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1 Introduction

Statistical mechanics is the branch of physics which aims at bridging the gap be-
tween the microscopic and macroscopic descriptions of large systems of particles
in interaction, by combining the information provided by the microscopic descrip-
tion with a probabilistic approach. Its goal is to understand the relations existing
between the salient macroscopic features observed in these systems and the prop-
erties of their microscopic constituents. Equilibrium statistical mechanics is the
part of this theory that deals with macroscopic systems at equilibrium and is, by
far, the best understood.

This book is an introduction to some classical mathematical aspects of equilib-
rium statistical mechanics, based essentially on some important examples. It does
not constitute an exhaustive introduction: many important aspects, discussed in
a myriad of books (see those listed in Section 1.6.2 below), will not be discussed.
Inputs from physics will be restricted to the terminology used (especially in this in-
troduction), to the nature of the problems addressed, and to the central probabil-
ity distribution used throughout, namely the Gibbs distribution. This distribution
provides the probability of observing a particular microscopic stateω of the system
under investigation, when the latter is at equilibrium at a fixed temperature T . It
takes the form

µβ(ω) = e−βH (ω)

Zβ
,

where β= 1/T , H (ω) is the energy of the microscopic state ω and Zβ is a normal-
ization factor called the partition function.

Saying that the Gibbs distribution is well suited to understand the phenomenol-
ogy of large systems of particles is an understatement. This book provides, to some
extent, a proof of this fact by diving into an in-depth study of this distribution when
applied to some of the most important models studied by mathematical physicists
since the beginning of the 20th century. The many facets and the rich variety of
behaviors that will be described in the following chapters should, by themselves,
constitute a firm justification for the use of the Gibbs distribution for the descrip-
tion of large systems at equilibrium.

An impatient reader with some basic notions of thermodynamics and statistical
mechanics, or who is willing to consider the Gibbs distribution as a postulate and is
not interested in additional motivations and background, can jump directly to the
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2 Chapter 1. Introduction

following chapters and learn about the models presented throughout the book. A
quick glance at Section 1.6 might be useful since it contains a reading guide.

The rest of this introduction is written for a reader interested in obtaining more
information on the origin of the Gibbs distribution and the associated terminology,
as well as an informal discussion of thermodynamics and its relations to equilib-
rium statistical mechanics.

One of the main themes to which this book is devoted, phase transitions, is
illustrated on gases and magnets. However, we emphasize that, in this book, the
main focus is on the mathematical structure of equilibrium statistical mechanics
and the many possible interpretations of the models we study will most of the time
not play a very important role; they can, nevertheless, sometimes provide intuition.

Although this book is undeniably written for a mathematically inclined reader,
in this introduction we will avoid delving into too much technicalities; as a conse-
quence, it will not be as rigorous as the rest of the book. Its purpose is to provide
intuition and motivation behind several key concepts, relying mainly on physical
arguments. The content of this introduction is not necessary for the understanding
of the rest of the book, but we hope that it will provide the reader with some useful
background information.

We will start with a brief discussion of the first physical theory describing
macroscopic systems at equilibrium, equilibrium thermodynamics, and present
also examples of one of the most interesting features of thermodynamic systems:
phase transitions. After that, starting from Section 1.2, we will turn our attention to
equilibrium statistical mechanics.

1.1 Equilibrium Thermodynamics

Equilibrium thermodynamics is a phenomenological theory, developed mainly
during the nineteenth century. Its main early contributors include Carnot, Clau-
sius, Kelvin, Joule and Gibbs. It is based on a few empirical principles and does not
make any assumption regarding the microscopic structure of the systems it con-
siders (in fact, the atomic hypothesis was still hotly debated when the theory was
developed).

This section will briefly present some of its basic concepts, mostly on some
simple examples; it is obviously not meant as a complete description of thermo-
dynamics, and the interested reader is advised to consult the detailed and readable
account in the books of Callen [58] and Thess [329], in Wightman’s introduction
in [176] or in Lieb and Yngvason’s paper [224].

1.1.1 On the description of macroscopic systems

Gases, liquids and solids are the most familiar examples of large physical systems
of particles encountered in nature. In the first part of this introduction, for the sake
of simplicity and concreteness, we will mainly consider the system made of a gas
contained in a vessel.

Let us thus consider a specific, homogeneous gas in a vessel (this could be, say,
one liter of helium at standard temperature and pressure). We will use Σ to de-
note such a specific system. The microscopic state, or microstate, of the gas is
the complete microscopic description of the state of the gas. For example, from
the point of view of Newtonian mechanics, the microstate of a gas of monoatomic
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1.1. Equilibrium Thermodynamics 3

molecules is specified by the position and the momentum of each molecule (called
hereafter particle). Since a gas contains a huge number of particles (of the order of
1022 for our liter of helium), the overwhelming quantity of information contained
in its microstate makes a complete analysis not only challenging, but in general im-
possible. Fortunately, we are not interested in the full information contained in the
microstate: the precise behavior of each single particle is irrelevant at our scale of
observation.

It is indeed an empirical fact that, in order to describe the state of the gas at
the macroscopic scale, only a much smaller set of variables, of a different nature,
is needed. This is particularly true when the system is in a particular kind of state
called equilibrium. Assume, for instance, that the gas is isolated, that is, it does
not exchange matter or energy with the outside world, and that it has been left
undisturbed for a long period of time. Experience shows that such a system reaches
a state of thermodynamic equilibrium, in which macroscopic properties of the gas
do not change anymore and there are no macroscopic flows of matter or energy
(even though molecular activity never ceases).

In fact, by definition, isolated systems possess a number of conserved quanti-
ties, that is, quantities that do not change through time evolution. The latter are
particularly convenient to describe the macroscopic state of the system. For our
example of a gas, these conserved quantities are the volume V of the vessel 1, the
number of particles N and the internal energy (or simply: energy) U .

We therefore assume, from now on, that the macroscopic state (or macrostate)
of the gas Σ is determined by a triple

X = (U ,V , N ) .

The variables (U ,V , N ) can be thought of as the quantities one can control in order
to alter the state of the gas. For example, U can be changed by cooling or heating the
system, V by squeezing or expanding the container and N by injecting or extracting
particles with a pump or a similar device. These variables determine the state of the
gas in the sense that setting these variables to some specific values always yield,
once equilibrium is reached, systems that are macroscopically indistinguishable.
They can thus be used to put the gas in a chosen macroscopic state reproducibly. Of
course, what is reproduced is the macrostate, not the microstate: there are usually
infinitely many different microstates corresponding to the same macrostate.

Now, suppose that we split our system, Σ, into two subsystems Σ1 and Σ2, by
adding a wall partitioning the vessel. Each of the subsystems is of the same type
as the original system and only differs from it by the values of the corresponding
variables (U m ,V m , N m), m = 1,2. Observe that the total energy U , total volume V
and total number of particles N in the system satisfy: [1]

U =U 1 +U 2 , V =V 1 +V 2 , N = N 1 +N 2 . (1.1)

Variables having this property are said to be extensive 2.

1We assume that the vessel is large enough and that its shape is simple enough (for example: a
cube), so as not to influence the macroscopic behavior of the gas and boundary effects may be ne-
glected.

2The identity is not completely true for the energy: part of the latter comes, in general, from the
interaction between the two subsystems. However, this interaction energy is generally negligible com-
pared to the overall energy (exceptions only occur in the presence of very long-range interactions, such
as gravitational forces). This will be quantified once we study similar problems in statistical mechanics.
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4 Chapter 1. Introduction

Note that the description of a system Σ composed of two subsystems Σ1 and Σ2

now requires 6 variables: (U 1,V 1, N 1,U 2,V 2, N 2). Below, a system will always come
with the set of variables used to characterize it. Note that this set of variables is not
unique: one can always split a system into two pieces in our imagination, without
doing anything to the system itself, only to our description of it.

One central property of equilibrium is that, when a system is at equilibrium,
each of its (macroscopic) subsystems is at equilibrium too, and all subsystems are
in equilibrium with each other. Namely, if we imagine that our system Σ is parti-
tioned by an imaginary wall into two subsystems Σ1,Σ2 of volume V 1 and V 2, then
the thermodynamic properties of each of these subsystems do not change through
time: their energy and the number of particles they contain remain constant 3.

Assume now that Σ1,Σ2 are originally separated (far apart, with no exchanges
whatsoever), each isolated and at equilibrium. The original state of the union
of these systems is represented by (X1,X2), where Xm = (U m ,V m , N m) is the
macrostate of Σm , m = 1,2. Suppose then that these systems are put in contact, al-
lowing them to exchange energy and/or particles, while keeping them, as a whole,
isolated from the rest of the universe (in particular, the total energy U , total volume
V and total number of particles N are fixed). Once they are in contact, the whole
system goes through a phase in which energy and particles are redistributed be-
tween the subsystems and a fundamental problem is to determine which new equi-

librium macrostate (X
1

,X
2

) is realized and how it relates to the initial pair (X1,X2).
The core postulate of equilibrium thermodynamics is to assume the existence

of a function, associated to any systemΣ, which describes how the new equilibrium
state is selected among the a priori infinite number of possibilities. This function is
called entropy.

1.1.2 The thermodynamic entropy

Let us assume that Σ is the union of two subsystems Σ1,Σ2 and that some con-
straints are imposed on these subsystems. We model these constraints by the set
Xc of allowed pairs (X1,X2). We expect that the system selects some particular pair
in Xc to realize equilibrium, in some optimal way. The main postulate of Thermo-
statics is that this is done by choosing the pair that maximizes the entropy:

Postulate (Thermostatics). To each system Σ, described by a set of variables X, is
associated a differentiable function SΣ of X, called the (thermodynamic) entropy; it
is specific to each system. The entropy of a system Σ composed of two subsystems Σ1

and Σ2 is additive:
SΣ(X1,X2) = SΣ1 (X1)+SΣ2 (X2) . (1.2)

Once the systems are put in contact, the pair (X
1

,X
2

) realizing equilibrium is the one
that maximizes SΣ(X1,X2), among all pairs (X1,X2) ∈Xc.

The principle by which a system under constraint realizes equilibrium by max-
imizing its entropy will be called the extremum principle.

3Again, this is not true from a microscopic perspective: the number of particles in each subsystem
does fluctuate, since particles constantly pass from one subsystem to the other. However, these fluctu-
ations are of an extremely small relative size and are neglected in thermodynamics (if there are of order
N particles in each subsystem, then statistical mechanics will show that these fluctuations are of orderp

N ).
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Remark 1.1. The entropy function is characteristic of the system considered (in our
example, it is the one associated to helium; if we were considering a piece of lead or
a mixture of gases, such as the air, the entropy function would be different). It also
obviously depends on the set of variables used for its description (mentally splitting
the system into two and using 6 variables instead of 3 yields a different entropy
function, even though the underlying physical system is unchanged). However, if
one considers two systems Σ1 and Σ2 of the same type and described by the same
set of variables (the latter possibly taking different values), then SΣ1 = SΣ2 . ⋄
Remark 1.2. Let us emphasize that although the thermodynamic properties of a
system are entirely contained in its entropy function (or in any of the equations of
state or thermodynamic potential derived later), thermodynamics does not provide
tools to determine what this function should be for a specific system (it can, of course,
be measured empirically in a laboratory). As we will see, the determination of these
functions for a particular system from first principles is a task that will be devolved
to equilibrium statistical mechanics. ⋄

Let us illustrate on some examples how the postulate is used.

Example 1.3. In this first example, we suppose that the system Σ is divided into
two subsystems Σ1 and Σ2 of volume V1, respectively V2, by inserting a hard, im-
permeable, fixed wall. These subsystems have, initially, energy U1, respectively U2,
and contain N1, respectively N2, particles. We assume that the wall allows the two
subsystems to exchange energy, but not particles. So, by assumption, the following
quantities are kept fixed: the volumes V1 and V2 of the two subsystems, the number
N1 and N2 of particles they contain and the total energy U = U1 +U2; these form

the constraints. The problem is thus to determine the values U
1

,U
2

of the energy
in each of the subsystems once the system has reached equilibrium.
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Since V1, N1,V2, N2 are fixed, the postulate states that the equilibrium values U 1

and U 2 are found by maximizing

(Ũ1,Ũ2) 7→ S(Ũ1,V1, N1)+S(Ũ2,V2, N2) = S(Ũ1,V1, N1)+S(U −Ũ1,V2, N2) .

We thus see that equilibrium is realized when U 1 satisfies

{ ∂S

∂Ũ1
(Ũ1,V1, N1)+ ∂S

∂Ũ1
(U −Ũ1,V2, N2)

}∣∣∣
Ũ=U 1

= 0.

Therefore, equilibrium is realized when U 1,U 2 satisfy

∂S

∂U
(U 1,V1, N1) = ∂S

∂U
(U 2,V2, N2) .
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6 Chapter 1. Introduction

The quantity 4

β
def=( ∂S

∂U

)
V ,N (1.3)

is called the inverse (absolute) temperature. The (absolute) temperature is then

defined by T
def= 1/β. It is an empirical fact that the temperature thus defined is pos-

itive, that is, the entropy is an increasing function of the energy 5. We will therefore
assume from now on that S(U ,V , N ) is increasing in U :

( ∂S

∂U

)
V ,N > 0. (1.4)

We conclude that, if two systems that are isolated from the rest of the universe are
allowed to exchange energy, then, once they reach equilibrium, their temperatures
(as defined above) will have equalized.

Note that this agrees with the familiar observation that there will be a heat flow
between the two subsystems, until both reach the same temperature. ⋄
Example 1.4. Let us now consider a slightly different situation, in which the wall
partitioning our system Σ is allowed to slide:
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In this case, the number of particles on each side of the wall is still fixed to N1

and N2, but the subsystems can exchange both energy and volume. The constraint
is thus that U =U1+U2, V =V1+V2, N1 and N2 are kept fixed. Proceeding as before,
we have to find the values U 1,U 2,V 1,V 2 maximizing

(Ũ1,Ũ2,Ṽ1,Ṽ2) 7→ S(Ũ1,Ṽ1, N1)+S(Ũ2,Ṽ2, N2) .

We deduce this time that, once equilibrium is realized, U 1, U 2, V 1 and V 2 satisfy




∂S

∂U
(U 1,V 1, N1) = ∂S

∂U
(U 2,V 2, N2) ,

∂S

∂V
(U 1,V 1, N1) = ∂S

∂V
(U 2,V 2, N2) .

Again, the first identity implies that the temperatures of the subsystems must be
equal. The quantity

p
def= T · ( ∂S

∂V

)
U ,N (1.5)

4In this introduction, we will follow the custom in thermodynamics and keep the same notation for
quantities such as the entropy or temperature, even when seen as functions of different sets of variables.
It is thus important, when writing down partial derivatives to specify which are the variables kept fixed.

5Actually, there are very special circumstances in which negative temperatures are possible, but we
will not discuss them in this book. In any case, the adaptation of what we discuss to negative tempera-
tures is straightforward.
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1.1. Equilibrium Thermodynamics 7

is known as the pressure (T , in this definition, is introduced as a convention). We
conclude that, once two systems that can exchange both energy and volume reach
equilibrium, their temperatures and pressures will have equalized. ⋄
Example 1.5. For the third and final example, we suppose that the system is parti-
tioned into two subsystems by a fixed permeable wall, that allows exchange of both
particles and energy. The constraints in this case are that U =U1+U2, N = N1+N2,
V1 and V2 are kept fixed. This time, we thus obtain that, at equilibrium, U 1, U 2, N 1

and N 2 satisfy 



∂S

∂U
(U 1,V1, N 1) = ∂S

∂U
(U 2,V2, N 2) ,

∂S

∂N
(U 1,V1, N 1) = ∂S

∂N
(U 2,V2, N 2) .

Once more, the first identity implies that the temperatures of the subsystems must
be equal. The quantity

µ
def= −T · ( ∂S

∂N

)
U ,V (1.6)

is known as the chemical potential (the sign, as well as the introduction of T is
a convention). We conclude that, when they reach equilibrium, two systems that
can exchange both energy and particles have the same temperature and chemical
potential. ⋄

We have stated the postulate for a very particular case (a gas in a vessel, consid-
ered as made up of two subsystems of the same type), but the postulate extends to
any thermodynamic system. For instance, it can be used to determine how equi-
librium is realized when an arbitrary large number of systems are put in contact:

ΣM

Σ1 Σ2 . . .

We have discussed a particular case, but (1.3), (1.5) and (1.6) provide the def-
inition of the temperature, pressure and chemical potential for any system char-
acterized by the variables U ,V , N (and possibly others) whose entropy function is
known.

Several further fundamental properties of the entropy can be readily deduced
from the postulate.

Exercise 1.1. Show that the entropy is positively homogeneous of degree 1, that is,

S(λU ,λV ,λN ) =λS(U ,V , N ) , ∀λ> 0. (1.7)

Hint: consider first λ ∈Q.
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8 Chapter 1. Introduction

Exercise 1.2. Show that the entropy is concave, that is, for all α ∈ [0,1] and any U1,
U2, V1, V2, N1, N2,

S
(
αU1 + (1−α)U2,αV1 + (1−α)V2,αN1 + (1−α)N2

)

≥αS(U1,V1, N1)+ (1−α)S(U2,V2, N2) . (1.8)

1.1.3 Conjugate intensive quantities and equations of state

The temperature, pressure and chemical potential defined above were all defined
via a partial differentiation of the entropy: ∂S

∂U , ∂S
∂V , ∂S

∂N . Generally, if Xi is any exten-
sive variable appearing in S,

fi
def= ∂S

∂Xi

is called the variable conjugate to Xi . It is a straightforward consequences of the
definitions that, in contrast to U ,V , N , the conjugate variables are not extensive,
but intensive: they remain unchanged under a global scaling of the system: for all
λ> 0,

T (λU ,λV ,λN ) = T (U ,V , N ) ,

p(λU ,λV ,λN ) = p(U ,V , N ) ,

µ(λU ,λV ,λN ) =µ(U ,V , N ) .

In other words, T , p and µ are positively homogeneous of degree 0.

Differentiating both sides of the identity S(λU ,λV ,λN ) = λS(U ,V , N ) with re-
spect to λ , at λ= 1, we obtain

S(U ,V , N ) = 1

T
U + p

T
V − µ

T
N . (1.9)

The latter identity is known as the Euler relation. It allows one to reconstruct
the entropy function from a knowledge of the functional dependence of T, p,µ on
U ,V , N :

T = T (U ,V , N ), p = p(U ,V , N ), µ=µ(U ,V , N ) . (1.10)

These relations are known as the equations of state.

1.1.4 Densities

Using homogeneity, we can write

S(U ,V , N ) =V S(U
V ,1, N

V ) or S(U ,V , N ) = N S( U
N , V

N ,1) . (1.11)

This shows that, when using densities, the entropy can actually be considered as
a density as well and seen as a function of two variables rather than three. For

example, one can introduce the energy density u
def= U

V and the particle density

ρ
def= N

V , and consider the entropy density:

s(u,ρ)
def= 1

V
S(uV ,V ,ρV ) . (1.12)
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1.1. Equilibrium Thermodynamics 9

Alternatively, using the energy per particle e
def= U

N and the specific volume (or vol-

ume per particle) v
def= V

N , one can consider the entropy per particle:

s(e, v)
def= 1

N
S(eN , v N , N ) .

In particular, its differential satisfies

ds = ∂s

∂e
de + ∂s

∂v
dv = 1

T
de + p

T
dv . (1.13)

The entropy can thus be recovered (up to an irrelevant additive constant) from the
knowledge of two of the three equations of state. This shows that the equations of
state are not independent.

Example 1.6 (The ideal gas). Consider a gas of N particles in a container of volume
V , at temperature T . An ideal gas is a gas which, at equilibrium, is described by the
following two equations of state:

pV = RN T , U = cRN T ,

where the constant c, the specific heat capacity, depends on the gas and R is some
universal constant known as the gas constant 6. Although no such gas exists, it
turns out that most gases approximately satisfy such relations when the tempera-
ture is not too low and the density of particles is small enough.

When expressed as a function of v =V /N , the first equation becomes

pv = RT . (1.14)

An isotherm is obtained by fixing the temperature T and studying p as a function
of v :

v

p

Figure 1.1: An isotherm of the equation of state of the ideal gas: at fixed tem-
perature, the pressure p is proportional to 1

v .

Let us explain how the two equations of state can be used to determine the
entropy for the system. Notice first that the equations can be rewritten as

1

T
= cR

N

U
= cR

e
,

p

T
= R

N

V
= R

v
.

Therefore, (1.13) becomes

ds = cR

e
de + R

v
dv .

6Gas constant: R = 8.3144621 Jm−1K−1.
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10 Chapter 1. Introduction

Integrating the latter equation, we obtain

s(e, v)− s0 = cR log(e/e0)+R log(v/v0) ,

where e0, v0 is some reference point and s0 an undetermined constant of integra-
tion. We have thus obtained the desired fundamental relation:

S(U ,V , N ) = N s0 +N R log
[(

U /U0
)c(V /V0

)(
N /N0

)−(c+1)] ,

where we have set U0
def= N0e0,V0

def= N0v0 for some reference N0.
Later in this introduction, the equation of state (1.14) will be derived from the

microscopic point of view, using the formalism of statistical mechanics. ⋄
It is often convenient to describe a system using certain thermodynamic vari-

ables rather than others. For example, in the case of a gas, it might be easier to
control pressure and temperature rather than volume and internal energy, so these
variables may be better suited for the description of the system. Not only is this
possible, but there is a systematic way of determining which thermodynamic po-
tential should replace the entropy in this setting and to find the corresponding ex-
tremum principle.

1.1.5 Alternative representations; thermodynamic potentials

We now describe how alternative representations corresponding to other sets of
variables, both extensive and intensive, can be derived. We treat explicitly the two
cases that will be relevant for our analysis based on statistical mechanics later.

The variables (β,V , N ). We will first obtain a description of systems characterized
by the set of variables (β,V , N ), replacing U by its conjugate quantityβ. Note that, if
we want to have a fixed temperature, then the system must be allowed to exchange
energy with the environment and is thus not isolated anymore. One can see such
a system as being in permanent contact with an infinite thermal reservoir at fixed
temperature 1/β, with which it can exchange energy, but not particles or volume.

We start with some heuristic considerations.

We suppose that our system Σ is put in contact with a much larger system ΣR ,
representing the thermal reservoir, with which it can only exchange energy:

��
��
��
��
��

��
��
��
��
��

Σ

Σtot
ΣR

Figure 1.2: A system Σ, in contact with a reservoir.

We know from Example 1.3 that, under such conditions, both systems must have
the same inverse temperature, denoted by β. The total system Σtot, of energy Utot, is
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1.1. Equilibrium Thermodynamics 11

considered to be isolated. We denote by U the energy of Σ; the energy of the reservoir
is then Utot −U .

We assume that the reservoir is so much larger than Σ that we can ignore the
effect of the actual state of Σ on the values of the intensive parameters associated
with the reservoir: βR (= β), pR and µR remain constant. In particular, by the Euler
relation (1.9), the entropy of the reservoir satisfies

SR (Utot −U ) =βRUR +βR pRVR −βRµR NR =β(Utot −U )+βpRVR −βµR NR .

Observe that, under our assumptions, the only term in the last expression that de-
pends on the state of Σ is −βU .

To determine the equilibrium value U of the energy of Σ, we must maximize the
total entropy (we only indicate the dependence on U , since the volumes and numbers
of particles are fixed): U is the value realizing the supremum in

Stot(Utot,U ) = sup
U

{
SΣ(U )+SR (Utot −U )

}
,

which, from what was said before, is equivalent to finding the value of U that real-
izes the infimum in

F̂Σ(β)
def= inf

U

{
βU −SΣ(U )

}
.

⋄

In view of the preceding considerations, we may expect the function

F̂ (β,V , N )
def= inf

U

{
βU −S(U ,V , N )

}
(1.15)

to play a role analogous to that of the entropy, when the temperature, rather than

the energy, is kept fixed. The thermodynamic potential F (T,V , N )
def= T F̂ (1/T,V , N )

is called the Helmholtz free energy (once more, the presence of a factor T is due to
conventions).

In mathematical terms, F̂ is, up to minor differences 7 the Legendre transform
of S(U ,V , N ) with respect to U ; see Appendix B.2 for the basic definition and prop-
erties of this transform. The Legendre transform enjoys of several interesting prop-
erties. For instance, it has convenient convexity properties (see the exercise below),
and it is an involution (on convex function, Theorem B.19). In other words, F̂ and
S contain the same information.

Observe now that, since we are assuming differentiability, the infimum in (1.15)
is attained when ∂S

∂U = β. Since we have assumed that the temperature is positive
(remember (1.4)), the latter relation can be inverted to obtain U = U (T,V , N ). We
get

F (T,V , N ) =U (T,V , N )−T S(U (T,V , N ),V , N ) . (1.16)

As a short hand, this relation is often written simply

F =U −T S . (1.17)

The thermodynamic potential F̂ inherits analogues of the fundamental proper-
ties of S:

7Since S is concave, −S is convex. Therefore, indicating only the dependence of S on U ,

inf
U

{βU −S(U )} =−sup
U

{(−β)U − (−S(U ))}

which is minus the Legendre transform (defined in (B.11)) of −S, at −β.
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Exercise 1.3. Show that F̂ is convex in V and N (the extensive variables), and con-
cave in β (the intensive variable).

Notice that, since F̂ is convex in V , we have ∂2F̂
∂V 2 ≥ 0. But, by (1.16),

( ∂F̂

∂V

)
T,N =β(∂U

∂V

)
T,N − ( ∂S

∂U

)
V ,N

︸ ︷︷ ︸
=β

(∂U

∂V

)
T,N − ( ∂S

∂V

)
U ,N =− p

T
.

Therefore, differentiating again with respect to V yields

( ∂p

∂V

)
T,N ≤ 0, (1.18)

a property known as thermodynamic stability.

A system for which ( ∂p
∂V )T,N > 0 would be unstable in the following intuitive

sense: any small increase in V would imply an increase in pressure, which in turn
would imply an increase in V , etc. ⋄

To state the analogue of the extremum principle in the present case, let us con-
sider a system Σ, kept at temperature T and composed of two subsystems Σ1, with
parameters T,V 1, N 1, and Σ2, with parameters T,V 2, N 2. Similarly as before, we as-
sume that there are constraints on the admissible values of V 1, N 1,V 2, N 2 and are

interested in determining the corresponding equilibrium values V
1

, V
2

, N
1

, N
2

.

Exercise 1.4. Show that F̂ satisfies the following extremum principle: the equilib-

rium values V
1

, V
2

, N
1

, N
2

are those minimizing

F̂ (T,Ṽ 1, Ñ 1)+ F̂ (T,Ṽ 2, Ñ 2) (1.19)

among all Ṽ 1, Ñ 1,Ṽ 2, Ñ 2 compatible with the constraints.

The variables (β,V ,µ). We can proceed in the same way for a system character-
ized by the variables (β,V ,µ). Such a system must be able to exchange both energy
and particles with a reservoir.

This time, the thermodynamic potential associated to the variables β,V , µ̂
def=

−µ/T is defined by

Φ̂G(β,V , µ̂)
def= inf

U ,N

{
βU + µ̂N −S(U ,V , N )

}
. (1.20)

The function ΦG(T,V ,µ)
def= T Φ̂G(1/T,V ,−µ/T ) is called the grand potential. As for

the Helmholtz free energy, it can be shown that Φ̂G is concave in β and µ̂, and con-
vex in V . The extremum principle extends also naturally to this case. Proceeding as
before, we can write

ΦG =U −µN −T S (1.21)

(with an interpretation analogous to the one done in (1.17)). Since, by the Euler
relation (1.9), T S =U +pV −µN , we deduce that

ΦG =−pV , (1.22)
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1.1. Equilibrium Thermodynamics 13

so that −ΦG/V coincides with the pressure of the system (expressed, of course, as a
function of (T,V ,µ)).

Generically 8, the descriptions of a given system, in terms of various sets of ther-
modynamic variables, yield the same result at equilibrium. For example, if we start
with a microstate (U ,V , N ) and compute the value of β at equilibrium, then start-
ing with the macrostate (β,V , N ) (with that particular value of β) and computing
the equilibrium value of the energy yields U again.

In the following section, we leave aside the general theory and consider an ex-
ample, in which an equation of state is progressively obtained from a combination
of experimental observations and theoretical considerations.

1.1.6 Condensation and the Van der Waals–Maxwell Theory

Although rather accurate in various situations, the predictions made by the equa-
tion of state of the ideal gas are no longer valid at low temperature or at high den-
sity. In particular, the behavior observed for a real gas at low temperature is of the
following type (compare Figure 1.3 with Figure 1.1): When v (the volume per par-

v

p

vl vg

gas

liquid

coexistence

Figure 1.3: An isotherm of a real gas at low enough temperature. See below
(Figure 1.6) for a plot of realistic values measured in the laboratory.

ticle) is large, the density of the gas is low, it is homogeneous (the same density is
observed in all subsystems) and the pressure is well approximated by the ideal gas
behavior. However, decreasing v , one reaches a value v = vg , called the condensa-
tion point, at which the following phenomenon is observed: macroscopic droplets
of liquid start to appear throughout the system. As v is further decreased, the frac-
tion of the volume occupied by the gas decreases while that of the liquid increases.
Nevertheless, the pressures inside the gas and inside the droplets are equal and
constant. This goes on until another value v = vl < vg is reached, at which all the
gas has been transformed into liquid. When decreasing the volume to values v < vl ,
the pressure starts to increase again, but at a much higher rate due to the fact that

8The word “generically” is used to exclude first-order phase transitions, since, when the latter occur,
the assumptions of smoothness and invertibility that we use to invert the relations between all these
variables fail in general. Such issues will be discussed in detail in the framework of equilibrium statistical
mechanics in later chapters.
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the system now contains only liquid and the latter is almost incompressible 9. The
range [vl , vg ] is called the coexistence plateau.

The condensation phenomenon shows that, from a mathematical point of view,
the equations of state of a system are not always smooth in their variables (the pres-
sure at the points vl and vg , for instance). The appearance of such singularities is
the signature of phase transitions, one of the main themes studied in this book.

For the time being, we will only describe the way by which the equation of state
of the ideal gas can be modified to account for the behavior observed in real gases.

The Van der Waals Theory of Condensation

The first theory of condensation originated with Van der Waals’ thesis in 1873. Van
der Waals succeeded in establishing an equation of state that described significant
deviations from the equation of the ideal gas. His analysis is based on the following
two fundamental hypotheses on the microscopic structure of the system 10:

1. The gas has microscopic constituents, the particles. Particles are extended in
space. They interact repulsively at short distances: particles do not overlap.

2. At larger distances, the particles also interact in an attractive way. This part of
the interaction is characterized by a constant a > 0 called specific attraction.

The short-distance repulsion indicates that, in the equation of state, the volume
v available to each particle should be replaced by a smaller quantity v −b taking
into account the volume of space each particle occupies. In order to deal with the
attractive part of the interaction, Van der Waals assumed that the system is homoge-
neous, a drastic simplification to which we will return later. These two hypotheses
led Van der Waals to his famous equation of state:

(
p + a

v2

)(
v −b

)= RT . (1.23)

The term a
v2 can be understood intuitively as follows. Let ρ

def= N
V = 1

v denote
the density of the gas (number of particles per unit volume). We assume that each
particle only interacts with particles in its neighborhood, up to some large, finite dis-
tance. By the homogeneity assumption, the total force exerted by the other particles
on a given particle deep inside the vessel averages to zero. However, for a particle in
a small layer along the boundary of the vessel, the force resulting from its interaction
with other particles has a positive component away from the boundary, since there
are more particles in this direction. This inward force reduces the pressure exerted on
the boundary of the vessel. Now, the number of particles in this layer along a portion
of the boundary of unit area is proportional to ρ. The total force on each particle in
this layer is proportional to the number of particles it interacts with, which is also
proportional to ρ. We conclude that the reduction in the pressure, compared to an
ideal gas, is proportional to ρ2 = 1/v2. A rigorous derivation will be given in Chap-
ter 4. ⋄

9At even smaller specific volumes, the system usually goes through another phase transition at
which the liquid transforms into a solid, but we will not discuss this issue here.

10The interaction between two particles at distance r is often modeled by a Lennard-Jones poten-
tial, that is, an interaction potential of the form Ar−12 −Br−6, with A,B > 0. The first term models the
short-range repulsion between the particles, while the second one models the long-range attraction.
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Of course, the ideal gas is recovered by setting a = b = 0. The analysis of (1.23)
(see Exercise 1.5 below) reveals that, in contrast to those of the ideal gas, the iso-
therms present different behaviors depending on the temperature being above or
below some critical temperature Tc, see Figure 1.4.

v

p

T < Tc

T > Tc

b

Figure 1.4: Isotherms of the Van der Waals equation of state (1.23) at low and
high temperature.

For supercritical temperatures, T > Tc, the behavior is qualitatively the same as
for the ideal gas; in particular, p is strictly decreasing in v . However, for subcriti-

cal temperatures, T < Tc, there is an interval over which ( ∂p
∂v )T > 0, thereby violat-

ing (1.18); this shows that this model has unphysical consequences. Moreover, in
real gases (remember Figure 1.3), there is a plateau in the graph of the pressure, cor-
responding to values of v at which the gas and liquid phases coexist. This plateau
is absent from Van der Waals’ isotherms.

Exercise 1.5. Study the equation of state (1.23) for v > b and show that there exists
a critical temperature,

Tc = Tc(a,b)
def= 8a

27Rb
,

such that the following occurs:

• When T > Tc, v 7→ p(v,T ) is decreasing everywhere.

• When T < Tc, v 7→ p(v,T ) is increasing on some interval.

Maxwell’s Construction

Van der Waals’ main simplifying hypothesis was the assumption that the system
remains homogeneous, which by itself makes the theory inadequate to describe the
inhomogeneities that must appear at condensation.

In order to include the condensation phenomenon in Van der Waals’ theory,
Maxwell [235] proposed a natural, albeit ad hoc, procedure to modify the low-
temperature isotherms given by (1.23). Since the goal is to allow the system to split
into regions that contain either gas or liquid, the latter should be at equal temper-
ature and pressure; he thus replaced p(v), on a well-chosen interval [vl , vg ], by a
constant ps , called saturation pressure .
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From a physical point of view, Maxwell’s determination of ps , and hence of
vg and vl , can be understood as follows. The integral

∫ vg
vl

p(v)dv represents the
area under the graph of the isotherm, between vl and vg , but it also represents the
amount of work necessary to compress the gas from vg down to vl . Therefore, if
one is to replace p(v) by a constant value between vl and vg , this value should be
chosen such that the work required for that compression be the same as the original
one. That is, vl , vg and ps should satisfy

∫ vl

vg

p(v)dv =
∫ vl

vg

ps dv ,

which gives ∫ vl

vg

p(v)dv = ps · (vg − vl ) . (1.24)

This determination of ps can also be given a geometrical meaning: it is the
unique height at which a coexistence interval can be chosen in such a way that the
two areas delimited by the Van der Waals isotherm and the segment are equal. For
that reason, the procedure proposed by Maxwell is usually called Maxwell’s equal-
area rule, or simply Maxwell’s Construction. We denote the resulting isotherm by
v 7→ MC p(v,T ); see Figure 1.5.

v

MC p

vl vg

ps

Figure 1.5: Maxwell’s Construction. The height of the segment, ps , is chosen
in such a way that the two connected regions delimited by the graph of p and
the segment (shaded in the picture) have equal areas.

Although it relies on a mixture of two conflicting hypotheses (first assume ho-
mogeneity, build an equation of state and then modify it by plugging in the con-
densation phenomenon, by hand, using the equal-area rule), the Van der Waals–
Maxwell theory often yields satisfactory quantitative results. It is a landmark in the
understanding of the thermodynamics of the coexistence of liquids and gases and
remains widely taught in classrooms today.

There are many sources in the literature where the interested reader can find
additional information about the Van der Waals–Maxwell theory; see, for instance,
[89, 130]. We will return to the liquid-vapor equilibrium in a more systematic (and
rigorous) way in Chapter 4.
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v

p

v

p

Figure 1.6: Left: some of the isotherms resulting from the Van der Waals–
Maxwell theory, which will be discussed in detail in Chapter 4. The shaded
region indicates the pairs (v, p) for which coexistence occurs. Right: the
isotherms of carbonic acid, measured by Thomas Andrews in 1869 [12].

1.2 From Micro to Macro: Statistical Mechanics

Just as was the case for thermodynamics, the object of statistical mechanics is the
description of macroscopic systems. In sharp contrast to the latter, however, sta-
tistical mechanics relies on a reductionist approach, whose goal is to derive the
macroscopic properties of a system from the microscopic description provided by
the fundamental laws of physics. This ambitious program was initiated in the sec-
ond half of the 19th Century, with Maxwell, Boltzmann and Gibbs as its main con-
tributors. It was essentially complete, as a general framework, when Gibbs pub-
lished his famous treatise [137] in 1902. The theory has known many important de-
velopments since then, in particular regarding the fundamental problem of phase
transitions.

As we already discussed, the enormous number of microscopic variables in-
volved renders impossible the problem of deriving the macroscopic properties of a
system directly from an application of the underlying fundamental theory describ-
ing its microscopic constituents. However, rather than giving up, one might try to
use this at our advantage: indeed, the huge number of objects involved makes it
conceivable that a probabilistic approach might be very efficient (after all, in how
many areas does one have samples of size of order 1023?). That is, the first step in
statistical mechanics is to abandon the idea of providing a complete deterministic
description of the system and to search instead for a probability distribution over
the set of all microstates, which yields predictions compatible with the observed
macrostate. Such a distribution should provide the probability of observing a given
microstate and should make it possible to compute the probability of events of in-
terest or the averages of relevant physical quantities.

This approach can also be formulated as follows: suppose that the only infor-
mation we have on a given macroscopic system (at equilibrium) is its microscopic
description (namely, we know the set of microstates and how to compute their en-
ergy) and the values of a few macroscopic variables (the same fixed in thermody-
namics). Equipped with this information, and only this information, what can be
said about a typical microstate?

The main relevant questions are therefore the following:

• What probability distributions should one use to describe large systems at
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equilibrium?

• With a suitable probability distribution at hand, what can be said about the
other macroscopic observables? Is it possible to show that their distribution
concentrates on their most probable value, when the system becomes large,
thus yielding deterministic results for such quantities?

• How can this description be related to the one provided by equilibrium ther-
modynamics?

• Can phase transitions be described within this framework?

Note that the goal of equilibrium statistical mechanics is not limited to the compu-
tation of the fundamental quantities appearing in equilibrium thermodynamics.
The formalism of statistical mechanics allows one to investigate numerous prob-
lems outside the scope of the latter theory. It allows for example to analyze fluc-
tuations of macroscopic quantities in large finite systems and thus obtain a finer
description than the one provided by thermodynamics.

In this section, we will introduce the central concepts of equilibrium statistical
mechanics, valid for general systems, not necessarily gases and liquids, although
such systems (as well as magnets) will be used in our illustrative examples.

As mentioned above, we assume that we are given the following basic inputs
from a more fundamental theory describing the system’s microscopic constituents:

1. The set Ω of microstates. To simplify the exposition and since this is enough to
explain the general ideas, we assume that the setΩ of microstates describing
the system is finite:

|Ω| <∞. (1.25)

2. The interactions between the microscopic constituents, in the form of the en-
ergy H (ω) associated to each microstate ω ∈Ω:

H :Ω→R ,

called the Hamiltonian of the system. We will use U
def= {

U =H (ω) : ω ∈Ω}
.

Assumption (1.25) will require space to be discretized. The latter simplification,
which will be made throughout the book, may seem rather extreme. It turns out
however that many phenomena of interest can still be investigated in this setting,
while the mathematical analysis becomes much more tractable. ⋄

We denote the set of probability distributions onΩ by M1(Ω). Since we assume
thatΩ is finite, a distribution 11 µ ∈M1(Ω) is entirely characterized by the collection
(µ({ω}))ω∈Ω of the probabilities associated to each microstateω ∈Ω; we will usually
abbreviate µ(ω) ≡ µ({ω}). By definition, µ(ω) ≥ 0 for all ω ∈ Ω and

∑
ω∈Ωµ(ω) = 1.

We call observable the result of a measurement on the system. Mathematically, it

11Although we already use it to denote the chemical potential, we also use the letter µ to denote a
generic element of M1(Ω), as done very often in the literature.
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corresponds to a random variable f : Ω→ R. We will often denote the expected
value of an observable f under µ ∈M1(Ω) by

〈 f 〉µ def=
∑
ω∈Ω

f (ω)µ(ω) ,

although some alternative notations will occasionally be used in later chapters.

1.2.1 The microcanonical ensemble

The term “ensemble” was originally introduced by Gibbs [2]. In more modern
terms, it could simply be considered as a synonym of “probability space”. In statisti-
cal mechanics, working in a specific ensemble usually means adopting either of the
three descriptions described below: microcanonical, canonical, grand canonical. ⋄

In Section 1.1.1, we saw that it was convenient, when describing an isolated sys-
tem at equilibrium, to use extensive conserved quantities as macroscopic variables,
such as U ,V , N in our gas example.

We start our probabilistic description of an isolated system in the same way.
The relevant conserved quantities depend on the system under consideration, but
always contain the energy. Quantities such as the number of particles and the vol-
ume are assumed to be encoded into the set of microstates. Namely, we denote by
ΩΛ;N the set of all microstates describing a system of N particles located inside a
domainΛ of volume |Λ| =V (see the definition of the lattice gas in Section 1.2.4 for
a specific example). For our current discussion, we assume that the only additional
conserved quantity is the energy.

So, let us assume that the energy of the system is fixed to some value U . We are
looking for a probability distribution on ΩΛ;N that is concentrated on the set of all
microstates compatible with this constraint, that is, on the energy shell

ΩΛ;U ,N
def= {

ω ∈ΩΛ;N : H (ω) =U
}

.

If this is all the information we have on the system, then the simplest and most
natural assumption is that all configurations ω ∈ΩΛ;U ,N are equiprobable. Indeed,
if we consider the distribution µ as a description of the knowledge we have of the
system, then the uniform distribution represents faithfully the totality of our in-
formation. This is really just an application of Laplace’s Principle of Insufficient
Reason [3]. It leads naturally to the following definition:

Definition 1.7. Let U ∈U . The microcanonical distribution (at energy U ), νMic
Λ;U ,N ,

associated to a system composed of N particles located in a domainΛ, is the uniform
probability distribution concentrated onΩΛ;U ,N :

νMic
Λ;U ,N (ω)

def=
{

1
|ΩΛ;U ,N | if ω ∈ΩΛ;U ,N ,

0 otherwise.
(1.26)

Although the microcanonical distribution has the advantage of being natural
and easy to define, it can be difficult to work with, since counting the configurations
on the energy shell can represent a challenging combinatorial problem, even in
simple cases. Moreover, one is often more interested in the description of a system
at a fixed temperature T , rather than at fixed energy U .
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1.2.2 The canonical ensemble

Our goal now is to determine the relevant probability distribution to describe a
macroscopic system at equilibrium at a fixed temperature. As discussed earlier,
such a system is not isolated anymore, but in contact with a thermal reservoir with
which it can exchange energy.

Once we have the microcanonical description, the problem of constructing the
relevant probability distribution describing a system at equilibrium with an infinite
reservoir with which it can exchange energy and/or particles becomes conceptually
straightforward from a probabilistic point of view. Indeed, similarly to what we did
in Section 1.1.5, we can consider a system Σ in contact with a reservoir ΣR , the union
of the two forming a systemΣtot isolated from the rest of the universe, as in Figure 1.2.
SinceΣtot is isolated, it is described by the microcanonical distribution, and the prob-
ability distribution of the subsystem Σ can be deduced from this microcanonical dis-
tribution by integrating over all the variables pertaining to the reservoir. That is, the
measure describing Σ is the marginal of the microcanonical distribution correspond-
ing to the subsystem Σ. This is a well-posed problem, but also a difficult one. It turns
out that implementing rigorously such an approach is possible, once the statement
is properly formulated, but a detailed discussion is beyond the scope of this book. In
Section 4.7.1, we consider a simplified version of this problem; see also the discussion
(and the references) in Section 6.14.1.

Instead of following this path, we are going to use a generalization of the argu-
ment that led us to the microcanonical distribution to derive the distribution de-
scribing a system interacting with a reservoir. ⋄

When we discussed the microcanonical distribution above, we argued that the
uniform measure was the proper one to describe our knowledge of the system when
the only information available to us is the total energy. We would like to proceed
similarly here. The problem is that the temperature is not a mechanical quantity
as was the energy (that is, there is no observable ω 7→ T (ω)), so one cannot restrict
the setΩΛ;N to microstates with fixed temperatures. We thus need to take a slightly
different point of view.

Even though the energy of our system is not fixed anymore, one might still mea-
sure its average, which we also denote by U . In this case, extending the approach
used in the microcanonical case corresponds to looking for the probability dis-
tribution µ ∈ M1(ΩΛ;N ) that best encapsulates the fact that our only information
about the system is that 〈H 〉µ =U .

The Maximum Entropy Principle. In terms of randomness, the outcomes of a
random experiment whose probability distribution is uniform are the least pre-
dictable. Thus, what we did in the microcanonical case was to choose the most
unpredictable distribution on configurations with fixed energy.

Let Ω be an arbitrary finite set of microstates. One convenient (and essentially
unique, see below) way of quantifying the unpredictability of the outcomes of a
probability distribution µ on Ω is to use the notion of entropy introduced in infor-
mation theory by Shannon [301]:
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Definition 1.8. The (Shannon) entropy [4] of µ ∈M1(Ω) is defined by

SSh(µ)
def= −

∑
ω∈Ω

µ(ω) logµ(ω) . (1.27)

Exercise 1.6. SSh : M1(Ω) →R is concave: for all µ,ν ∈M1(Ω) and all α ∈ [0,1],

SSh

(
αµ+ (1−α)ν

)≥αSSh(µ)+ (1−α)SSh(ν) .

The Shannon entropy provides a characterization of the uniform distribution
through a variational principle.

Lemma 1.9. The uniform distribution onΩ, νUnif(ω)
def= 1

|Ω| , is the unique probability
distribution at which SSh attains its maximum:

SSh(νUnif) = sup
µ∈M1(Ω)

SSh(µ) . (1.28)

Proof. Consider ψ(x)
def= −x log x, which is concave. Using Jensen’s Inequality (see

Appendix B.8.1) gives

SSh(µ) = |Ω|
∑
ω∈Ω

1

|Ω|ψ(µ(ω))

≤ |Ω|ψ
( ∑
ω∈Ω

1

|Ω|µ(ω)
)
= |Ω|ψ

( 1

|Ω|
)
= log |Ω| = SSh(νUnif) ,

with equality if and only if µ(·) is constant, that is, if µ= νUnif.

Since it is concave, with a unique maximum at νUnif, Shannon’s entropy provides a
way of measuring how far a distribution is from being uniform. As shown in Ap-
pendix B.11, the Shannon entropy is the unique (up to a multiplicative constant)
such function (under suitable assumptions). We can thus use it to select, among all
probability distributions in some set, the one that is “the most uniform”.

Namely, assume that we have a set of probability distributions M ′
1(Ω) ⊂M1(Ω)

representing the set of all distributions compatible with the information at our dis-
posal. Then, the one that best describes our state of knowledge is the one maximiz-
ing the Shannon entropy; this way of selecting a distribution is called the Maximum
Entropy Principle. Its application to statistical mechanics, as an extension of the
Principle of Insufficient Reason, was pioneered by Jaynes [181].

For example, the microcanonical distribution νMic
Λ;U ,N has maximal entropy

among all distributions concentrated on the energy shellΩ(U ):

SSh(νMic
Λ;U ,N ) = sup

µ∈M1(ΩΛ;N ):
µ(ΩΛ;U ,N )=1

SSh(µ) . (1.29)

The canonical Gibbs distribution. We apply the Maximum Entropy Principle to
find the probability distribution µ ∈M1(ΩΛ;N ) that maximizes SSh, under the con-
straint that 〈H 〉µ = U . From an analytic point of view, this amounts to searching
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for the collection (µ(ω))ω∈ΩΛ;N of nonnegative real numbers that solves the follow-
ing optimization problem:

Minimize
∑

ω∈ΩΛ;N

µ(ω) logµ(ω) when





∑
ω∈ΩΛ;N

µ(ω) = 1,

∑
ω∈ΩΛ;N

µ(ω)H (ω) =U .
(1.30)

For this problem to have a solution, we require that U ∈ [Umin,Umax], where Umin
def=

infωH (ω), Umax = supωH (ω). Such problems with constraints can be solved by
using the method of Lagrange multipliers. Since there are two constraints, let us
introduce two Lagrange multipliers, λ and β, and define the following Lagrange
function:

L(µ)
def=

∑
ω∈ΩΛ;N

µ(ω) logµ(ω)+λ
∑

ω∈ΩΛ;N

µ(ω)+β
∑

ω∈ΩΛ;N

µ(ω)H (ω) .

The optimization problem then turns into the analytic study of a system of |ΩΛ;N |+
2 unknowns: 




∇L = 0,∑
ω∈ΩΛ;N

µ(ω) = 1,

∑
ω∈ΩΛ;N

µ(ω)H (ω) =U ,

where ∇ is the gradient involving the derivatives with respect to each µ(ω), ω ∈
ΩΛ;N . The condition ∇L = 0 thus corresponds to

∂L

∂µ(ω)
= logµ(ω)+1+λ+βH (ω) = 0, ∀ω ∈ΩΛ;N .

The solution is of the form µ(ω) = e−βH (ω)−1−λ. The first constraint
∑
µ(ω) = 1

implies that e1+λ = ∑
ω∈ΩΛ;N e−βH (ω). In conclusion, we see that the distribution

we are after is

µβ(ω)
def= e−βH (ω)

∑
ω′∈ΩΛ;N e−βH (ω′)

,

where the Lagrange multiplier β must be chosen such that
∑

ω∈ΩΛ;N

µβ(ω)H (ω) =U . (1.31)

Note that this equation always possesses exactly one solution β = β(U ) when U ∈
(Umin,Umax); this is an immediate consequence of the following

Exercise 1.7. Show that β 7→ 〈H 〉µβ is continuously differentiable, decreasing and

lim
β→−∞

〈H 〉µβ =Umax , lim
β→+∞

〈H 〉µβ =Umin .

Since β can always be chosen in such a way that the average energy takes a given
value, it will be used from now on as the natural parameter for the canonical dis-
tribution. To summarize, the probability distribution describing a system at equi-
librium that can exchange energy with the environment and possesses an average
energy is assumed to have the following form:
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Definition 1.10. The canonical Gibbs distribution at parameter β associated to a
system of N particles located in a domain Λ is the probability distribution on ΩΛ;N

defined by

µΛ;β,N (ω)
def= e−βH (ω)

ZΛ;β,N
.

The exponential e−βH is called the Boltzmann weight and the normalizing sum

ZΛ;β,N
def=

∑
ω∈ΩΛ;N

e−βH (ω)

is called the canonical partition function.

We still need to provide an interpretation for the parameter β. As will be argued
below, in Section 1.3 (see also Exercise 1.12), β can in fact be identified with the
inverse temperature.

Exercise 1.8. Using the Maximum Entropy Principle, determine the probability dis-
tribution of maximal entropy, µ = (µ(1), . . . ,µ(6)), for the outcomes of a dice whose
expected value is 4.

1.2.3 The grand canonical ensemble

Let us generalize the preceding discussion to the case of a system at equilibrium
that can exchange both energy and particles with the environment. From the ther-
modynamical point of view, such a system is characterized by its temperature and
its chemical potential.

One can then proceed exactly as in the previous section and apply the Maxi-
mum Entropy Principle to the set of all probability distributions with prescribed

average energy and average number of particles. Let us denote byΩΛ
def= ⋃

N≥0ΩΛ;N

the set of all microstates with an arbitrary number of particles all located inside
the region Λ. A straightforward adaptation of the computations done above (with
two Lagrange multipliers β and µ̂) shows that the relevant distribution in this case
should take the following form (writing µ̂=−βµ).

Definition 1.11. The grand canonical Gibbs distribution at parameters β and µ

associated to a system of particles located in a regionΛ is the probability distribution
onΩΛ defined by

νΛ;β,µ(ω)
def= e−β(H (ω)−µN )

ZΛ;β,µ
, if ω ∈ΩΛ;N .

The normalizing sum

ZΛ;β,µ
def=

∑
N

eβµN
∑

ω∈ΩΛ;N

e−βH (ω)

is called the grand canonical partition function.

Similarly as before, the parametersβ andµ have to be chosen in such a way that the
expected value of the energy and number of particles match the desired values. In
Section 1.3, we will argue thatβ and µ can be identified with the inverse temperature
and chemical potential.
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1.2.4 Examples: Two models of a gas.

We now present two examples of statistical mechanical models of a gas. The first
one, although outside the main theme of this book, will be a model in the contin-
uum, based on the description provided by Hamiltonian mechanics. The second
one will be a lattice gas model, which can be seen as a simplification of the previ-
ous model and will be the main topic of Chapter 4.

The continuum gas.

We model a gas composed of N particles, contained in a vessel represented by a
bounded subset Λ ⊂ Rd . As a reader familiar with Hamiltonian mechanics might
know, the state of such a system consists in the collection (pk , qk )k=1,...,N of the
momentum pk ∈ Rd and the position qk ∈Λ of each particle. In particular, the set
of microstates is

ΩΛ;N = (Rd ×Λ)N .

The Hamiltonian takes the usual form of a sum of a kinetic energy and a poten-
tial energy:

H (p1, q1, . . . , pN , qN )
def=

N∑
k=1

∥pk∥2
2

2m
+

∑
1≤i< j≤N

φ(∥q j −qi∥2) ,

where m is the mass of each particle and the potential φ encodes the contribu-
tion to the total energy due to the interaction between the i th and j th particles,
assumed to depend only on the distance ∥q j −qi∥2 between the particles.

Let us consider the canonical distribution associated to such a system. Our dis-
cussion above does not apply verbatim, since we assumed that ΩΛ;N was finite,
while here it is a continuum. Nevertheless, the conclusion in this case is the nat-
ural generalization of what we saw earlier. Namely, the probability of an event B
under the canonical distribution at inverse temperature β is also defined using the
Boltzmann weight:

µΛ;β,N (B)
def= 1

ZΛ;β,N

∫

ΩΛ;N

1B e−βH (p1,q1,...,pN ,qN )dp1dq1 · · ·dpN dqN ,

where 1B = 1B (p1, q1, . . . , qN , pN ) is the indicator of B and

ZΛ;β,N
def=

∫

ΩΛ;N

e−βH (p1,q1,...,pN ,qN )dp1dq1 · · ·dpN dqN .

Note that we cannot simply give the probability of each individual microstate, since
they all have zero probability. Thanks to the form of the Hamiltonian, the integra-
tion over the momenta can be done explicitly:

ZΛ;β,N =
{∫

R
e−

β
2m p2

dp
}d N

∫

ΛN
e−βH conf(q1,...,qN )dq1 · · ·dqN =

(2πm

β

)d N /2
Zconf
Λ;β,N ,

where we have introduced the configuration integral

Zconf
Λ;β,N

def=
∫

ΛN
e−βH conf(q1,...,qN )dq1 · · ·dqN ,

and H conf(q1, . . . , qN )
def= ∑

1≤i< j≤N φ(∥q j −qi∥2).
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In fact, when an event B only depends on the positions of the particles, not
on their momenta, the factors originating from the integration over the momenta
cancel in the numerator and in the denominator, giving

µΛ;β,N (B) = 1

Zconf
Λ;β,N

∫

ΛN
1B e−βH conf(q1,...,qN )dq1 · · ·dqN .

We thus see that the difficulties in analyzing this gas from the point of view
of the canonical ensemble come from the positions: the momenta have no effect
on the probability of events depending only on the positions, while they only con-
tribute an explicit prefactor to the partition function. The position-dependent part,
however, is difficult to handle as soon as the interaction potential φ is not trivial.

Usually, φ is assumed to contain two terms, corresponding respectively to the
short- and long-range part of the interaction:

φ(x) =φshort(x)+φlong(x) .

If we assume that the particles are identified with small spheres of fixed radius r0 >
0, a simple choice for φshort is the following hard-core interaction:

φshort(x)
def=

{
+∞ if |x| ≤ 2r0 ,

0 otherwise.

The long-range part of the interaction can be of any type, but it should at least
vanish at long distance:

φlong(x) → 0 when |x|→∞ .

The decay at +∞ should be fast enough, so as to guarantee the existence of Zconf
Λ;β,N

for instance, but we will not describe this in any further detail.

Unfortunately, even under further strong simplifying assumptions on φ, the
mathematical analysis of such systems, in particular the computation of Zconf

Λ;β,N re-

mains as yet intractable in most cases. This is the reason for which we consider
discretized versions of these models. The model we will now introduce, although
representing a mere caricature of the corresponding continuum model, is based
on an interaction embodying Van der Waals’ two main assumptions: short-range
repulsion and long-range attraction.

The Lattice Gas.

The lattice gas is obtained by first ignoring the momenta (for the reasons explained
above) and assuming that the particles’ positions are restricted to a discrete subset
of Rd . In general, this subset is taken to be the d -dimensional cubic lattice

Zd def= {
i = (i1, . . . , id ) ∈Rd : ik ∈Z for each k ∈ {1, . . . ,d}

}
.

In other words, one imagines that Rd is composed of small cells and that each cell
can accommodate at most one particle. To describe the microstates of the model,
we consider a finite region Λ ⊂ Zd representing the vessel and one associates an
occupation number ηi taking values in {0,1} to each cell i ∈Λ: the value 0 means
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that the cell is empty, while the value 1 means that it contains a particle. The set of
microstates is thus simply

ΩΛ
def= {0,1}Λ .

Note that this model automatically includes a short-range repulsion between
the particles, since no two particles are allowed to share a same cell. The attrac-
tive part of the interaction can then be included into the Hamiltonian: for any
η= (ηi )i∈Λ ∈ΩΛ,

H (η)
def=

∑
{i , j }⊂Λ

J ( j − i )ηiη j ,

which is completely similar to the Hamiltonian H conf(q1, . . . , qN ) above, the func-
tion J :Zd →R playing the role of φlong (one may assume that J ( j − i ) depends only
on the distance between the cells i and j , but this is not necessary). Note that the
contribution of a pair of cells {i , j } is zero if they do not both contain a particle.

The number of particles inΛ is given by

NΛ(η)
def=

∑
i∈Λ

ηi .

It will be useful to distinguish the partition functions in the various ensembles. The
canonical partition function will be denoted

QΛ;β,N =
∑

η∈ΩΛ;N

e−βH (η) ,

whereΩΛ;N
def= {

η ∈ΩΛ : NΛ(η) = N
}
, and the grand canonical one will be denoted

ΘΛ;β,µ =
∑
N

eβµN
∑

η∈ΩΛ;N

e−βH (η) .

Example 1.12. The simplest instance of the lattice gas is obtained by setting J ≡ 0, in
which case the Hamiltonian is identically 0. Since its particles only interact through
short-range repulsion, this model is called the hard-core lattice gas. ⋄

1.3 Linking Statistical Mechanics and Thermodynamics

So far, we have introduced the central probability distributions of statistical me-
chanics. With these definitions, the analysis of specific systems reduces to an ap-
plication of probability theory and the statistical properties of any observable can
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(in principle) be deduced. Nevertheless, if one wishes to establish a link with ther-
modynamics, then one must identify the objects in statistical mechanics that cor-
respond to the quantities in thermodynamics that are not observables, that is, not
functions of the microstate, such as the entropy or the temperature.

This will be done by making certain identifications, making one assumption
(Boltzmann’s Principle) and using certain analogies with thermodynamics. The real
justification that these identifications are meaningful lies in the fact that the prop-
erties derived for and from these quantities in the rest of the book parallel precisely
their analogues in thermodynamics. A reader unconvinced by these analogies can
simply take them as motivations for the terminology used in statistical mechanics.

Since our discussion of thermodynamics mostly dealt with the example of a gas,
it will be more convenient to discuss the identifications below in a statistical me-
chanical model of a lattice gas as well. But everything we explain can be extended
to general systems.

1.3.1 Boltzmann’s Principle and the thermodynamic limit

Consider the lattice gas in a region Λ ⊂ Zd with |Λ| = V , composed of N particles
and of total energy U . How should the entropy, function of the macrostate (U ,V , N ),
be defined? We are looking for an additive function, as in (1.2), associated to an
extremum principle that determines equilibrium.

Let us first generalize the energy shell and consider, for each macrostate
(U ,V , N ), the set of all microstates compatible with (U ,V , N ):

ΩΛ;U ,N
def= {

η ∈ΩΛ : H (η) =U , NΛ(η) = N
}

.

Definition 1.13. The Boltzmann entropy associated to a system of N particles inΛ
with total energy U is defined by 12

SBoltz(Λ;U , N )
def= log |ΩΛ;U ,N | .

We motivate this definition with the following discussion.

Consider two lattice gases at equilibrium, in two separate vessels with equal vol-
umes |Λ1| = |Λ2| = V , containing N 0

1 and N 0
2 particles respectively. For simplicity,

assume that the particles interact only through hard-core repulsion (H ≡ 0) and

that N
def= N 0

1 +N 0
2 is even.

Let us now put the two vessels in contact so that they can exchange particles.
To reach a new equilibrium state, the N particles are redistributed among the two
vessels, using the total volume at their disposal:

N 0
1

=⇒

V V 2V

N 0
2 N 0

1 +N 0
2

+

12Physicists usually write this condition as SBoltz(Λ;U , N )
def= kB log |Ω(Λ;U , N )|, where kB is Boltz-

mann’s constant. In this book, we will always assume that the units are chosen so that kB = 1.
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According to the postulate of thermostatics, equilibrium is realized once the
pair giving the number of particles in each vessel, (N1, N2), maximizes the sum of
the entropies of the vessels, under the constraint that N 0

1 +N 0
2 = N . Let us see why

Boltzmann’s definition of entropy is the most natural candidate for the function
describing this extremum principle.

From the point of view of statistical mechanics, once the vessels have been put

in contact, the whole system is described by νMic
Λ;N1+N2

(we set Λ
def= Λ1 ∪Λ2), under

which the probability of observing N1 particles in Λ1, and thus N2 = N −N1 in Λ2,
is given by

|ΩΛ1;N1 | · |ΩΛ2;N2 |
|ΩΛ;N | . (1.32)

We are interested in the pairs (N1, N2) that maximize this probability, under the
constraint N1 + N2 = N . In (1.32), only the numerator depends on N1, N2, and
|ΩΛk ;Nk | =

( V
Nk

)
. As can be easily verified (see Exercise 1.9 below),

max
N1,N2:

N1+N2=N

(
V

N1

)(
V

N2

)
=

(
V
N
2

)(
V
N
2

)
, (1.33)

meaning that the most probable configuration is the one in which the two vessels
have the same number of particles. In terms of the Boltzmann entropy, (1.33) takes
the form

max
N1,N2:

N1+N2=N

{
SBoltz(Λ1; N1)+SBoltz(Λ2; N2)

}
= SBoltz

(
Λ1; N

2

)+SBoltz

(
Λ2; N

2

)
, (1.34)

which, since this is a discrete version of the postulate of thermodynamics, makes
SBoltz a natural candidate for the entropy of the system.

Unfortunately, this definition still suffers from one important defect. Namely,
if the system is large, although having the same number of particles in each half,
(N1, N2) = ( N

2 , N
2 ), is more likely than any other repartition (N ′

1, N ′
2), it is never-

theless an event with small probability! (Of order 1p
N

, see the exercise below.)

Moreover, any other pair (N ′
1, N ′

2) such that N ′
1 + N ′

2 = N , |N ′
1 − 1

2 N | ≪ N 1/2 and
|N ′

2 − 1
2 N |≪ N 1/2 has essentially the same probability.

Exercise 1.9. Prove (1.33). Then, show the probability of having the same number
of particles, N

2 in each vessel, is of the order 1p
N

.

What must be considered, in order to have a deterministic behavior, is not the
number of particles in each vessel but their densities. Let therefore

ρΛ1

def= NΛ1

V
, ρΛ2

def= NΛ2

V

denote the random variables giving the densities of particles in each of the two
halves. The constraint N1 +N2 = N translates into

ρΛ1 +ρΛ2

2
= N

2V
def= ρ ,

which is the overall density of the system.
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For a large system, ρΛ1 and ρΛ2 are both close to ρ, but they always undergo
microscopic fluctuations around ρ: the probability of observing a fluctuation of
size at least ϵ > 0, νMic

Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)
, is always positive, even though it might be

very small.
If we are after a more macroscopic statement, of the type “at equilibrium, the

densities in the two halves are (exactly) equal to ρ”, then some limiting procedure
is necessary, similar to the one used in the Law of Large Numbers.

The natural setting is that of a large system with a fixed density. Let us thus fix ρ,
which is the overall density of the system. We will let the size of the system |Λ| =V
increases indefinitely, V →∞, and also let the total number of particles N →∞, in
such a way that

N

2V
→ ρ .

This procedure is called the thermodynamic limit. One might then expect, in this
limit, that the densities in the two subsystems concentrate on ρ, in the sense that

νMic
Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)= νMic

Λ;N

(|ρΛ2 −ρ| ≥ ϵ
)→ 0, for all ϵ> 0.

Let us see how this concentration can be obtained and how it relates to Boltzmann’s
definition of entropy. Keeping in mind that N2 = N −N1,

νMic
Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)=

∑
N1:∣∣ N1

V −ρ
∣∣≥ϵ

|ΩΛ1;N1 | · |ΩΛ2;N2 |
|ΩΛ;N |

=
∑
N1:∣∣ N1

V −ρ
∣∣≥ϵ

exp
(
SBoltz(Λ1; N1)+SBoltz(Λ2; N2)−SBoltz(Λ; N )

)
. (1.35)

It turns out that, in the case of the hard-core gas we are considering, the Boltz-
mann entropy has a well defined density in the thermodynamic limit. Namely, since
|ΩΛ;N | = (2V

N

)
, by a simple use of Stirling’s formula (Lemma B.3),

lim
1

2V
SBoltz(Λ; N ) = shard

Boltz(ρ)
def= −ρ logρ− (1−ρ) log(1−ρ) .

We can therefore use the entropy density shard
Boltz(·) in each of the terms appearing in

the exponential of (1.35). Letting ρk
def= Nk

V and remembering that ρ1+ρ2
2 = ρ,

νMic
Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)= eo(1)V

∑
N1:

|ρ1−ρ|≥ϵ

exp
{(
shard

Boltz(ρ1)+ shard
Boltz(ρ2)−2shard

Boltz(ρ)
)
V

}
,

where o(1) tends to 0 in the thermodynamic limit 13. Now, shard
Boltz is concave and so

shard
Boltz(ρ1)+ shard

Boltz(ρ2)

2
≤ shard

Boltz(ρ) .

In fact, it is strictly concave, which implies that there exists c(ϵ) > 0 such that

inf
{
shard

Boltz(ρ)− shard
Boltz(ρ1)+ shard

Boltz(ρ2)

2
:
ρ1 +ρ2

2
= ρ, |ρ1 −ρ| ≥ ϵ

}
= c(ϵ) .

13Strictly speaking, one should treat values of ρ close to 0 and 1 separately. To keep the exposition
short, we ignore this minor issue here. It will be addressed in Chapter 4.
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ρ

shard
Boltz

ρ1 ρ2ρ

c(ε)

Therefore, since the number of terms in the sum is bounded above by V , we con-
clude that

νMic
Λ;U ,N (|ρ1 −ρ| ≥ ϵ) ≤V e−(2c(ϵ)−o(1))V .

The latter quantity tends to 0 in the limit V →∞, for any ϵ > 0. We conclude that
the densities in each of the two subsystems indeed concentrate on ρ as V →∞.

In other words, to make the parallel with the discrete version (1.34), we have
proven that in the thermodynamic limit, the densities in the two boxes become
both equal to ρ; these are the unique densities that realize the supremum in

sup
ρ1,ρ2:

ρ1+ρ2
2 =ρ

{
shard

Boltz(ρ1)+ shard
Boltz(ρ2)

}= shard
Boltz(ρ)+ shard

Boltz(ρ) .

The above discussion was restricted to the hard-core lattice gas, but it shows
that, while the Boltzmann entropy SBoltz does not fully satisfy our desiderata, con-
sidering its density in the thermodynamic limit yields a function that correctly de-
scribes the equilibrium values of the thermodynamic parameters, as the unique
solution of an extremum principle.

Let us then consider a generic situation of a system with macrostate (U ,V , N ).
To treat models beyond the hard-core lattice gas, the definition of the thermody-
namic limit must include a limit U →∞ with U /V → u.

Definition 1.14. Fix u and ρ. Consider the thermodynamic limit, U →∞, V →∞,
N →∞, in such a way that U

V → u and N
V → ρ, and let Λ be increasing, such that

|Λ| = V . The Boltzmann entropy density at energy density u and particle density ρ
is defined by the following limit, when it exists:

sBoltz(u,ρ)
def= lim

1

V
SBoltz(Λ,U , N ) .

Of course, two nontrivial claims are hidden in the definition of the Boltzmann en-
tropy density: the existence of the limit and the fact that it does not depend on the
chosen sequence of sets Λ. This can be proved for a very large class of models, at
least for sufficiently regular sequences (cubes would be fine, but much more gen-
eral shapes can be accommodated). Several statements of this type will be proved
in later chapters.

In view of the above discussion, it seems natural to consider the Boltzmann en-
tropy density as the statistical mechanical analogue of the thermodynamic entropy
density s(u,ρ) = 1

V S(U ,V , N ).
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Boltzmann’s Principle. The thermodynamic entropy density associated to the
macrostate (U ,V , N ), corresponding to densities u = U

V , ρ = N
V , will be identified with

the Boltzmann entropy density:

s(u,ρ) ↔ sBoltz(u,ρ) .

It is possible, at least for reasonably well-behaved systems, to prove that sBoltz

possesses all the properties we established for its thermodynamic counterpart. For
this introduction, we will only give some plausibility argument to show that sBoltz is
concave in general (similar arguments will be made rigorous in Chapter 4).

Consider again a gas Σ contained in a cubic domain Λ, with parameters V =
|Λ|,U , N . Let u = U

V , ρ = N
V . Fix α ∈ (0,1) and consider u1,u2 and ρ1,ρ2 such that

u =αu1 + (1−α)u2 , and ρ =αρ1 + (1−α)ρ2 .

We think of Σ as being composed of a large number M of subsystems, Σ1, . . . ,ΣM ,
each contained in a sub-cube of volume V ′ = V /M . If one can neglect the energy
due to the interaction between the subsystems (which is possible if we assume that
the latter are still very large), then one way of having energy and particle densities
u and ρ in Σ is to have energy and particle densities u1 and ρ1 in a fraction α of the
subsystems, and energy and particle densities u2 and ρ2 in the remaining ones. We
then have

|ΩΛ;U ,N | ≥ |ΩΛ′;u1V ′,ρ1V ′ |αM |ΩΛ′;u2V ′,ρ2V ′ |(1−α)M ,

whereΛ′ denotes a cube of volume V ′. Therefore,

1

V
log |ΩΛ;U ,N | ≥α 1

V ′ log |ΩΛ′;u1V ′,ρ1V ′ |+ (1−α)
1

V ′ log |ΩΛ′;u2V ′,ρ2V ′ | .

Letting first M →∞ and then taking the thermodynamic limit V ′ →∞ yields

sBoltz

(
αu1 + (1−α)u2,αρ1 + (1−α)ρ2

)≥αsBoltz(u1,ρ1)+ (1−α)sBoltz(u2,ρ2) ,

as desired.

Assuming that sBoltz(u,ρ) exists and satisfies the relations we have seen in ther-
modynamics, and using Boltzmann’s principle, we will now motivate the definition
of the thermodynamic potentials studied in the canonical and grand canonical en-
sembles of statistical mechanics, namely the free energy and pressure.

Canonical ensemble.

Observe first that the canonical partition function at parameter β of a lattice gas
with N particles in a vessel of size |Λ| =V can be rewritten as

QΛ;β,N =
∑

U∈U
e−βU |ΩΛ;U ,N | =

∑
U∈U

e−βU+SBoltz(Λ;U ,N ) = eo(1)V
∑

U∈U
e−(βu−sBoltz(u,ρ))V ,

where we introduced u
def= U /V , ρ

def= N /V and used the definition of the Boltzmann
entropy density:

SBoltz(Λ;U , N ) = (sBoltz(u,ρ)+o(1))V .

One can then bound the sum from above and from below by keeping only its largest
term

e−V infu {βu−sBoltz(u,ρ)} ≤
∑

U∈U
e−(βu−sBoltz(u,ρ))V ≤ |U |e−V infu {βu−sBoltz(u,ρ)} . (1.36)



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

32 Chapter 1. Introduction

To be more specific, let us assume that the lattice gas has finite-range interactions,
meaning that J ( j−i ) = 0 as soon as ∥ j−i∥2 is larger than some fixed constant. In this
case, |U | is bounded by a constant times V , which gives 1

V log |U | → 0. Therefore,
in the thermodynamic limit (N ,V →∞, N /V → ρ), we obtain

lim
1

V
logQΛ;β,N =− inf

u
{βu − sBoltz(u,ρ)}

def= − f̂ (β,ρ) . (1.37)

In order to make the desired identifications with thermodynamics, we first argue
that, under the canonical Gibbs distribution, the energy density of the system con-
centrates, in the thermodynamic limit, on the value u = u(β,ρ) minimizing βu −
sBoltz(u,ρ). (Note the similarity between the argument below and the discussion in
Section 1.1.5.) Indeed, for ϵ> 0, let

Uϵ
def= {

U ∈U :
∣∣βu − sBoltz(u,ρ)−β{u − sBoltz(u,ρ)}

∣∣≤ ϵ}

denote the set of values of the energy for which βu−sBoltz(u,ρ) differs from its min-
imum value by at most ϵ. Then, repeating (1.36) for the sum over U ∈U \Uϵ,

µΛ;β,N
(H

V ̸∈Uϵ

)=
∑

U∈U \Uϵ
e−βU+SBoltz(Λ;U ,N )

QΛ;β,N

≤ |U |e−V {βu−sBoltz(u,ρ)+ϵ}

e−V {βu−sBoltz(u,ρ)}
eo(1)V ≤ e−(ϵ−o(1))V ,

which tends to 0 as V →∞, for any ϵ> 0.
Up to now, the arguments were purely probabilistic. We are now going to use

Boltzmann’s Principle in order to relate relevant quantities to their thermodynamic
counterparts.

First, since the energy density concentrates on the value u, it is natural to iden-
tify the latter with the thermodynamic equilibrium energy density. Now, note that
u is also the value such that (assuming differentiability)

β= ∂sBoltz

∂u
(u,ρ) . (1.38)

Using Boltzmann’s Principle to identify sBoltz with the thermodynamic entropy den-
sity s and comparing (1.38) with the right-hand side of (1.3), we see that the pa-
rameter β of the canonical distribution should indeed be interpreted as the inverse
temperature.

In turn, comparing (1.37) and (1.15), we see that f (T,ρ) = T f̂ (1/T,ρ) can be
identified with the Helmholtz free energy density. We conclude that, when it exists,
the limit

− lim
1

βV
logQΛ;β,N (1.39)

is the relevant thermodynamic potential for the description of the canonical lattice
gas. It will simply be called the free energy.

Exercise 1.10. Show that f̂ (β,ρ) defined in (1.37) is concave in β, in agreement with
the result of Exercise 1.3 obtained in the thermodynamical context.
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Exercise 1.11. Let νMic
Λ;U ,N denote the microcanonical distribution inΛ associated to

the parameters U , N . Show that its Shannon entropy coincides with the Boltzmann
entropy:

SSh(νMic
Λ;U ,N ) = SBoltz(Λ;U , N ) .

Therefore, Boltzmann’s Principle actually identifies the Shannon entropy density as-
sociated to the microcanonical distribution with the thermodynamic entropy den-
sity.

Exercise 1.12. Let µΛ;β(U ),N be the canonical Gibbs distribution associated to the
parameter β(U ) for which (1.31) holds. Show that

∂SSh(µΛ;β(U ),N )

∂U
=β(U ) .

Therefore, identifying, in analogy with what is done in Exercise 1.11, the Shannon
entropy of the canonical distribution with the thermodynamical entropy yields an
alternative motivation to identify the parameter β with the inverse temperature.

Compute also U −T (U )SSh(µβ(U )) and verify that it coincides with the definition
of free energy in the canonical ensemble.

Grand canonical ensemble.

We can do the same type of argument for the grand canonical partition function at
parameter β,µ of a gas in a region of volume |Λ| =V :

ΘΛ;β,µ =
∑

N ,U
eβµN−βU |ΩΛ;U ,N |

=
∑

N ,U
eβµN−βU+SBoltz(Λ;U ,N ) = eo(1)V

∑
ρ,u

e−{βu−βµρ−s(u,ρ)}V .

Arguing as before, we conclude that, in the thermodynamic limit V →∞,

lim
1

V
logΘΛ;β,µ =− inf

u,ρ
{βu −βµρ− s(u,ρ)}

def= −φ̂G(β,−µ/T ) . (1.40)

Again, the particle and energy densities concentrate on the values u = u(β,µ) and
ρ = ρ(β,µ) such that

β= ∂s

∂u
(u,ρ) , βµ= ∂s

∂ρ
(u,ρ) .

In view of (1.3) and (1.6), this allows us to interpret the parameters β and µ of the
grand canonical distribution as the inverse temperature and the chemical poten-

tial, respectively. Moreover, comparing (1.40) with (1.20), we see that φG(T,µ)
def=

T φ̂G(1/T,−µ/T ) can be identified with the density of the grand potential, which,
by (1.22), corresponds to minus the pressure p(T,µ) of the model.

We thus see that, when the limit exists,

lim
1

βV
logΘΛ;β,µ (1.41)

is the relevant thermodynamical potential for the description of the grand canoni-
cal ensemble; it will simply be called the pressure.

In later chapters, we will see precise (and rigorous) versions of the kind of argu-
ment used above.
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1.3.2 Deriving the equation of state of the ideal gas

Computing the free energy or the pressure of a given model is not trivial, in general,
and will be done for several interesting cases in later chapters. Nevertheless, if we
consider the simplest possible case, the hard-core lattice gas, then some explicit
computations can be done.

Fix β > 0 and µ ∈ R. Since H ≡ 0, the grand canonical partition function is
easily computed:

ΘΛ;β,µ =
V∑

N=0

(
V

N

)
eβµN = (

1+eβµ
)V .

It follows from (1.41) that, in the thermodynamic limit V →∞, the pressure is given
by

p(T,µ) = T log(1+eβµ) . (1.42)

The average number of particles is given by

〈
NΛ

〉
νΛ;β,µ

= 1

β

∂ logΘΛ;β,µ

∂µ
= eβµ

1+eβµ
V .

In particular, in the thermodynamic limit V →∞,

ρ(β,µ)
def= lim

V →∞
〈 NΛ

V

〉
νΛ;β,µ

= eβµ

1+eβµ
.

Using this in (1.42), we obtain the equation of the isotherms:

p =−T log(1−ρ) . (1.43)

For a diluted gas, ρ≪ 1, a Taylor expansion gives p = ρT +O(ρ2), which in terms of
the specific volume v = 1/ρ becomes

pv = T +O( 1
v ) ,

and we recover the equation of state for an ideal gas, see (1.14).

v

p =−T log(1− 1
v )

1

The reason we observe deviations from the ideal gas law at higher densities (small
v) is due to the repulsive interaction between the particles, which comes from the
fact that there can be at most one of them in each cell. Note, also, that we do not
find a coexistence plateau in this model, see (1.43). This is due to the absence of
attractive interaction between the particles. More general situations will be con-
sidered in Chapter 4.
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1.3.3 The basic structure

The structure provided by the formalism presented so far, applied to the lattice gas,
can be summarized as follows:

Ω, Hamiltonian

Finite-volume Gibbs distribution, pressure/free energy

Thermodynamic limit

Macroscopic properties, phase transitions

Many models will be introduced and analyzed in the rest of the book, based
on this structure. These models will be used to study various aspects of equilib-
rium statical mechanics: macroscopic features, first-order phase transitions, fluc-
tuations, equivalence of the different ensembles, etc. Since it is mathematically
simpler and physically often more relevant, we will mostly work at fixed tempera-
ture rather than fixed energy; the basic object for us will thus be the canonical and
grand canonical Gibbs distributions.

Let us now move on to another type of phenomenon which can be studied in
this formalism and which will be one of the main concerns of later chapters.

1.4 Magnetic systems

In this section, we describe another important class of macroscopic systems en-
countered in this book: magnets. We will discuss the two main types of behavior
magnets can present, paramagnetism and ferromagnetism, and introduce one of
the main models used for their description.

1.4.1 Phenomenology: Paramagnets vs. Ferromagnets

Consider a sample of some material whose atoms are arranged in a regular crys-
talline structure [5]. We suppose that each of these atoms carries a magnetic mo-
ment (picture a small magnet attached to each atom) called its spin. We assume
that each spin has the tendency of aligning with its neighbors and with an external
magnetic field.

If the magnetic field points in a fixed direction, the spins are globally ordered:
they tend to align with the field and thus all point roughly in the same direction. If
we then slowly decrease the intensity of the external field to zero, two behaviors are
possible.

Paramagnetic behaviour. In the first scenario, the global order is progressively
lost as the field decreases and, when the latter reaches zero, the spins’ global order
is lost. Such a behavior is called paramagnetism:
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This phenomenon can be measured quantitatively by introducing the magne-
tization, which is the average of the spins, projected along the direction of the mag-
netic field. For a paramagnet, when the field decreases from a positive value to zero
(maintaining the direction fixed), or similarly if it increases from a negative value
to zero, the magnetization tends to zero:

field

magnetization

Ferromagnetic behaviour. But another scenario is possible: as the external field
decreases, the global order decreases, but the local interactions among the spins
are strong enough for the material to maintain a globally magnetized state even
after the external field has vanished. Such a behavior is called ferromagnetism:

A ferromagnet thus exhibits spontaneous magnetization, that is, global order-
ing of the spins even in the absence of an external magnetic field. The value of
the spontaneous magnetization, ±m∗, depends on whether the external field ap-
proached zero from positive or negative values:



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

1.4. Magnetic systems 37

field

magnetization

+m∗

−m∗

Observe that as the field goes through zero, the magnetization suffers a discontinu-
ity: it jumps from a strictly positive to a strictly negative value. This corresponds to
a first-order phase transition.

Using the process described above, one can in principle prepare a ferromag-
netic material with a spontaneous magnetization pointing in an arbitrary direc-
tion, by simply applying a magnetic field in that direction and slowly decreasing its
intensity to zero.

The distinction between these two types of magnetic behavior was first made by
Pierre Curie in 1895 and initiated the modern theory of magnetism. Among other
important results, Curie observed that a same material can present both types of
behavior, depending on the temperature: its behavior can suddenly change from
ferromagnetic to paramagnetic once its temperature is raised above a well-defined,
substance-specific temperature, now known as the Curie temperature.

1.4.2 A simple model for a magnet: the Ising model

The Ising model was introduced by Wilhelm Lenz in 1920 [221], in view of obtaining
a theoretical understanding of the phase transition from ferromagnetic to param-
agnetic behavior described above. The name “Ising model” (sometimes, but much
less frequently, more aptly called the Lenz–Ising model, as suggested by Ising him-
self) was coined in a famous paper by Rudolph Peierls [266] in reference to Ernst
Ising’s 1925 PhD thesis [175], which was undertaken under Lenz’s supervision and
devoted to the one-dimensional version of the model.

A major concern and a much debated issue, in the theoretical physics commu-
nity at the beginning of the 20th century, was to determine whether phase transi-
tions could be described within the framework of statistical mechanics, still a young
theory at that time. [6]

This question was settled using the Ising model. The latter is indeed the first
system of locally interacting units for which it was possible to prove the existence of
a phase transition. This proof was given in the above-mentioned paper by Peierls
in 1936, using an argument that would later become a central tool in statistical me-
chanics. [7]

Its simplicity and the richness of its behavior have turned the Ising model into
a preferred laboratory to test new ideas and methods in statistical mechanics. It
is nowadays, undoubtedly, the most famous model in this field, and has been the
subject of thousands of research papers. Moreover, through its numerous inter-
pretations in physics as well as in many other fields, it has been used to describe
qualitatively, and sometimes quantitatively, a great variety of situations. [8]
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Figure 1.7: A spin configuration ω ∈ΩB(4).

We model the regular crystalline structure corresponding to the positions of the
atoms of our magnet by a finite, non-oriented graph G = (Λ,E ), whose set of ver-
tices Λ is a subset of Zd . A typical example, often used in this book, is the box of
radius n:

B(n)
def= {−n, . . . ,n}d

For example, B(4) is represented on Figure 1.7. The edges of the graph will most
often be between nearest neighbors, that is, pairs of vertices i , j with ∥ j − i∥1 = 1,

where the norm is defined by ∥i∥1
def= ∑d

k=1 |ik |. We write i ∼ j to indicate that i and
j are nearest neighbors. So, the set of edges in the box B(n) is

{
{i , j } ⊂B(n) : i ∼ j

}
,

as depicted in Figure 1.7.

The Ising model is defined by first assuming that a spin is located at each vertex
of the graph G = (Λ,E ). One major simplification is the assumption that, unlike the
pictures of Section 1.4.1, the spins are restricted to one particular direction, point-
ing either “up” or “down”; the corresponding two states are traditionally denoted
by +1 (“up”) and −1 (“down”). It follows that, to describe a microstate, a variableωi

taking two possible values ±1 is associated to each vertex i ∈Λ; this variable will be
called the spin at i .

A microstate of the system, usually called a configuration, is thus an element
ω ∈ΩΛ, where

ΩΛ
def= {−1,1}Λ .

The microscopic interactions among the spins are defined in such a way that:

1. There is only interaction between pairs of spins located at neighboring vertices.
That is, it is assumed that the spins at two distinct vertices i , j ∈Λ interact if
and only if the pair {i , j } is an edge of the graph.

2. The interaction favors agreement of spin values. In the most common in-
stance of the model, to which we restrict ourselves here, this is done in the
simplest possible way: a pair of spins at the endpoints i and j of an edge
decreases the overall energy of the configuration if they agree (ωi = ω j ) and



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

1.4. Magnetic systems 39

increases it if they differ; more precisely, the spins at the endpoints of the edge
{i , j } contribute to the total energy by an amount

−ωiω j .

Therefore, configurations in which most pairs of neighbors are aligned have
smaller energy.

3. Spins align with the external magnetic field. Assume that a constant external
magnetic field of intensity h ∈ R (oriented along the same direction as the
spins) acts on the system. Its interaction with the spin at i contributes to the
total energy by an amount

−hωi .

That is, when the magnetic field is positive, the configurations with most of
their spins equal to +1 have smaller energy.

The energy of a configuration ω is obtained by summing the interactions over all
pairs and by adding the interaction of each spin with the external magnetic field.
This leads to the Hamiltonian of the Ising model:

HΛ;h(ω)
def= −

∑
i , j∈Λ
i∼ j

ωiω j −h
∑
i∈Λ

ωi , ω ∈ΩΛ . (1.44)

Since it favors local alignment of the spins, the Hamiltonian of the model is said to
be ferromagnetic. (Note that this terminology does not necessarily imply that the
models behaves like a ferromagnet.)

The Gibbs distribution is denoted by

µΛ;β,h(ω) = e−βHΛ;h (ω)

ZΛ;β,h
,

where ZΛ;β,h is the associated partition function. The expectation of an observable
f :ΩΛ→R under µΛ;β,h is denoted 〈 f 〉Λ;β,h .

An important observation is that, in the absence of a magnetic field (that is,
when h = 0), even though local spin alignment is favored by the Hamiltonian, nei-
ther of the orientations (+1 or −1) is favored globally. Namely, if −ω denotes the

spin-flipped configuration in which (−ω)i
def= −ωi , then HΛ;0(−ω) = HΛ;0(ω); this

implies that
µΛ;β,0(−ω) =µΛ;β,0(ω).

The model is then said to be invariant under global spin flip. When h ̸= 0, this
symmetry no longer holds.

1.4.3 Thermodynamic behavior

Our goal is to study the Ising model in a large region Λ and to eventually take the
thermodynamic limit, for instance takingΛ=B(n) and letting n →∞.

To simplify the discussion, we will first consider the model in the absence of a
magnetic field: h = 0. A natural question, which will be a central theme in this book,
is: under which circumstances does the ferromagnetic nature of the model, whose
tendency is to align the spins locally, induce order also at the global/macroscopic



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

40 Chapter 1. Introduction

scale? To make this question more precise, we need suitable ways to quantify global
order. One natural such quantity is the total magnetization

MΛ(ω)
def=

∑
i∈Λ

ωi .

Then, the magnetization density

MΛ(ω)

|Λ| ∈ [−1,1]

equals the difference between the fractions of spins that take the value +1 and −1
respectively; it therefore provides some information on the balance between the
two spin values in the whole system.

As we already pointed out, the Gibbs distribution is invariant under a global
spin-flip when h = 0. As a consequence, the average magnetization is zero at all
temperatures:

Exercise 1.13. Show that
〈MΛ〉Λ;β,0 = 0. (1.45)

The interpretation of (1.45) is that, on average, the densities of + and − spins
are equal. However, as we will see below, this does not necessarily mean that the
densities of two species of spins are equal in typical configurations of the model.
As a first natural step, let us study the fluctuations of MΛ around this average value.
Since the spins are dependent, this is a subtle question.

To approach the problem of understanding the dependence on the tempera-
ture, we will first study the fluctuations of MΛ in two limiting situations, namely
that of infinite temperature (β = 1/T ↓ 0) and zero temperature (β = 1/T ↑ ∞).
Although these two cases are essentially trivial from a mathematical point of view,
they will already provide some hints as to what might happen at other values of the
temperature, in the infinite-volume Ising model. For the sake of concreteness, we
takeΛ=B(n).

Infinite temperature. Consider the model on B(n) (with a fixed n). In the limit
β ↓ 0, the Gibbs distribution converges to the uniform distribution on ΩB(n): for
each ω ∈ΩB(n),

lim
β↓0

µB(n);β;0(ω) =µB(n);0,0(ω) = 1

|ΩB(n)|
. (1.46)

Therefore, after β ↓ 0, MB(n) is a sum of independent and identically distributed
random variables. Its behavior in regions of increasing sizes can thus be described
using the classical limit theorems of Probability Theory. For instance, the Law of
Large Numbers implies that, for all ϵ> 0,

µB(n);0,0

( MB(n)

|B(n)| ̸∈ [−ϵ,ϵ]
)
−→ 0 as n →∞ . (1.47)

Looking at a finer scale, the Central Limit Theorem states that, for all a < b,

µB(n);0,0

( a√
|B(n)|

≤ MB(n)

|B(n)| ≤
b√

|B(n)|
)
−→ 1p

2π

∫ b

a
e−x2/2 dx . (1.48)
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Zero temperature. In the opposite regime, in which β ↑ ∞ in a fixed box B(n),
the distribution µB(n);β,0 concentrates on those configurations that minimize the
Hamiltonian, the so-called ground states. It is easy to check that the Ising model
in B(n) has exactly two ground states: the constant configurations η+,η− ∈ΩB(n),
defined by

η+i
def= +1 ∀i ∈B(n) , η−i

def= −1 ∀i ∈B(n) .

For any configurationω different from η+ and η−, there exists at least one pair {i , j }
of nearest-neighbors in B(n) such that ωi ̸=ω j . Therefore,

HB(n)(ω)−HB(n)(η
±) =

∑
i , j∈B(n)

i∼ j

(
1−ωiω j

)≥ 2. (1.49)

Consequently,

µB(n);β,0(ω)

µB(n);β,0(η±)
= e−βHB(n)(ω)

e−βHB(n)(η±)
≤ e−2β→ 0 as β ↑∞ .

Since µB(n);β,0(η−) =µB(n);β,0(η+), we thus get

lim
β↑∞

µB(n);β,0(ω) =
{

1
2 if ω ∈ {η+,η−},

0 otherwise,
(1.50)

which means that, in the limit of very low temperatures, the Gibbs distribution
“freezes” the system in either of the ground states.

The two very different behaviors observed above in the limits β ↑ ∞ and β ↓ 0
suggest two possible scenarios for the high- and low-temperature behavior of the
Ising model in a large box B(n):

1. Whenβ is small (high temperature), the global magnetization density is close
to zero: with high probability,

MB(n)

|B(n)|
∼= 0.

In this scenario, in a typical configuration, the fractions of + and − spins are
essentially equal.

2. When β is large (low temperature), µB(n);β,0 concentrates on configurations
that mostly coincide with the ground states η+, η−. In particular, with high
probability,

either
MB(n)

|B(n)|
∼=+1, or

MB(n)

|B(n)|
∼=−1.

In this scenario, spontaneous magnetization/global order is observed, since
a majority of spins has the same sign. Observe that the Law of Large Num-
bers would not hold in such a regime. Namely, each spin has an average value
equal to zero and, nevertheless, the observation of the system as a whole
shows that |B(n)|−1 ∑

i∈B(n)ωi is not close to 0. The symmetry under a global
spin flip is spontaneously broken, in the sense that typical configurations
favor one of the two types of spins, even though the Gibbs distribution is
completely neutral with respect to both species of spins.
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The main problem is to determine which of these behaviors (if any) gives the cor-
rect description of the system for intermediate values 0 <β<∞.

From the physical point of view, the question we will be most interested in is to
determine whether the global alignment of the spins observed atβ=∞ survives, in
arbitrarily large systems, for large but finite values of β. This is a delicate question,
since the argument given above actually consisted in fixing n and observing that the
ground states were dominant when β ↑∞. But the true limiting procedure we are
interested in is to take the thermodynamic limit at fixed temperature, that is to fix β
(possibly very large) and then let n →∞. It turns out that, in this limit, the ground
states are in fact very unlikely to be observed. Indeed, let us denote by Ωk

B(n)
the

set of configurations coinciding everywhere with either η+ or η−, except at exactly
k vertices where the spins disagree with the ground state. Such local deformations
away from a ground-state are often called excitations. Then, for each ω ∈Ωk

B(n)
,

HB(n);0(ω)−HB(n);0(η±) ≤ 4dk .

(This bound is saturated when none of these k misaligned spins are located at
neighboring vertices and none is located along the boundary of B(n).) Observe

that |Ωk
B(n)

| = (|B(n)|
k

)
and that k is always at most equal to |B(n)|/2. This means

that, for any k ≥ 1,

µB(n);β,0(Ωk
B(n)

)

µB(n);β,0(η±)
=

∑

ω∈Ωk
B(n)

e−β(HB(n);0(ω)−HB(n);0(η±))

≥
(
|B(n)|

k

)
e−4dβk ≥ 1

k !

( 1
2 |B(n)|e−4dβ)k ≫ 1,

for all n large enough (at fixed β). In other words, even at very low temperature, it is
always much more likely to have misaligned spins in large regions. This discussion
shows that there are two competing aspects when analyzing typical configurations
under a Gibbs distribution at low temperature. On the one hand, configurations
with low energy are favored, since the latter have a larger individual probability;
this is the energy part. On the other hand, the number of configurations with a
given number of excitations grows fast with the size of the system and rapidly out-
numbers the small number of ground states; this is the entropy part. This compe-
tition between energy and entropy is at the heart of many phenomena described by
equilibrium statistical mechanics (Note that it can already be witnessed in (1.37)),
in particular in methods to prove the existence of a phase transition.

These questions will be investigated in detail in Chapter 3. As we will see, the
dimension of the underlying graph Zd will play a central role in the analysis. In the
next section, we discuss this dependence on d on the basis of numerical simula-
tions.

Behavior onZd

The one-dimensional model. The following figure shows simulations of typical
configurations of the one-dimensional Ising model on B(50), for increasing values
of the inverse temperature β (at h = 0). For the sake of clarity, +, resp. −, spins are
represented by black, resp. white, dots:
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As the value ofβ increases, we see that spins tend to agree on ever larger regions; lo-
cally, a configuration looks like either of the ground states η+, η−. Increasingβ even
more would yield, with high probability, a configuration with all spins equal. Nev-
ertheless, for any value of β, one observes that taking the system’s size sufficiently
large, regions of + and − spins even out and the global magnetization is always zero
on the macroscopic scale.

As seen before, global order can be conveniently quantified using
MB(n)
|B(n)| . Since

the latter has an expectation value equal to zero (Exercise 1.13), we consider the
expectation of its absolute value.

n = 10
n = 100
n = 1000
n = 10000

1

1

〈∣∣ MB(n)
|B(n)|

∣∣〉
B(n);β,0

p

Figure 1.8: The expected value of the absolute value of the magnetization
density, as a function of p = 1− e−2β, for the one-dimensional Ising model,
tending to zero as n →∞ for all p ∈ [0,1).

This reflects the fact that, in d = 1, the Ising model exhibits paramagnetic be-
havior at all positive temperatures; see the discussion below.

The model in dimensions d ≥ 2. In contrast to its one-dimensional version, the
Ising model in higher dimensions exhibits ferromagnetic and paramagnetic behav-
iors, as the temperature crosses a critical value, similarly to what Curie observed in
real magnets.

The phase transition is characterized by two distinct regimes (low and high tem-
peratures), in which the large-scale behavior of the system presents important dif-
ferences which become sharper as the size of the system increases. A few simula-
tions will reveal these behaviors in d = 2. Consider first the model without a mag-
netic field (h = 0), in a square box B(n). A few typical configurations for n = 100 are
shown in Figure 1.9, for various values of the inverse temperature β≥ 0. For conve-

nience, instead of varying β, we vary p = p(β)
def= 1− e−2β, which has the advantage

of taking values in [0,1). Values of p near 0 thus correspond to high temperatures,
while values of p near 1 correspond to low temperatures.
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10 pc

Figure 1.9: Typical configurations of the two-dimensional Ising model in the
box B(100), for different values of p = 1−e−2β. Black dots represent + spins,
white dots represent − spins. When p is close to 0 (β small), the spins behave
roughly as if they were independent and thus appear in equal proportions.
When p is close to 1 (β large), a typical configuration is a small perturbation
of either of the ground states η+,η−; in particular, it has a magnetization near
either +1 or −1.

Figure 1.9 shows that, in contrast to what we observed in the one-dimensional
case, the large-scale behavior of the system in two dimensions depends strongly
on the temperature. When p is small, the symmetry under global spin flip is pre-
served in typical configurations and the fractions of + and − spins are essentially
equal. When p is close to 1, this symmetry is spontaneously broken: one of the
two spin types dominates the other. The simulations suggest that this change of
behavior occurs when p is near 0.58, that is, when β is near 0.43. Therefore, the
high- and low-temperature behaviors conjectured on the basis of the limiting cases
β= 0 and β ↑∞ are indeed observed, at least for a system in B(100). In Figure 1.10,

〈|MB(n)
B(n) |〉B(n);β,0 is represented as a function of p, for different values of n.

n = 5
n = 12

n =∞
n = 50
n = 250

1

1

p

〈∣∣ MB(n)
|B(n)|

∣∣〉
B(n);β,0

Figure 1.10: The expected value of the absolute value of the magnetization
density, as a function of p, for the two-dimensional Ising model.

The simulations suggest that, as n increases, the sequence of functions p 7→
〈|MB(n)

B(n) |〉B(n);p converges to some limiting curve. This is indeed the case and the
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limiting function can be computed explicitly: [9]

p 7→ m∗
p

def=




0 if p < pc ,[
1− ( 2(1−p)

p(2−p)

)4
]1/8

if p ≥ pc ,
(1.51)

where

pc
def=

p
2

1+
p

2
∼= 0.586

is the critical point, to which corresponds the critical inverse temperature

βc
def= − 1

2 log(1−pc ) ∼= 0.441.

The above explicit expression implies, in particular, that the limiting magneti-
zation density is continuous (but not differentiable) at pc .

Exercise 1.14. Using (1.51), show that the behavior of m∗
p(β) as β ↓βc is

m∗
p(β) ∼ (β−βc)1/8 ,

in the sense that limβ↓βc

logm∗
p(β)

log(β−βc) = 1
8 .

Concerning the dependence of the Ising model on the magnetic field when h ̸=
0, two main quantities of interest will be considered: the average magnetization

density
〈 MB(n)
|B(n)|

〉
B(n);β,h and the pressure

ψB(n)(β,h)
def= 1

β|B(n)| logZB(n);β,h .

Remark 1.15. The reader might wonder why the term pressure is used for the mag-
net. In fact, a one-to-one correspondence can be established between the mi-
crostates of the lattice gas and those of the Ising model, by

ωi ↔ 2ηi −1.

In the Ising model, the number of spins is of course fixed and equal to the size of
the region on which it is defined. But the number of + (or −) spins is not fixed and
can vary. Therefore, the number of particles in the lattice gas, under the above cor-
respondence, can also vary; it thus corresponds to a grand canonical description,
in which the natural thermodynamic potential is the pressure.

The relation between the lattice gas and the Ising model will be fully described,
and exploited, in Chapter 4. ⋄

The following infinite-volume limits will be considered:

m(β,h)
def= lim

n→∞

〈 MB(n)

|B(n)|
〉
B(n);β,h

, ψ(β,h)
def= lim

n→∞ψB(n)(β,h) .

Besides showing that the above limits exist, we will show that, for all h ̸= 0,

∂ψ(β,h)

∂h
= m(β,h) .
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h

1

−1

1

−1

m(β,h)

h

m(β,h)β<βc(2) : β>βc(2) :

Figure 1.11: Dependence of the magnetization density of the two-
dimensional Ising model on the magnetic field (obtained from numerical
simulations): paramagnetic behavior at high temperature (left), ferromag-
netic behavior at low temperature (right).

The map h 7→ m(β,h) is plotted in Figure 1.11 for sub- and supercritical tempera-
tures.

The presence of two different typical behaviors when h = 0 and β > βc shows
how sensitive the system becomes to perturbation by an external field. On the one
hand, when β < βc, a small magnetic field h > 0 induces a positive magnetization
density which is approximately proportional to h: the response of the system is lin-
ear for small h and vanishes when h → 0. On the other hand, when β > βc, the
introduction of an infinitesimal magnetic field h > 0 (resp. h < 0) induces a mag-
netization density close to +1 (resp. −1) ! This implies that, in contrast to the one-
dimensional case, the pressure is not differentiable at h = 0: the phase transition
is of first order in the magnetic field. Informally, one can say that in the absence
of magnetic field, the system “hesitates” between two different behaviors and the
introduction of a nonzero, arbitrarily small magnetic field is enough to tip the bal-
ance in the corresponding direction.

1.5 Some general remarks

1.5.1 The role of the thermodynamic limit

In Section 1.3.1, the thermodynamic limit has been introduced as a way of estab-
lishing a precise link between statistical mechanics and thermodynamics.

Approximating a large system by an infinite one might seem a rather radical
step, since real systems are always finite (albeit quite large: a cube of iron with a
sidelength of 1cm contains roughly 1023 iron atoms).

It turns out that taking a limit of infinite volume is important for other reasons
as well.

Deterministic macroscopic behavior. As we have seen, one of the main assump-
tions in thermodynamics is that, once a small set of thermodynamic quantities
has been fixed (say, the pressure and the temperature for an ideal gas), the val-
ues of all other macroscopic quantities are in general completely determined. In
statistical mechanics, macroscopic observables associated to large finite systems
are random variables which are only approximately determined: they still undergo
fluctuations, although the latter decrease with the system’s size. As we will see in
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Chapter 6, it is only in the thermodynamic limit that all macroscopic observables
take on deterministic values (actually, we already saw concentration of some ob-
servables: the density of particles in a subsystem for the hard-core lattice gas in the
microcanonical ensemble, the energy density in the canonical ensemble, etc.).

The emergence of deterministic behavior should be reminiscent of certain cen-
tral results in mathematics, such as the Law of Large Numbers or the Ergodic The-
orem.

Equivalence of ensembles. On the one hand, we have seen that, in thermody-
namics, many choices are possible for the thermodynamic parameters used to
describe a system. In the case of the gas, for example, one might use (U ,V , N ),
(T,V , N ), etc. If the values are suitably chosen, all these approaches lead to the
same predictions for the equilibrium properties (except, possibly, at phase transi-
tions).

On the other hand, we have seen that, in statistical mechanics, to each partic-
ular set of thermodynamic parameters corresponds an ensemble (microcanonical,
canonical, grand canonical), that is, a particular probability distribution on the set
of microstates. Obviously, the latter do not coincide for finite systems. It turns out
that they indeed become equivalent, in general, but only once the thermodynamic
limit has been taken: in this limit, the local behavior of the system in different en-
sembles generally coincide, provided that the thermodynamic parameters are cho-
sen appropriately. In this limit, one says that there is equivalence of ensembles. Al-
though equivalence of ensembles will not be described in full generality, we will
come back to it in Sections 4.4, 4.7.1 and 6.14.1.

Phase transitions. One additional major reason to consider infinite-volume lim-
its is that it is the only way the formalism of equilibrium statistical mechanics can
lead to the singular behaviors thermodynamics associates to phase transitions,
such as the coexistence plateau in the liquid-vapor equilibrium, or the disconti-
nuity of the magnetization in a ferromagnet.

Notice that the dependence of a finite system on its parameters is always
smooth. Consider, for example, the Ising model in B(n). From an algebraic point
of view, its partition function can be written (up to an irrelevant smooth prefactor)
as a polynomial in the variables e−2β and e−2h , with nonnegative (real) coefficients.
It follows that the pressure ψB(n)(β,h) is real-analytic for all values of β and h. Of
course, the same is true of the magnetization in B(n). An analytic singularity, such
as a discontinuity of the magnetization when going from h > 0 to h < 0, can only
occur if the thermodynamic limit is taken.

In view of the above, one might wonder how this can be compatible with our
everyday experience of various types of phase transitions. The crucial point is that,
although finite-volume thermodynamic quantities are always smooth, in very large
systems their behavior will be closely approximated by the singular behavior of
the corresponding infinite-volume quantities. This was already witnessed in Fig-
ure 1.10, in which the finite-volume magnetization of a system in a box as small
as B(250) already displays a near-singular behavior. For real macroscopic systems,
the behavior will be experimentally indistinguishable from a genuine singularity.

Genuine long-range order vs. apparent long-range order. In our discussion of
the one-dimensional Ising model, we mentioned that, for a box of arbitrary size,
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with probability close to 1, configurations of this model will be perfectly ordered
(all spins being equal) as soon as the temperature is low enough. Nevertheless, we
will prove in Chapter 3 that the infinite one-dimensional Ising model is disordered
at all positive temperatures. This shows that looking at finite systems might lead
us to “wrong” conclusions. Of course, real systems are finite, so that a “real” one-
dimensional Ising model would typically display order. But this ordering would be
a finite-size effect only. Being able to distinguish between such effects and gen-
uine ordering is essential to obtain a conceptual understanding of these issues (for
example, the role of the dimension). An important example will be discussed in
Chapter 9.

This short discussion shows that, from the point of view of statistical mechan-
ics, thermodynamics is only an approximate theory dealing (very effectively!) with
idealized systems of infinite size. In order to recover predictions from the latter in
the framework of the former, it is thus necessary to take the limit of infinite systems.
Of course, once a system is well understood in the thermodynamic limit, it can be
of great interest to go beyond thermodynamics, by analyzing the finite-volume cor-
rections provided by equilibrium statistical mechanics.

1.5.2 On the role of simple models

The lattice gas and the Ising model share an obvious feature: they are extremely
crude models of the systems they are supposed to describe. In the case of the lattice
gas, the restriction of the particles to discrete positions is a dramatic simplification
and the interaction only keeps very superficial resemblance with the interactions
between particles of a real gas. Similarly, in a real magnet, the mechanism responsi-
ble for the alignment of two spins is of a purely quantum mechanical nature, which
the Ising model simply ignores; moreover, the restriction of the spin to one direc-
tion is also not satisfied in most real ferromagnets.

One may thus wonder about the purpose of studying such rough approxima-
tions of real systems. This was indeed a major preoccupation of physicists in the
early 20th century, who believed that such models might be of interest to mathe-
maticians, but are certainly irrelevant to physics [10].

Nevertheless, the point of view on the role of models and on the actual goal of
theoretical physics changed substantially at that time. In the realm of statistical
mechanics, the mathematical analysis of realistic models of physical systems is in
general of such a degree of complexity as to be essentially hopeless. As a conse-
quence, one must renounce to obtain, in general, a complete quantitatively pre-
cise description of most phenomena (for example, computing precisely the critical
temperature of a real magnet). However, it is still possible and just as important to
try to understand complex phenomena at a qualitative level: What are the mecha-
nisms underlying some particular phenomenon? What are the relevant features of
the real system that are responsible for its occurrence? For this, simple models are
invaluable [11]. We will see all along this book that many subtle phenomena can be
reproduced qualitatively in such models, without making any further uncontrolled
approximation.

One additional ingredient that played a key role in this change of perspective
is the realization that, in the vicinity of a critical point, the behavior of a system
becomes essentially independent of its microscopic details, a phenomenon called
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universality. Therefore, in such a regime, choosing a simple model as the repre-
sentative of the very large class of systems (including the real ones) that share the
same behavior, allows one to obtain even a quantitative understanding of these real
systems near the critical point.

Finally, one nice side-effect of considering very simple descriptions is that they
often admit many different interpretations. Already in the 1930s, the Ising model
was used as a model of a ferromagnet, of a fluid, of a binary alloy and to model an
adsorbed monolayer at a surface. The fact that the same model describes qualita-
tively a wide variety of different systems clarifies the observations made at the time
that these very different physical systems exhibit very similar behavior.

1.6 About this book

We wrote this book because we believe that there does not yet exist, in the litera-
ture, a book that is self-contained, starts at an elementary level and yet provides a
detailed analysis of some of the main ideas, techniques and models of the field.

The target reader we have in mind is an advanced undergraduate or graduate
student in mathematics or physics, or anybody with an interest in learning more
about some central concepts and results in rigorous statistical mechanics.

Let us list some of the main characteristic features of this book.

• It is mostly self-contained. It is only assumed that the reader has basic notions
of analysis and probability (only Chapter 6 requires notions from measure
theory, and the latter are summarized in Appendix B).

• It discusses only the equilibrium statistical mechanics of classical lattice sys-
tems. Other aspects of statistical mechanics, not treated here, can be found
in the books listed in Section 1.6.2 below.

• It favors the discussion of specific enlightening examples over generality. In
each chapter, the focus is on a small class of models that we consider to be
the best representatives of the topic discussed. These are listed right below
in Section 1.6.1.

• It aims at conveying understanding and not only proofs. In particular, the
proofs given are not always the shortest, most elegant ones, but those we
think best help to understand the underlying mechanisms. Moreover, the
methods, ideas and concepts introduced in the course of the proof of a state-
ment are often as important as the statement itself.

1.6.1 Contents, chapter by chapter

The first chapters are devoted mainly to the study of models whose spin variables
are discrete and take values in a finite set:

• Chapter 2: The Curie–Weiss model. Mean field models play a useful role,
both from the physical and mathematical point of view, as first approxima-
tion to more realistic ones. This chapter gives a detailed account of the Curie–
Weiss model, which can be seen as the mean-field version of the Ising model.
The advantage is that this model exhibits a phase transition between param-
agnetic and ferromagnetic behaviors that can be described with elementary
tools.
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• Chapter 3: The Ising model. As we already said, the Ising model is the sim-
plest “realistic” model which exhibits a non-trivial collective behavior. As
such, it has played, and continues to play, a central role in statistical me-
chanics. This chapter uses it to introduce several very important notions for
the first time, such as the notion of infinite-volume state or precise defini-
tions of phase transitions. Then, the complete phase diagram of the model is
constructed, in all dimensions, using simple mathematical tools developed
from scratch.

• Chapter 4: Liquid-vapor equilibrium. Historically, the liquid-vapor equilib-
rium played a central role in the first theoretical studies of phase transitions.
In this chapter, the mathematical description of the lattice gas is exposed in
detail, as well as its mean-field and nearest-neighbor (Ising) versions. The
mean-field (Kac) limit is also studied in a simple case, providing a rigorous
justification of the van der Waals–Maxwell theory of condensation.

• Chapter 5: Cluster Expansion. The cluster expansion remains the most im-
portant perturbative technique in mathematical statistical mechanics. It is
presented in a simple fashion and several applications to the Ising model and
the lattice gas are presented. It is also used several times later in the book and
plays, in particular, a central role in the implementation of the Pirogov–Sinai
theory of Chapter 7.

• Chapter 6: Infinite-volume Gibbs measures. In this chapter, we present a
probabilistic description of infinite systems of particles at equilibrium, which
is known nowadays as the theory of Gibbs measures or the DLR (Dobrushin–
Lanford–Ruelle) formalism. This theory is developed from scratch, using the
Ising model as a guiding example. Several important aspects, such as Do-
brushin’s Uniqueness Theorem, spontaneous symmetry breaking, extremal
measures and the extremal decomposition, are also exposed in detail. At the
end of the chapter, the variational principle is introduced; the latter is closely
linked with the basic concepts of equilibrium thermodynamics.

• Chapter 7: Pirogov–Sinai Theory. The Pirogov–Sinai theory is one of the very
few general approaches to the rigorous study of first-order phase transitions.
It yields, under weak assumptions, a sharp description of such phase tran-
sitions in perturbative regimes. This theory is first introduced in a rather
general setting and then implemented in detail on one specific three-phase
model: the Blume–Capel model.

The last three chapters are devoted to models whose variables are of a continuous
nature:

• Chapter 8: The Gaussian Free Field. In this chapter, the lattice version of the
Gaussian Free Field is analyzed. Several features related to the non-compact-
ness of its single-spin-space are discussed, exploiting the Gaussian nature of
the model. The model has a random walk representation, whose recurrence
properties are crucial in the study of the behavior of the model in the ther-
modynamic limit.

• Chapter 9: Models with continuous symmetry. An important class of mod-
els with a continuous symmetry, including the X Y and Heisenberg models,
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is studied in this chapter. The emphasis is on the implications of the pres-
ence of the continuous symmetry on long-range order in these models in low
dimensions. In particular, a strong form of the celebrated Mermin–Wagner
theorem is proved in an simple way.

• Chapter 10: Reflection positivity. Reflection positivity is another tool that
plays a central role in the rigorous study of phase transitions. We first ex-
pose it in detail, proving its two central estimates: the infrared bound and
the chessboard estimate. We then apply the latter to obtain several results of
importance. In particular, we prove the existence of a phase transition in the
anisotropic XY model in dimensions d ≥ 2, as well as in the (isotropic) O(N )
model in dimensions d ≥ 3. Combined with the results of Chapter 9, this
provides a detailed description of this type of systems in the thermodynamic
limit.

In order to facilitate the reading of the content of each chapter, which can some-
times be pretty technical, the bibliographical references have been placed at the
end of the chapter, in a section called Bibliographical references. Some chapters
also contain a section Complements and further reading, in which the interested
reader can find further results (usually without proofs) and suggestions for further
reading. The goal of these complements is to provide information about some
more advanced themes that cannot be treated in detail in the book.

The book ends with three appendices:

• Appendix A: Notes. This appendix regroups short Notes that are sometimes
referred to in the text.

• Appendix B: Mathematical appendices. Since we want the book to be mostly
self-contained, we introduce various mathematical topics used throughout
the book, which might not be part of all undergraduate curricula. For ex-
ample: elementary properties of convex functions, some aspects of com-
plex analysis, measure theory, conditional expectation, random walks, etc.,
are briefly introduced, not always in a self-contained manner, often without
proofs, but with references to the literature.

• Appendix C: Solutions to exercises. Exercises appear in each of the chapters,
with various levels of difficulty. Hints or solutions for most of them can be
found in this appendix.

We would like to emphasize that Chapter 3 plays a central role, since it intro-
duces several important concepts that are then used constantly in the rest of the
book; it should be considered as a priority for a novice reader. The only other true
constraint is that Chapter 5 should be read before Chapter 7. Besides that, the chap-
ters can mostly be read independently of each other, and any path following the
arrows in the picture below represents a possible way through the book:
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Chapter 1
Introduction

Chapter 2
Curie–Weiss

Chapter 4
Liquid-Vapor

Chapter 5
Cluster expansion

Chapter 6
Gibbs measures

Chapter 7
Pirogov–Sinai

Chapter 10
Reflection positivity

Chapter 9
Continuous symmetry

Chapter 8
Gaussian Free Field

Chapter 3
Ising model

Warning: As we said, we have strived to make the book as self-contained as possi-
ble, and to assume as little prior knowledge from the reader as possible. Moreover,
we have tried to make the chapters as independent from each other as possible, re-
specting when possible the conventional notations used in the field. This has had
some consequence on the final form of the book.

• Together with the fact that we have avoided developing too general a theory,
writing essentially independent chapters has had the inevitable consequence
of introducing various repetitions: the partition function of a model, for in-
stance, or its Gibbs distribution in finite volume, is always defined in a way
suited for the particular analysis used for that model. The same holds for the
pressure and other recurring quantities. We therefore warn the reader that
corresponding notions might be written slightly differently from one chapter
to the other.

• Like in many areas, the notational conventions in statistical mechanics are
different in the mathematical and physical communities. For example, prob-
abilists define the free energy as 1

V logZ whereas in physics it is written as
− 1
βV logZ, respecting the structure that appeared in the analogies with ther-

modynamics.

In this book, we have adopted one convention or the other, depending on
the physical relevance of the theory developed in the chapter. Chapter 4, for
example, was a natural place where to use the physicists’ conventions, since
it describes the liquid-vapor equilibrium.

The choices made are always indicated at the beginning of the chapters and
we hope that this will not generate too much confusion when jumping from
one chapter to another.
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1.6.2 The existing literature

This book does not aim at presenting the most recent developments in statistical
mechanics. Rather, it presents a set of models and methods, most of which were al-
ready known in the 1980s. However, these classical topics form the backbone of this
subject and should still be learned by new researchers entering this field. The ab-
sence of an introductory text aimed at beginners was deplored by many colleagues
and prompted us to write this book.

Statistical mechanics is now such a wide field that it has become impossible to
cover more than a fraction of it in one book. In this section, we provide some refer-
ences to other works covering the various aspects that are either not discussed at all
in the present text or only very superficially. Note that we mostly restrict ourselves
to books aimed at mathematicians and mathematical physicists.

Books covering similar areas. There exist several books covering some of the ar-
eas discussed in the present text. Although the distinction is a bit subjective, we
split the list into two, according to what we consider to be the intended audience.

The first set of books is aimed at mathematical physicists. Ruelle wrote the
first book [289] on rigorous equilibrium statistical mechanics in 1969. Discussing
both classical and quantum systems, in the continuum and on the lattice, this book
played a major role in the development of this field. Israel’s book [176] provides an
in-depth discussion of the variational principle, Gibbs measures as tangent func-
tionals and the role of convexity in equilibrium statistical mechanics. It contains
many abstract results found nowhere else in book form. Sinai’s book [312] discusses
the general theory of Gibbs measures on a lattice with an emphasis on phase tran-
sitions and includes perturbative expansions, the Pirogov–Sinai theory, as well as
a short introduction to the renormalization group (mostly in the context of hierar-
chical lattices). Minlos’s short book [247] covers similar grounds. The book [227]
by Malyshev and Minlos deals with more or less the same topics, but with an ap-
proach based systematically on the cluster expansion. Simon’s book [308] provides
an extensive discussion of the pressure, Gibbs states and their basic properties, and
perturbative expansions, both for classical and quantum lattice systems. Presutti’s
book [279] proposes an alternative approach to several of the topics covered in the
present book, but with a strong emphasis on models with Kac interactions. Lavis’
book [207] provides a coverage of a wide class of models and techniques.

The second set of books is aimed at probabilists. For this audience, Georgii’s
remarkable book [134] has become the standard reference for the theory of Gibbs
measures; although less accessible than the present text, it is highly recommended
to more advanced readers interested in very general results, in particular on the
topics covered in our chapter 6. The shorter book [282] by Prum covers similar
grounds, but in less generality. Preston’s book [278] contains an interesting early
account of Gibbs measures, aimed at professional probabilists and limited to rather
abstract general results. Kinderman and Snell’s very pedagogical monograph [192]
includes a clear and intuitive exposition of the phase transition in the two-dimen-
sional Ising model.

Disordered systems. One of the important topics in equilibrium statistical me-
chanics that is not even touched upon in the present book is disordered systems, in
which the Gibbs measures considered depend on additional randomness (such as
random interactions). In spite of the activity in this domain, there are only a limited
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number of books available for mathematically-inclined readers. The book [254] by
Newman discusses short-range models for spin glasses; see also [321] for an in-
troduction. Talagrand’s books [325, 326, 327] provide a comprehensive account of
mean-field models for spin glasses. Bovier’s book [37] starts with an introduction
to equilibrium statistical mechanics (including a discussion of the DLR formalism
and cluster expansion) and then moves on to discuss both mean-field and lattice
models of disordered systems.

Large deviations. Large deviations theory plays an important role in equilibrium
statistical mechanics, both at a technical level and at a conceptual level, providing
the natural framework to relate thermodynamics and statistical mechanics. This
theme will be recurrent in the present text. Nevertheless, we do not develop the
general framework here. There are now many books on large deviation theory, with
various levels of emphasis on the applications to statistical mechanics, such as the
books by Deuschel and Stroock [77], Dembo and Zeitouni [74], den Hollander [75],
Ellis [100], Rassoul-Agha and Seppäläinen [283] and Olivieri and Vares [258], as well
as the lecture notes by Lanford [205], Föllmer [108] and Pfister [274]. Georgii’s book
also has a section on this topic [134, Section 15.5]. Let us also mention the more
elementary introduction by Touchette [334].

Quantum systems. In this book, we only consider classical lattice spin systems. A
discussion of quantum lattice spin systems can be found, for example, in the books
by Sewell [300], Simon [308] and Bratteli and Robinson [43, 44].

Historical aspects. Except in some remarks, we do not discuss historical aspects
in this book. Good references on the general history of statistical mechanics are
the books by Brush [54] and Cercignani [63]; Gallavotti’s treatise [130] also provides
interesting information on this subject. More specific references to historical as-
pects of lattice spin systems are given in the articles by Brush [55], Domb [89] and
Niss [255, 256, 257].

Percolation. Bernoulli percolation is a central model in probability theory, with
strong links to equilibrium statistical mechanics. These links (which we only su-
perficially address in Section 3.10.6) lead to an alternative approach to the analysis
of some lattice spin systems (such as the Ising and Potts models), reinterpreting the
phase transition as a percolation transition. The percolation model is discussed in
detail in the books by Kesten [189], Grimmett [149, 151] and by Bollobás and Rior-
dan [31]. The link with Ising and Potts models is explained in the books by Grim-
mett [150] and Werner [350], in the review paper [132] by Georgii, Häggström and
Maes and in the lecture notes by Duminil-Copin [91].

Thermodynamic formalism. Some core ideas from equilibrium statistical me-
chanics have been successfully imported into the theory of dynamical systems,
where it is usually known as the thermodynamic formalism. An excellent early ref-
erence is Bowen’s book [40]. Other references are the books by Ruelle [291] and
Keller [187], or the lecture notes by Sarig [293].
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Stochastic dynamics. An area that is closely related to several problems studied
in this book is the analysis of the stochastic dynamics of lattice spin systems. In
the latter, one considers Markov chains on set Ω of microscopic configurations,
under which the Gibbs distributions are invariant. The book [225] by Liggett and
the lecture notes [232] by Martinelli provide good introductions to this topic.

Critical phenomena. This topic is one of the major omissions in this book. See
the short discussion and the bibliographical references given in Section 3.10.11.

Exactly solvable models. A discussion of the exact (but not always necessarily
rigorous) solutions of various models of statistical mechanics can be found in the
books by McCoy and Wu [239], Baxter [17], Palmer [261] or Lavis [207].

Foundations of equilibrium statistical mechanics. There are several books on
the foundations of statistical mechanics and its relations to thermodynamics, such
as, for example, those by Gallavotti [130], Martin-Löf [230], Khinchin [190] and
Sklar [314].



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook


