| . (6.124)

Exercise 6.35. Show that, for any ϵ≥ 0, any potential Φ satisfying (6.50) also satis-
fies (6.123) once β is small enough.

Proof of Lemma 6.99: Let b(γ) denote the number of sets Bi contained in γ. Let, for
all n ≥ 1,

ξ(n)
def= max

i∈Λ

∑
γ:γ∋i

b(γ)≤n

|w(γ)|e(1+ϵ)|γ| . (6.125)

We will show that, when (6.123) is satisfied,

ξ(n) ≤α , ∀n ≥ 1, (6.126)

which of course implies (6.124) after letting n →∞.
Let us first consider the case n = 1. In this case, γ contains a single set B and so

|w(γ)| ≤ ∥e−βΦB −1∥∞. This gives

ξ(1) ≤ max
i∈Λ

∑
B∋i

∥e−βΦB (·) −1∥∞e(1+ϵ)|B | ≤α .

Let us then assume that (6.126) holds for n, and let us verify that it also holds for
n+1. Since γ ∋ i , each polymer γ appearing in the sum for n+1 can be decomposed
(not necessarily in a unique manner) as follows: γ = {B0}∪γ(1) ∪ ·· · ∪γ(k), where
B0 ∋ i and the γ( j )s are polymers with disjoint support such that b(γ( j )) ≤ n and
γ( j ) ∩B0 ̸=∅. Since the γ( j )s are disjoint,

|w(γ)| ≤ 2|B0|∥e−βΦB0 −1∥∞
k∏

j=1
|w(γ( j ))| .

We have |γ| ≤ |B0| +
∑k

j=1 |γ
( j )| and therefore, for a fixed B0, we can sum over the

polymers γ( j ) and use the induction hypothesis, obtaining a contribution bounded
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by

∑
k≥0

1

k !

∑

γ(1):

γ(1)∩B0 ̸=∅
b(γ(1))≤n

· · ·
∑

γ(k):

γ(k)∩B0 ̸=∅
b(γ(k))≤n

k∏
j=1

|w(γ( j ))|e(1+ϵ)|γ( j )| ≤
∑
k≥0

1

k !
(|B0|ξ(n))k ≤ eα|B0| ,

and we are left with

ξ(n +1) ≤
∑

B0∋0
2|B0|∥e−βΦB0 −1∥∞e(1+ϵ)|B0|eα|B0| ≤α .

In the last inequality, we used α≤ 1 and the definition of α.

Proof of Proposition 6.39: Let ϵ > 0 and let β1 be such that (6.123) holds for all β ≤
β1 (Exercise 6.35). We study the ratio in (6.120) by using convergent cluster expan-
sions for its numerator and denominator. We use the terminology of Section 5.6.
We denote by χΛ the set of clusters appearing in the expansion of logZωΛ; the latter
are made of polymers γ = {B1, . . . ,Bk } for which Bi ∩Λ ̸=∅ for all i . The weight of
X ∈χΛ is denotedΨΛ,ω(X ) (see (5.20)); it is built using the weights w(γ), which can
depend on ω if γ has a support that intersects Λc. Similarly, we denote by χΛ′ the
set of clusters appearing in the expansion of logZω

′
Λ′ ; the latter are made of polymers

γ = {B1, . . . ,Bk } for which Bi ∩Λ′ ̸=∅. The weight of X ∈ χΛ′ is denoted ΨΛ′,ω′ (X ).

Let us denote the support of X by X
def= ⋃

γ∈X γ. Taking β≤ β1 guarantees in partic-
ular that ∑

γ:γ∩γ0 ̸=∅
|w(γ)|e |γ| ≤ |γ0| ,

so we can expand that ratio using an absolutely convergent cluster expansion for
each partition function:

Zω
′

Λ′

Zω
Λ

= 2−|S∗|
exp

{∑
X∈χΛ′ ΨΛ′,ω′ (X )

}

exp
{∑

X∈χΛΨΛ,ω(X )
} = 2−|S∗|

exp
{∑

X∈χΛ′
X∩S∗ ̸=∅

ΨΛ′,ω′ (X )
}

exp
{∑

X∈χΛ
X∩S∗ ̸=∅

ΨΛ,ω(X )
} .

The second identity is due to the fact that each cluster X ∈ χΛ′ in the numerator
whose support does not intersect S∗ also appears, with the same weight, in the
denominator as a cluster X ∈ χΛ. Their contributions thus cancel out. Among the
remaining clusters, there are those that intersect Λc. These yield no contribution
in the thermodynamic limit. Indeed, considering the denominator for example,

∑
X∈χΛ:

X∩S∗ ̸=∅
X∩Λc ̸=∅

∣∣ΨΛ,ω(X )
∣∣≤ |S∗|max

i∈S∗

∑

X :X∋i
diam(X )≥d(S∗,Λc)

∣∣ΨΛ,ω(X )
∣∣ , (6.127)

and this last sum converges to zero whenΛ ↑Zd . Indeed, we know (see (5.29)) that
∑

X :X∋i

∣∣ΨΛ,ω(X )
∣∣=

∑
N≥1

∑

X :X∋i
diam(X )=N

∣∣ΨΛ,ω(X )
∣∣

is convergent. Therefore, the second sum above goes to zero when N →∞, allowing
us to conclude that the contribution of the clusters intersecting Λc vanishes when
Λ ↑Zd .
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We are thus left with the clusters X which are strictly contained in Λ and inter-
sect S∗. The weights of these do not depend on ωΛc anymore (for that reason, the
corresponding subscripts will be removed from their weights), but those which ap-
pear in the numerator have weights that still depend on ηS∗ and their weights will
be written, for simplicity, asΨηS∗ . We get

lim
Λ↑Zd

Zω
′

Λ′

Zω
Λ

= exp
{ ∑

X :X ̸⊂S∗
X∩S∗ ̸=∅

ΨηS∗ (X )−
∑

X :X∩S∗ ̸=∅
Ψ(X )

}
.

Combined with (6.120) and (6.121), this completes the proof of the first claim.
Let us then see what more can be done when Φ has finite range: r (Φ) <∞. In

this case, Fω
Λ (ηS∗ ) becomes equal to its limit as soon asΛ is large enough. Moreover,

each cluster X = {γ1, . . . ,γn} in the second sum of the right-hand side of (6.127)
satisfies

∑n
i=1 |γi | ≥ d(S∗,Λc)/r (Φ). We can therefore write

∣∣ΨΛ,ω(X )
∣∣≤ e−ϵd(S∗,Λc)/r (Φ)∣∣Ψϵ

Λ,ω(X )
∣∣ ,

where Ψϵ
Λ,ω(X ) is defined as ΨΛ,ω(X ), with w(γ) replaced by w(γ)eϵ|γ|. Since this

modified weight w(γ)eϵ|γ| also satisfies the condition ensuring the convergence of
the cluster expansion (see (6.124)),

∑

X :X∋i
diam(X )≥d(S∗,Λc)

∣∣ΨΛ,ω(X )
∣∣≤ e−ϵd(S∗,Λc)/r (Φ)

∑

X :X∋i

∣∣Ψϵ
Λ,ω(X )

∣∣ .

This last series is convergent as before. Gathering these bounds leads to (6.53).

6.13 Bibliographical references

The notion of Gibbs measure was introduced independently by Dobrushin [88] and
Lanford and Ruelle [204]. It has since then been firmly established as the proper
probabilistic description of large classical systems of particles in equilibrium.

The standard reference to this subject is the well-known book by Georgii [134].
Although our aim is to be more introductory, large parts of the present chapter have
benefited from that book, and the interested reader can consult the latter for ad-
ditional information and generalizations. We also strongly encourage the reader
to have a look at its section on Bibliographical Notes, the latter containing a large
amount of information, presented in a very readable fashion.

Texts containing some introductory material on Gibbs measures include, for
example, the books by Prum [282], Olivieri and Vares [258], Bovier [37] and Rassoul-
Agha and Seppäläinen [283], the monograph by Preston [278], the lecture notes
by Fernández [101] and by Le Ny [213]. The paper by van Enter, Fernández, and
Sokal [343] contains a very nice introduction, mostly without proofs, with a strong
emphasis on the physical motivations behind the relevant mathematical concepts.
The books by Israel [176] and Simon [308] also provide a general presentation of the
subject, but their point of view is more functional-analytic than probabilistic.

Uniqueness. Dobrushin’s uniqueness theorem, Theorem 6.31, was first proved
in [88], but our presentation follows [108]; note that additional information can be
extracted using the same strategy, such as exponential decay of correlations.
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It can be shown that Dobrushin’s condition of weak dependence cannot be im-
proved in general [309, 178].

The one-dimensional uniqueness criterion given in Theorem 6.40 was origi-
nally proved in [49].

The approach in the proof of Theorem 6.38 is folklore.

Extremal decomposition. The integral decomposition (6.74) is usually derived
from abstract functional-analytic arguments. Here, we follow the measure-theoretic
approach exposed in [134], itself based on an approach of Dynkin [97].

Variational principle. The exposition in Section 6.9 is inspired by [134, Chap-
ter 15]. For a more general version of the variational principle, see Pfister’s lecture
notes [274]. Israel’s book [176] develops the whole theory of Gibbs measures from
the point of view of the variational principle and is a beautiful example of the kind
of results that can be obtained within this framework.

6.14 Complements and further reading

6.14.1 The equivalence of ensembles

The variational principle allowed us to determine which translation-invariant infinite-
volume measures are Gibbs measures. In this section, we explain, at a heuristic
level, how the same approach might be used to prove a general version of the equiv-
alence of ensembles, which we already mentioned in Chapter 1 and in Section 4.7.1.

For simplicity, we avoid the use of boundary conditions. Consider a finite region
Λ⋐ Zd (for example a box), and let ΩΛ be as before. To stay simple, assume that
the Hamiltonian is just a function HΛ :ΩΛ→R.

In Chapter 1, we introduced several probability distributions on ΩΛ that were
good candidates for the description of a system at equilibrium. The first was the
microcanonical distribution νMic

Λ;U , defined as the uniform distribution on the en-

ergy shell ΩΛ;U
def= {

ω ∈ΩΛ : HΛ(ω) =U
}
. The second one was the canonical Gibbs

distribution at inverse temperature β defined as µΛ;β
def= e−βHΛ/ZΛ;β.

Obviously , these two distributions differ in finite volume. In view of the equiva-
lence between these different descriptions in thermodynamics, one might however
hope that these distributions yield similar predictions for large systems, or even be-
come “identical” in the thermodynamic limit, at least when U and β are related in
a suitable way. Properly stated, this is actually true and can be proved using the
theory of large deviations.

In this section, we give a hint as to how this can be shown, but since a full proof
lies beyond the scope of this book, we will only motivate the result by a heuristic
argument. The interested reader can find precise statements and detailed proofs in
the papers of Lewis, Pfister and Sullivan [222, 223], or Georgii [133] and Deuschel,
Stroock and Zessin [78]; a pedagogical account can be found in Pfister’s lecture
notes [274].

One way of trying to obtain the equivalence of νMic
Λ;U and µΛ;β in the thermo-

dynamic limit is to proceed as in Proposition 6.81 and Theorem 6.82, and to find
conditions under which

1

|Λ|HΛ(νMic
Λ;U |µΛ;β) → 0, whenΛ ↑Zd . (6.128)
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Although the setting is not the same as the one of Section 6.9.3 (in particular, the
distributions under consideration are defined in finite volume and are thus not
translation invariant), the variational principle at least makes it plausible that when
this limit is zero, the thermodynamic limit of νMic

Λ;U is an infinite-volume Gibbs mea-
sure. (Let us however emphasize that the proofs mentioned above do not proceed
via (6.128); their approach is however similar in spirit.)

Remember that, for a finite system, a close relation between νMic
Λ;U and µΛ;β

was established when it was shown, in Section 1.3, that if β is chosen properly as
β = β(U ), then 〈HΛ〉µβ = U and µΛ;β has a maximal Shannon Entropy among all
distributions with this property. A new look can be given at this relation, in the
light of the variational principle and the thermodynamic limit. Namely, observe
that

1

|Λ|HΛ(νMic
Λ;U |µΛ;β) =− 1

|Λ|SΛ(νMic
Λ;U )+β

〈HΛ

|Λ|
〉Mic

Λ;U
+ 1

|Λ| logZΛ;β

=− 1

|Λ| log |ΩΛ;U |+β U

|Λ| +
1

|Λ| logZΛ;β .

In view of this expression, it is clear how (6.128) can be guaranteed. As was done
for the variational principle in infinite volume, it is necessary to work with densi-
ties. So let us consider Λ ↑ Zd , and assume that U also grows with the system, in

such a way that U
|Λ| → u ∈ (hmin,hmax), where hmin

def= infΛ infωΛ
HΛ(ωΛ)

|Λ| , and hmax
def=

supΛ supωΛ
HΛ(ωΛ)

|Λ| .
As we explained in (1.37),

lim
1

V
logZΛ;β =− inf

ũ
{βũ − sBoltz(ũ)} ,

where sBoltz is the Boltzmann entropy density

sBoltz(u)
def= lim

1

|Λ| log |ΩΛ;U | .

This shows that

lim
1

|Λ|HΛ(νMic
Λ;U |µΛ;β) =βu − sBoltz(u)− inf

ũ
{βũ − sBoltz(ũ)} . (6.129)

Now, the infimum above is realized for a particular value ũ = ũ(β). If β is chosen
in such a way that ũ(β) = u, we see that the right-hand side of (6.129) vanishes as
desired. To see when this is possible, an analysis is required, along the same lines
as what was done in Chapter 4 to prove the equivalence of the canonical and grand
canonical ensembles at the level of thermodynamic potentials.

We thus conclude that if equivalence of ensembles holds at the level of the ther-
modynamic potentials, then it should also hold at the level of measures. As men-
tioned above, this conclusion can be made rigorous.

6.14.2 Pathologies of transformations and weaker notions of Gibbsianness.

The notion of Gibbs measure presented in this chapter, although efficient for the
description of infinite systems in equilibrium, is not as robust as one might expect:
the image of a Gibbs measure under natural transformations T :Ω→Ω can cease



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

320 Chapter 6. Infinite-Volume Gibbs Measures

to be Gibbsian. An example of such a transformation has been mentioned in Sec-
tion 3.10.11, when motivating the renormalization group.

Consider for example the two-dimensional Ising model at low temperature. Let

L
def= {

(i ,0) ∈Z2 : i ∈Z}
and consider the projection ΠL : ω = (ωi )i∈Z2 7→ (ω j ) j∈L .

The image of µ+
β,0 under ΠL is a measure ν+

β
on {±1}Z. It was shown by Schon-

mann [295] that ν+
β

is not a Gibbs measure: there exists no absolutely summable

potential Φ so that ν+
β

is compatible with the Gibbsian specification associated to
Φ.

Before that, from a more general point of view, it had already been observed
by Griffiths and Pearce [147], and Israel [177], that the same kind of phenomenon
occurs when implementing rigorously certain renormalization group transforma-
tions. This is an important observation inasmuch as the renormalization group is
often presented in the physics literature as a map defined on the space of all inter-
actions (or Hamiltonians) (see the brief discussion in Section 3.10.11). What this
shows is that such a map, which can always be defined on the set of probability
measures, does not induce, in general, a map on the space of (physically reason-
able) interactions.

More recently, there has been interest in whether the evolution of a Gibbs mea-
sure at temperature T under a stochastic dynamics corresponding to another tem-
perature T ′ remains Gibbsian (which would again mean that one could follow the
dynamics on the space of interactions). The observation is that the Gibbsian char-
acter can be quickly lost, depending on the values of T and T ′, see [341] for exam-
ple.

A general discussion of this type of issues can be found in [343].
These so-called pathologies have led to the search for weaker notions of Gibbs

measures, which would encompass the one presented in this chapter but would re-
main stable under transformations such as the one described above. This research
had originally been initiated by Dobrushin, and is nowadays known as Dobrushin’s
restoration program. A summary of the latter can be found in the review of van En-
ter, Maes and Shlosman [342]. Other careful presentations of the subject are [101]
and [213].

6.14.3 Gibbs measures and the thermodynamic formalism.

The ideas and techniques of equilibrium statistical mechanics have been useful in
the theory of dynamical systems. For instance, Gibbs measures were introduced in
ergodic theory by Sinai [311]. Moreover, the characterization of Gibbs measures via
the variational principle of Section 6.9 is well suited for the definition of Gibbs mea-
sures in other settings. In symbolic dynamics, for instance, an invariant probability
measure is said to be an equilibrium measure if it satisfies the variational princi-
ple. The monograph [40] by Bowen is considered as a pioneering contributions to
this field. See also the books by Ruelle [291] or Keller [187], as well as Sarig’s lecture
notes [294].


