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4 Liquid-Vapor Equilibrium

In this chapter, we develop a rigorous theory of the liquid-vapor equilibrium. In
particular, we will provide a version of the van der Waals–Maxwell theory of con-
densation, that was briefly presented in Section 1.1.6. For that, we will study the
lattice gas and construct the main two thermodynamic quantities associated to it,
namely the free energy and the pressure, under general two-body interactions. The
latter will be studied for different types of microscopic interactions:

1. When particles do not interact with each other except through exclusion, the
thermodynamic quantities can be computed explicitly (like in the ideal gas).
This will be done in Section 4.7, where the hard-core gas will be studied in
detail.

2. In the nearest-neighbor gas (Section 4.8), only neighboring particles attract
each other, and a direct link with the Ising model, as introduced in Chapter 3,
can be made. A satisfactory qualitative thermodynamical description of the
condensation phenomenon will then be obtained by importing results from
Chapter 3.

3. The van der Waals gas (Section 4.9) is the mean-field version of the lattice gas,
and is a reformulation in this language of the Curie–Weiss model of Chap-
ter 2. As we will see, this model displays a number of unphysical properties.
Nevertheless, it turns out that Maxwell’s construction appears naturally as a
consequence of the Legendre transform.

4. Finally, we consider Kac interactions (Section 4.10), in which a small param-
eter γ> 0 is used to tune the range of the interaction. By sending the range of
the interaction to infinity, in the so-called van der Waals limit, we will make
a bridge between the two previous models, restoring the correct behavior of
the thermodynamic potentials, and put Maxwell’s construction on rigorous
grounds.

In contrast to most other chapters, this one focuses more on the study of the
thermodynamic potentials, free energy and pressure, rather than on the Gibbs dis-
tribution and its sensitivity to boundary conditions. Typical configurations un-
der the relevant Gibbs distributions will nevertheless be briefly discussed in Sec-
tions 4.6 and 4.12.1.
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168 Chapter 4. Liquid-Vapor Equilibrium

Figure 4.1: In the lattice gas approximation, the vessel is divided into imagi-
nary cells, such that each cell can contain at most one particle.

Remark 4.1. In order to ease the physical interpretation of the results obtained, we
will adopt, in this chapter, the convention used in physics: namely, we will keep
the inverse temperature β outside the Hamiltonian, and will add a multiplicative
constant 1

β in front of the free energy and pressure. ⋄
We will rely on some results on real convex functions; these are collected in

Appendix B.2.

4.1 The lattice gas approximation

The lattice gas was introduced informally in Chapter 1, Section 1.2.4. Consider a gas
contained in a vessel. We will build a model based on van der Waals’ [1] two main
assumptions concerning the interactions between the particles that compose the
gas:

• repulsion: at short distances, particles interact in a repulsive way (as small,
impenetrable spheres).

• attraction: attractive forces act at larger distances.

In order to avoid the many technicalities inherent to the continuum (and be-
cause this book is about lattice models), we will introduce a natural discretization.
Although it might appear as a significant departure from reality, we will see that
it leads to satisfactory results and allows a good qualitative understanding of the
corresponding phenomena.

In the lattice gas approximation, the vessel is partitioned into imaginary mi-
croscopic cubic cells of sidelength 1 (in some suitable units), and it is assumed that
each cell can be either empty or occupied by exactly one particle; see Figure 4.1. Since
it prevents particles from overlapping, this assumption embodies the short-range
repulsive part of the interaction. Each cell is identified with a vertex i ∈Λ, where Λ
is some finite subset of Zd . As an additional simplification, we only keep track of
the cells that are occupied, and not of the exact position of each particle inside its
cell.

Turning to the attractive part of the interaction, we assume that a pair of parti-
cles in cells i and j contributes an amount −K (i , j ) ≤ 0 to the total energy, where
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4.1. The lattice gas approximation 169

K (i , j ) decreases to zero when ∥ j − i∥2 → ∞. We also assume that K (·, ·) is trans-
lation invariant: K (i , j ) = K (0, j − i ), and symmetric: K (0,− j ) = K (0, j ). The total
interaction energy of the system is thus

−
∑

{i , j }⊂Λ
i and j occupied

K (i , j ) .

Later, some specific choices for K (i , j ) will be considered.
It is natural to associate to every cell i ∈Λ its occupation number (notice that

in Chapter 3, the corresponding random variables were denoted ni )

ηi
def=

{
1 if i contains a particle,

0 otherwise.

A configuration of the lattice gas in the vessel is therefore given by the set of oc-
cupation numbers, η = (ηi )i∈Λ, and is thus an element of {0,1}Λ. Using occupa-
tion numbers, one can consider the interaction between pairs of cells i and j ,
−K (i , j )ηiη j , which can be non-zero only if i and j both contain a particle.

Definition 4.2. Let Λ⋐Zd , η ∈ {0,1}Λ. The Hamiltonian of the lattice gas inΛ is

HΛ;K (η)
def= −

∑
{i , j }⊂Λ

K (i , j )ηiη j (4.1)

We will actually be mostly interested in systems with finite-range interactions,
that is, those for which

r
def= inf

{
R ≥ 0 : K (i , j ) = 0 if ∥ j − i∥2 > R

}<∞ .

More generally, in order to have a well-defined thermodynamic limit, we will need
to assume that the maximal interaction between a particle and the rest of the sys-
tem is bounded. In our case, this condition can be written

κ
def= sup

i∈Zd

∑
j ̸=i

K (i , j ) =
∑
j ̸=0

K (0, j ) <∞ ,

since −κ represents the interaction of a particle with the rest of an infinite system
in which each other cell contains a particle.

The number of particles in a configuration η can be expressed as

NΛ(η)
def=

∑
i∈Λ

ηi ,

and the empirical density is defined by

ρΛ
def= NΛ

|Λ| .

When studying the lattice gas in a large vessel, we will either assume that the num-
ber of particles is fixed (describing a fluid confined to some hermetically sealed
container), or that this number can fluctuate (the system can exchange particles
with an external reservoir). As explained in Chapter 1, these two descriptions of the
gas are called respectively canonical and grand canonical. They will both be as-
sociated to a thermodynamic potential (respectively, the free energy and the pres-
sure), which will contain the relevant information about the thermodynamic be-
havior of the system.
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170 Chapter 4. Liquid-Vapor Equilibrium

Remark 4.3. Except in our discussion in Section 4.12.1, we will only consider free
boundary condition in this chapter. The reason for this is that we are mostly inter-
ested in thermodynamic potentials and the latter turn out to be insensitive to the
chosen boundary condition, for precisely the same reason as in Chapter 3. ⋄

4.2 Canonical ensemble and free energy

In the canonical ensemble (Section 1.2.2), the number of particles is fixed.

Definition 4.4. Let Λ⋐ Zd , N ∈ {0,1,2, . . . , |Λ|}. The canonical Gibbs distribution
at inverse temperature β is the probability distribution on {0,1}Λ defined by

νΛ;β,N (η)
def= exp(−βHΛ;K (η))

QΛ;β,N
1{NΛ(η)=N } , (4.2)

where the canonical partition function is defined by

QΛ;β,N
def=

∑

η∈{0,1}Λ:
NΛ(η)=N

exp
(−βHΛ;K (η)

)
. (4.3)

The thermodynamic potential describing an infinite system of fixed density at
equilibrium is the free energy. It is convenient to first define the free energy in a
finite region Λ as a function of a continuous parameter ρ ∈ [0,1]. For that, assume
first that ρ is such that ρ|Λ| ∈ {0,1, . . . , |Λ|} and let

fΛ;β(ρ)
def= −1

β|Λ| logQΛ;β,ρ|Λ| . (4.4)

This defines a function on {0, 1
|Λ| ,

2
|Λ| , . . . , |Λ|−1

|Λ| ,1}, which can be extended to a con-

tinuous function on [0,1] by interpolating linearly on each interval [ k
|Λ| ,

k+1
|Λ| ].

When taking the thermodynamic limit Λ ⇑ Zd (for a definition, see page 83)
in the canonical ensemble, the number of particles will increase with the size of
the system, N →∞, but the density of particles will remain constant. To simplify,
we will not consider the thermodynamic limit along general sequences Λn that
converge in the sense of van Hove, but rather use everywhere sequences of par-
allelepipeds, that is, sets of the form

(
[a1,b1]× [a2,b2]× ·· ·× [ad ,bd ]

)∩Zd . Argu-
ments similar to those used in Section 3.2.2 can be used to remove this restriction.
We denote by R the collection of all parallelepipeds.

Theorem 4.5. Let R ∋Λn ⇑Zd . Let ρ ∈ [0,1] and Nn ∈N be such that Nn
|Λn | → ρ. The

limit
fβ(ρ)

def= lim
n→∞ fΛn ;β(Nn/|Λn |) (4.5)

exists, does not depend on the choice of the sequences (Λn)n≥1 and (Nn)n≥1, and is
called the free energy. Moreover, the convergence is uniform on compact subsets of
(0,1) and ρ 7→ fβ(ρ) is convex and continuous on [0,1].

To prove Theorem 4.5, the first ingredient is the following basic property of the
canonical partition function:
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Lemma 4.6. Consider two disjoint regionsΛ,Λ′ ⋐Zd . If N ≤ |Λ| and N ′ ≤ |Λ′|, then

QΛ∪Λ′;β,N+N ′ ≥ QΛ;β,N QΛ′;β,N ′ . (4.6)

Proof. In QΛ∪Λ′;β,N+N ′ , we obtain a lower bound by keeping only the configura-
tions in whichΛ contains N particles andΛ′ contains N ′ particles. Moreover, since
K (i , j ) ≥ 0, we can ignore the interactions between pairs of particles at vertices
i ∈ Λ, j ∈ Λ′. After summing separately over the configurations in Λ and Λ′, we
get (4.6).

The second ingredient is the following “continuity” property of the partition
function with respect to the number of particles in the vessel:

Lemma 4.7. Let Λ⋐Zd and N ∈ {0,1, . . . , |Λ|−1}. Then,

|Λ|−N
N+1 QΛ;β,N ≤ QΛ;β,N+1 ≤ eβκ |Λ|−N

N+1 QΛ;β,N . (4.7)

Proof. Observe that

QΛ;β,N+1 =
∑

η∈{0,1}Λ:
NΛ(η)=N+1

exp
(−βHΛ;K (η)

)

= 1

N +1

∑

η∈{0,1}Λ:
NΛ(η)=N

∑

η′∈{0,1}Λ:
η′i≥ηi ,∀i

NΛ(η′)=N+1

exp
(−βHΛ;K (η′)

)
.

Since HΛ;K (η)−κ ≤ HΛ;K (η′) ≤ HΛ;K (η) and since there are exactly |Λ| −N terms
in the sum over η′, this proves (4.7).

Exercise 4.1. Using Lemma 4.7, show that, for all ϵ > 0, when Λ is large, QΛ;β,N ≤
ϵQΛ;β,N+1 if N

|Λ| is sufficiently small, and QΛ;β,N+1 ≤ ϵQΛ;β,N if N
|Λ| is sufficiently close

to 1.

Proof of Theorem 4.5: For simplicity, we do not includeβ in the notation of the par-
tition functions. Let ρ ∈ [0,1]. We will first take for Nn the particular sequence
Nn = ⌈ρ|Λn |⌉, and show the existence of the limit

fβ(ρ) = lim
n→∞

−1

β|Λn |
logQΛn ;⌈ρ|Λn |⌉ . (4.8)

The boundary cases ρ = 0, ρ = 1, can be computed explicitly:

fβ(0) = 0, fβ(1) =−κ
2 . (4.9)

For intermediate densities, we use a subadditivity argument. For convenience, we
write (4.7) as follows:

c−1QΛ;N ≤ QΛ;N+1 ≤ c QΛ;N , (4.10)

for some c > 1 that can be chosen uniformly if N
|Λ| belongs to some closed interval

[a,b] ⊂ (0,1).
Let ρ ∈ (0,1). For all disjoint Λ′,Λ′′ ∈R, with Λ=Λ′∪Λ′′ ∈R, we have ⌈ρ|Λ|⌉ ≥

⌈ρ|Λ′|⌉+⌈ρ|Λ′′|⌉−2. Therefore, applying (4.10) twice, followed by (4.6),

QΛ;⌈ρ|Λ|⌉ ≥ c−2QΛ′;⌈ρ|Λ′|⌉QΛ′′;⌈ρ|Λ′′|⌉ .
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It follows that the numbers a(Λ)
def= − log(c−2QΛ;⌈ρ|Λ|⌉) enjoy the following subaddi-

tivity property:
a(Λ′∪Λ′′) ≤ a(Λ′)+a(Λ′′) .

Moreover, these numbers are translation invariant: a(Λ+ i ) =Λ. This implies (see
Lemma B.6) that

lim
n→∞

a(Λn)

|Λn |
exists and equals inf

Λ∈R
a(Λ)

|Λ| .

This shows the existence of the limit in (4.8) but also provides the following useful
upper bound, valid for allΛ ∈R:

QΛ;⌈ρ|Λ|⌉ ≤ c2e−β fβ(ρ)|Λ| . (4.11)

Remark 4.8. Before going further, let us derive some simple bounds on fβ(ρ), which
we will need later. First, we can bound the energy of each configuration η appearing
in QΛ;⌈ρ|Λ|⌉ (everywhere below,Λ ∈R):

−βHΛ;K (η) = 1
2β

∑
i∈Λ

ηi
∑
j∈Λ
j ̸=i

K (i , j )η j ≤ 1
2βκ⌈ρ|Λ|⌉ ,

which gives

QΛ;⌈ρ|Λ|⌉ ≤ e
1
2βκ⌈ρ|Λ|⌉

(
|Λ|

⌈ρ|Λ|⌉

)
. (4.12)

Approximating the combinatorial factor using Stirling’s formula as in (B.2), we
can write, when |Λ|, N and |Λ|−N are large,

(
|Λ|
N

)
= 1+o(1)√

2πN (1− N
|Λ| )

{( N
|Λ|

) N
|Λ|

(
1− N

|Λ|
)1− N

|Λ|
}−|Λ|

. (4.13)

Therefore, letting

s l.g. (ρ)
def= −ρ logρ− (1−ρ) log(1−ρ) , (4.14)

using (4.12) and taking the thermodynamic limit, we obtain

− 1
2κρ− 1

β s l.g. (ρ) ≤ fβ(ρ) ≤ 0. (4.15)

This bound implies in particular that fβ(ρ) is finite, since κ<∞. One can also use
−βHΛ;K (η) ≥ 0, which gives

fβ(ρ) ≤− 1
β s l.g. (ρ) . (4.16)

Alternatively, one can bound the partition function from below by keeping a single
configuration,

QΛ;⌈ρ|Λ|⌉ ≥ e−βHΛ;K (η∗) . (4.17)

Exercise 4.2. Show that there is a configuration η∗, contributing to QΛ;⌈ρ|Λ|⌉, such
that

HΛ;K (η∗) =− 1
2κρ|Λ|+o(|Λ|) . (4.18)
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Using (4.18) in (4.17) gives

fβ(ρ) ≤− 1
2κρ . (4.19)

⋄
Let us now assume that (Nn)n≥1 is an arbitrary sequence satisfying Nn

|Λn | → ρ. We
can again use (4.10) repeatedly and get, for large n,

c−|Nn−⌈ρ|Λn |⌉|QΛn ;⌈ρ|Λn |⌉ ≤ QΛn ;Nn ≤ c |Nn−⌈ρ|Λn |⌉|QΛn ;⌈ρ|Λn |⌉ .

Since Nn−⌈ρ|Λn |⌉
|Λn | → 0, this shows that the limit in (4.5) exists and coincides with the

one in (4.8).

Let I = [a,b] ⊂ (0,1). Using (4.7) for N
|Λ| ,

N+1
|Λ| ∈ I ,

∣∣ fΛ;β
( N+1

|Λ|
)− fΛ;β

( N
|Λ|

)∣∣≤ 1
|Λ|

{
κ+ 1

β sup
ρ∈I

log( 1−ρ
ρ )

}
.

From this, one easily deduces the existence of C =C (β, I ) > 0 such that, for all Λ⋐
Zd ,

| fΛ;β(ρ)− fΛ;β(ρ′)| ≤C |ρ−ρ′| , ∀ρ,ρ′ ∈ I . (4.20)

Combined with the already established pointwise convergence, (4.20) implies uni-
form convergence on I . Moreover, the limiting function fβ(ρ) is continuous (actu-
ally, C -Lipschitz) on I . Using (4.15)–(4.19) yields limρ↓0 fβ(ρ) = 0 and limρ↑1 fβ(ρ) =
−κ

2 , which by (4.9) guarantees continuity at 0 and 1.

To show that fβ is convex, we fix ρ1,ρ2 ∈ (0,1) and consider the sequence of

cubes Dk = {1,2,3, . . . ,2k }d . For each k, Dk+1 is the union of 2d translates of Dk ,

denoted D (1)
k , . . . ,D (2d )

k . We split these boxes into two groups, each subgroup con-

taining 2d /2 boxes. Putting ⌈ρ1|Dk |⌉ particles in each box of the first group and
⌈ρ2|Dk |⌉ particles in each box of the second group, and using translation invari-
ance,

Q
Dk+1;⌈ρ1+ρ2

2 |Dk+1|⌉
≥ c−2d

{QDk ;⌈ρ1|Dk |⌉}
2d /2{QDk ;⌈ρ2|Dk |⌉}

2d /2 .

This implies, after letting k →∞,

fβ
(ρ1+ρ2

2

)≤ 1
2 { fβ(ρ1)+ fβ(ρ2)} . (4.21)

Convexity of fβ(ρ) thus follows from its continuity (see Lemma B.11).

4.3 Grand canonical ensemble and pressure

In the grand canonical ensemble (Section 1.2.3), the system can exchange particles
with an external reservoir of fixed chemical potential µ (and inverse temperature
β).

Remark 4.9. In this chapter, the letter µ always denotes the chemical potential, not
a probability measure. ⋄
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Definition 4.10. Let µ ∈R. The grand canonical Gibbs distribution at inverse tem-
perature β is the probability distribution on {0,1}Λ defined by

νΛ;β,µ(η)
def= exp(−β{HΛ;K (η)−µNΛ(η)})

ΘΛ;β,µ
, (4.22)

where the grand canonical partition function is defined by

ΘΛ;β,µ
def=

∑

η∈{0,1}Λ
exp

(−β{HΛ;K (η)−µNΛ(η)}
)

. (4.23)

By summing over the possible number of particles, one gets the following simple
relation between the canonical and grand canonical partition functions:

ΘΛ;β,µ =
|Λ|∑

N=0
eβµN QΛ;β,N . (4.24)

Exercise 4.3. Let Λ⋐ Zd , and let f , g : {0,1}Λ → R be two nondecreasing functions.
Using Theorem 3.50, prove that f and g are positively correlated: For all β≥ 0,µ ∈R,

CovΛ;β,µ( f , g ) ≥ 0,

where CovΛ;β,µ denotes the covariance under νΛ;β,µ.

The thermodynamic potential describing an infinite system at equilibrium with a
reservoir of particles at fixed chemical potential is the pressure. The pressure in a
finite volume Λ⋐Zd is defined as

pΛ;β(µ)
def= 1

β|Λ| logΘΛ;β,µ , µ ∈R .

Observe that the derivative of the latter quantity yields the average density of par-
ticles under νΛ;β,µ:

∂pΛ;β

∂µ
= 〈 NΛ

|Λ|
〉
Λ;β,µ . (4.25)

We thus see that tuning the chemical potential allows one to control the average
number of particles in the system. In particular, as discussed in Exercise 4.6 below,
large negative values of µ result in a dilute (gas) phase, while large positive values
of µ yield a dense (liquid) phase.

Theorem 4.11. Let R ∋Λn ⇑Zd . For all µ ∈R, the limit

pβ(µ)
def= lim

n→∞pΛn ;β(µ) (4.26)

exists and does not depend on the choice of the sequence (Λn)n≥1; it is called the
pressure. Moreover, µ 7→ pβ(µ) is convex and continuous.

Since pβ is convex, its derivative

ρβ(µ)
def=
∂pβ
∂µ

(µ) (4.27)
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exists everywhere except possibly on a countable set of points (Theorem B.12) and
will be called the average (grand canonical) density. The one-sided derivatives
∂pβ
∂µ+ and

∂pβ
∂µ− , are well defined at each µ. Theorem B.12, together with (4.25), also

guarantees that, when ρβ(µ) exists, it equals

ρβ(µ) = lim
n→∞

〈 NΛn

|Λn |
〉
Λn ;β,µ .

The existence of the limit in (4.26) will be seen to be a consequence of the exis-
tence of the free energy (see below), but it can also be proved directly:

Exercise 4.4. Prove the existence of the pressure in Theorem 4.11 using the method
suggested in Exercise 3.3.

Theorem 4.11 leaves open the possibility that the pressure has affine pieces,
along which an increase of the chemical potential µwould not result in an increase
of the average density ρβ(µ). This turns out to be impossible:

Theorem 4.12. µ 7→ pβ(µ) is strictly convex and increasing.

Proof. Differentiating (4.25) once again,

∂2pΛ;β

∂µ2 = β

|Λ| VarΛ;β,µ(NΛ) ,

where VarΛ;β,µ denotes the variance under νΛ;β,µ. Let us first observe that there
exists c > 0, depending on β,κ and µ, such that

c < νΛ;β,µ
(
ηi = 1 |η j = m j ,∀ j ∈Λ\ {i }

)< 1− c , ∀i ∈Λ , (4.28)

for all choices of m j ∈ {0,1}, j ∈Λ \ {i }. In particular, VarΛ;β,µ(ηi ) ≥ c2) for all i ∈Λ.
Moreover, Exercise 4.3 guarantees that CovΛ;β,µ(ηi ,η j ) ≥ 0, so

VarΛ;β,µ(NΛ) =
∑
i∈Λ

VarΛ;β,µ(ηi )+
∑

i , j∈Λ
i ̸= j

CovΛ;β,µ(ηi ,η j ) ≥ c2 |Λ| .

That pβ is increasing and strictly convex follows from the fact that
∂2pΛ;β

∂µ2 ≥βc2 > 0,

uniformly inΛ⋐Zd (see Exercise B.5).

Exercise 4.5. Find the constant c in (4.28).

Exercise 4.6. Assuming that pβ(µ) exists, show that

lim
µ→−∞pβ(µ) = 0, lim

µ→+∞
pβ(µ)

µ
= 1. (4.29)

Conclude that
lim

µ→−∞ρβ(µ) = 0, lim
µ→+∞ρβ(µ) = 1. (4.30)
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4.4 Equivalence of ensembles

During our brief discussion of thermodynamics in Chapter 1, we saw that the en-
tropy was related to the other thermodynamic potentials through Legendre trans-
forms. We now check that similar relations between the free energy and pressure
hold for the lattice gas.

Theorem 4.13. Equivalence of ensembles at the level of potentials holds for the
general lattice gas. That is, the free energy and pressure are each other’s Legendre
transform:

fβ(ρ) = sup
µ∈R

{µρ−pβ(µ)} ∀ρ ∈ [0,1] , (4.31)

pβ(µ) = sup
ρ∈[0,1]

{ρµ− fβ(ρ)} ∀µ ∈R . (4.32)

Since each can be obtained from the other by a Legendre transform, fβ and pβ
contain the same information about the system, and either of them can be used to
study the thermodynamical behavior of the lattice gas.

Proof. We use (4.24). Since the |Λn |+1 terms of that sum are all nonnegative,

max
N

{eβµN QΛn ;β,N } ≤ΘΛn ;β,µ ≤ (|Λn |+1)max
N

{eβµN QΛn ;β,N } .

By Exercise 4.1, we see that the maximum over N is attained for values of N
|Λ|

bounded away from 0 or 1. For those N , one can use (4.11):

eβµN QΛn ;β,N ≤ c2 exp
(
β{µ N

|Λn | − fβ( N
|Λn | )}|Λn |

)

≤ c2 exp
(
βsup

ρ
{µρ− fβ(ρ)}|Λn |

)
.

This gives
limsup

n→∞
1

β|Λn | logΘΛn ;β,µ ≤ sup
ρ

{ρµ− fβ(ρ)} .

For the lower bound, we first use the continuity of ρ 7→ ρµ− fβ(ρ), and consider
some ρ∗ ∈ [0,1] for which supρ{ρµ− fβ(ρ)} = ρ∗µ− fβ(ρ∗). Let ϵ > 0, and n be

large enough to ensure that QΛn ;β,⌈ρ∗|Λn |⌉ ≥ e−β fβ(ρ∗)|Λn |−βϵ|Λn |. Then, taking N =
⌈ρ∗|Λn |⌉,

max
N

{eβµN QΛn ;β,N } ≥ eβµ⌈ρ∗|Λn |⌉QΛn ;β,⌈ρ∗|Λn |⌉

≥ exp
(
β
{ ⌈ρ∗|Λn |⌉

|Λn | µ− fβ(ρ∗)
}|Λn |−βϵ|Λn |

)
,

which gives
liminf

n→∞
1

β|Λn | logΘΛn ;β,µ ≥ ρ∗µ− fβ(ρ∗)−ϵ .

Since this holds for all ϵ > 0, (4.32) (and thereby the existence of the pressure) is
proved. Then, fβ(ρ) being convex and continuous, it coincides with the Legendre
transform of its Legendre transform (Theorem B.19 1). This proves (4.31).

1To apply that theorem, one needs to define fβ(ρ)
def= +∞ for all ρ ̸∈ [0,1], so that fβ :R→R∪ {∞} is

convex and lower semi-continuous.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

4.5. An overview of the rest of the chapter 177

The equivalence of ensembles allows to derive a further smoothness property
for the free energy.

Corollary 4.14. The free energy fβ is differentiable everywhere on (0,1).

Proof. If there existed a point ρ∗ at which fβ were not differentiable, Theorem B.20
would imply that pβ is affine on some interval; this would contradict the claim of
Theorem 4.12.

4.5 An overview of the rest of the chapter

The existence of the free energy and pressure and the equivalence of ensembles,
proved in the previous sections, hold under quite general assumptions (in our case:
κ<∞). In Section 4.6, we will see how these can be used to derive general proper-
ties of the canonical and grand canonical Gibbs distributions (similarly to what was
done in earlier chapters for the Curie–Weiss and Ising models). Namely, the first
concerns the typical density of particles, NΛ

|Λ| , under the grand canonical distribu-
tion νΛ;β,µ, and the second concerns the geometrical properties of configurations
under the canonical distribution νΛ;β,N .

The remainder of this chapter is devoted to the study of particular cases. Our
main concern will be to determine under which conditions phase transitions can
occur at low temperature. For each of the models considered, we will study the
qualitative properties of the free energy fβ(ρ) and of the pressure pβ(µ). We will
also express the pressure as a function of the density ρ ∈ (0,1) and of the volume

per particle v
def= ρ−1, yielding two functions ρ 7→ p̃β(ρ), v 7→ p̂β(v). Since the latter

are considered at a fixed value of β, they are isotherms of the pressure.

A salient feature of the occurrence of phase transitions, in the canonical lattice
gas, is the condensation phenomenon, that is, the coexistence of macroscopic re-
gions with different densities, gas and liquid. Although a complete description of
this phenomenon is outside the scope of this book, some aspects of the problem
will be described in the complements at the end of the chapter (Section 4.12.1, see
Figure 4.23).

4.6 Concentration and typical configurations

In this section, still under general assumptions (we only assume that κ < ∞), we
use the existence of the free energy and pressure to derive properties of the Gibbs
distributions.

4.6.1 Typical densities

In the grand canonical ensemble, the number of particles in Λ, NΛ, can fluctuate,
and we expect NΛ

|Λ| to concentrate around its average value, given by (4.25):

〈 NΛ

|Λ|
〉
Λ;β,µ =

∂pΛ;β

∂µ
.

The next result characterizes the typical values of the density under νΛn ;β,µ as
minimizers of a suitable function (compare with the similar results obtained in Sec-
tion 2.2 in the context of mean-field models).
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Theorem 4.15. Let R ∋Λn ⇑Zd and let J ⊂ [0,1] be a closed interval. Then,

lim
n→∞

1

|Λn |
logνΛn ;β,µ

( NΛn

|Λn |
∈ J

)
=−min

ρ∈J
Iβ,µ(ρ) ,

where
Iβ,µ(ρ)

def= β
{
( fβ(ρ)−µρ)− min

ρ′∈[0,1]
( fβ(ρ′)−µρ′)

}
(4.33)

is called the rate function.

Proof. The proof follows the same steps as the proof of the equivalence of ensem-
bles. Using the same decomposition as in (4.24),

νΛ;β,µ
( NΛ
|Λ| ∈ J

)= 1

ΘΛ;β,µ

∑
0≤N≤|Λ|:
N /|Λ|∈J

eβµN QΛ;β,N .

The denominatorΘΛ;β,µ is treated using Theorem 4.13. For the numerator,

max
N : N /|Λ|∈J

{eβµN QΛ;β,N } ≤
∑

0≤N≤|Λ|:
N /|Λ|∈J

eβµN QΛ;β,N ≤ (|Λ|+1) max
N : N /|Λ|∈J

{eβµN QΛ;β,N } ,

and we can proceed as in the proof of Theorem 4.13.

Consider the set of minimizers of Iβ,µ ≥ 0:

Mβ,µ
def= {

ρ ∈ [0,1] : Iβ,µ(ρ) = 0
}

.

By continuity of Iβ,µ, Mβ,µ is closed. Since fβ is convex, so is Iβ,µ. Therefore, Mβ,µ

is either a singleton, or a closed interval:

ρ∗ 1
ρ

1
ρ

Iβ,µ(ρ) Iβ,µ(ρ)

Figure 4.2: Depending on (β,µ), the minimizers of the rate function form
either a singleton, Mβ,µ = {ρ∗} (on the left), or a closed interval (on the right).

Remark 4.16. Most of the plots given in this chapter were made to illustrate im-
portant features of the functions under consideration; in order to better emphasize
the latter, we have often decided to accentuate them. Nevertheless, the qualita-
tive properties have been preserved. Only those for the hard-core gas, and some of
those for the van der Waals model, are drawn from an expression computed rigor-
ously. ⋄

Theorem 4.15 thus says that, in a grand canonical system with chemical poten-
tial µ, the particle density NΛ

|Λ| concentrates on Mβ,µ, in the following sense: for any
open set G ⊂ [0,1], with G ⊃Mβ,µ, we have that

asΛ ⇑Zd , νΛ;β,µ

( NΛ

|Λ| ∈G
)
→ 1 exponentially fast in |Λ|.
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Indeed, for any closed interval J ⊂ [0,1] \Mβ,µ, we have λ
def= minρ∈J Iβ,µ(ρ) > 0 and,

for any large enough boxΛ,

νΛ;β,µ

( NΛ

|Λ| ∈ J
)
≤ e−

λ
2 |Λ| .

Densities outside Mβ,µ are therefore very atypical in large systems. Of course, it
does not follow from the above theorem that all values in the set Mβ,µ are equally
likely. Investigating this question requires a much more delicate analysis, taking
into account surface effects; see the complements to this chapter (Section 4.12.1)
for a discussion.

Remark 4.17. Using the equivalence of ensembles, one can also express Mβ,µ as

Mβ,µ =
{
ρ ∈ [0,1] : pβ(µ) =µρ− fβ(ρ)

}
. ⋄

When the pressure is differentiable (that is, in the absence of a first-order phase
transition), one knows exactly at which value the density concentrates:

Proposition 4.18. Assume that pβ is differentiable at µ. Then, under νΛ;β,µ, the

density NΛ
|Λ| concentrates on ρβ(µ)

def= ∂pβ
∂µ : for all ϵ> 0, as Λ ⇑Zd ,

νΛ;β,µ

(∣∣∣ NΛ

|Λ| −ρβ(µ)
∣∣∣≥ ϵ

)
→ 0, exponentially fast in |Λ|.

Proof. If
∂pβ
∂µ exists, then Mβ,µ must be a singleton (if it were an interval, fβ would

be affine on that interval, a contradiction with Theorem B.20): Mβ,µ = {ρ∗}. We

only need to check that ρ∗ = ∂pβ
∂µ . Using Remark 4.17, we see that ρ∗ must satisfy

pβ(µ) =µρ∗− fβ(ρ∗). It thus follows from (4.32) that, for all ϵ> 0,

pβ(µ+ϵ)−pβ(µ) ≥ {
(µ+ϵ)ρ∗− fβ(ρ∗)

}−pβ(µ) = ϵρ∗

and
pβ(µ)−pβ(µ−ϵ) ≤ pβ(µ)−{

(µ−ϵ)ρ∗− fβ(ρ∗)
}= ϵρ∗ ,

which, dividing by ϵ and letting ϵ ↓ 0, gives
∂pβ
∂µ = ρ∗, proving the claim.

4.6.2 Strict convexity and spatial homogeneity

In this section we describe typical configurations of particles in the canonical en-
semble, by looking at how the density can vary from one point to another. More
precisely, we will consider the canonical Gibbs distribution νΛ;β,N in a large box Λ,

and assume that the density N
|Λ| ≃ ρ belongs to some interval I on which the free

energy is strictly convex:

fβ(λρ1 + (1−λ)ρ2) <λ fβ(ρ1)+ (1−λ) fβ(ρ2) ,

for all 0 < λ < 1 and all ρ1 < ρ2 in I . We will show that, under such conditions,
the system is homogeneous: with high probability under νΛ;β,N , all macroscopic
sub-boxes of Λ have the same density ρ. (We have proved a similar claim in the
microcanonical ensemble, in Section 1.3.1.)

We will consider the thermodynamic limit along a sequence R ∋ Λ ⇑ Zd and,
for each 0 < α < 1 and each Λ, consider a collection Dα(Λ) ⊂ R of subsets Λ′ ⊂Λ,
translates of each other, with the property that |Λ′|

|Λ| →α whenΛ ⇑Zd .
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Theorem 4.19. Let R ∋ Λ ⇑ Zd . Assume that N
|Λ| → ρ ∈ (0,1) and that fβ is strictly

convex in a neighborhood of ρ. Fix 0 <α< 1. Then, for all small ϵ> 0, as Λ ⇑Zd ,

νΛ;β,N

(
∃Λ′ ∈Dα(Λ) such that

∣∣∣ NΛ′

|Λ′| −ρ
∣∣∣≥ ϵ

)
→ 0, (4.34)

exponentially fast in |Λ|.

Proof. Together with R ∋Λ ⇑Zd , we consider N →∞ such that N
|Λ| → ρ ∈ (0,1). Fix

ϵ > 0 and some δ > 0 (which will be fixed later), and cover [0,1] \ (ρ− ϵ,ρ+ ϵ) with
closed intervals Jk , k = 1, . . . ,m, of sizes ≤ δ, all at distance at least ϵ from ρ. We can
assume that m ≤ 2/δ. We will first show that there exists b0 > 0 such that, when Λ
is large enough,

νΛ;β,N

( NΛ′

|Λ′| ∈ Jk

)
≤ |Λ|e−b0|Λ| , (4.35)

for all Λ′ ∈ Dα(Λ) and all k. Since there are at most |Λ| sub-boxes Λ′ ∈ Dα(Λ) and
since the number of intervals Jk is bounded, the main claim will then follow.

Consider some Jk . For definiteness, we assume that min Jk > ρ (the other
case is treated similarly). We can of course assume that ρ, α and Jk are such that
{NΛ′/|Λ′| ∈ Jk } ̸=∅. First, decompose

νΛ;β,N

( NΛ′

|Λ′| ∈ Jk

)
=

∑

N ′: N ′
|Λ′ |∈Jk

νΛ;β,N (NΛ′ = N ′) . (4.36)

Let Λ′′ def= Λ \Λ′. If the interaction has finite range (see Exercise 4.7 below for the
general case), then, for all configurations η ∈ {0,1}Λ,

HΛ;K (η) =HΛ′;K (η|Λ′ )+HΛ′′;K (η|Λ′′ )+O(|∂Λ|) , (4.37)

where, as usual, we denote by η|∆ the restriction of η ∈ {0,1}Λ to ∆ ⊂Λ. Therefore,

letting N ′′ def= N −N ′,

νΛ;β,N (NΛ′ = N ′) ≤ eO(|∂Λ|) QΛ′;β,N ′QΛ′′;β,N ′′

QΛ;β,N
.

For the denominator, we will use

lim
Λ⇑Zd

1

β|Λ| logQΛ;β,N =− fβ(ρ) .

Let N ′
min = min{N ′ : N ′/|Λ′| ∈ Jk }, N ′′

max = N −N ′
min. Using Lemma 4.7 repeatedly,

QΛ′;β,N ′ ≤
[

eβκ
(1−N ′

min/|Λ′|
N ′

min/|Λ′| ∨1
)]N ′−N ′

min QΛ′;β,N ′
min

,

QΛ′′;β,N ′′ ≤
( (N ′′

max +1)/|Λ′′|
1−N ′′

max/|Λ′′| ∨1
)N ′′

max−N ′′
QΛ′′;β,N ′′

max
.

AsΛ ⇑Zd , we have

N ′
min

|Λ′| → ρk
min

def= min Jk ,
N ′′

max

|Λ′′| → ρk
max ,
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where ρk
max satisfies

αρk
min + (1−α)ρk

max = ρ .

Therefore, sinceΛ′ ∈R and |Λ′|/|Λ|→α,

lim
Λ⇑Zd

1

β|Λ| logQΛ′;β,N ′
min

=−α fβ(ρk
min) .

Observe thatΛ′′ is not a parallelepiped, but we can use Lemma 4.6 as follows:

QΛ′′;β,N ′′
max

≤
QΛ;β,Ñ

QΛ′;β,Ñ ′
, (4.38)

where Ñ ′ def= ⌊N ′′
max

|Λ′′| |Λ′|⌋, Ñ
def= N ′′

max+Ñ ′. Now, Ñ
|Λ| → ρk

max, and Ñ ′
|Λ′| → ρk

max. Therefore,

lim
Λ⇑Zd

1

β|Λ| log
QΛ;β,Ñ

QΛ′;β,Ñ ′
=−(1−α) fβ(ρk

max) .

We have thus proved that

limsup
Λ⇑Zd

1

β|Λ| log max
N ′: N ′

|Λ′ |∈Jk

νΛ;β,N (NΛ′ = N ′)

≤Mkδ−
{
α fβ(ρk

min)+ (1−α) fβ(ρk
max)− fβ(ρ)

}
,

where

Mk
def= κ+ log

(1−ρk
min

ρk
min

∨1
)
+ log

( ρk
max

1−ρk
max

∨1
)

.

Observe that Mk is bounded uniformly in k. Namely, there exists 0 < ϵ′ < ϵ (de-
pending on ρ and α) such that ρk

max < ρ− ϵ′ < ρ+ ϵ < ρk
min for all k. Moreover, by

the strict convexity of fβ in a neighborhood of ρ, there exists some b0 > 0 such that

min
1≤k≤m

{
α fβ(ρk

min)+ (1−α) fβ(ρk
max)− fβ(ρ)

}≥ 2b0 > 0,

uniformly in m. One can thus take δ small enough so that Mkδ ≤ b0. The sum
in (4.36) contains at most |Λ| terms, which proves (4.35) for large enoughΛ.

Exercise 4.7. Show that, when the interaction is not of finite range (but assuming
κ<∞), (4.37) becomes

HΛ;K (η) =HΛ′;K (η|Λ′ )+HΛ′′;K (η|Λ′′ )+o(|Λ|) ,

so that the rest of the proof remains unchanged.

4.7 The hard-core lattice gas

Let us see what happens when
K (i , j ) = 0

for all pairs i , j . This model, already considered in Chapter 1, is called the hard-
core lattice gas, since the only interaction between the particles is the constraint
of having at most one of them at each vertex. Due to the lack of an attractive part
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in its Hamiltonian, this model will not present a particularly interesting behavior,
but it remains a good starting point, since its thermodynamic potentials can be
computed explicitly.

When K ≡ 0, the canonical partition function becomes a purely combinatorial
quantity, counting the configurations η ∈ {0,1}Λ with NΛ(η) = N :

Qhard
Λ;N =

(
|Λ|
N

)
.

Since
(|Λ|

0

) = (|Λ|
|Λ|

) = 1, we get f hard
β

(0) = f hard
β

(1) = 0. For intermediate densities, 0 <
ρ < 1, we use again (4.13)–(4.14), and obtain (see Figure 4.3)

f hard
β (ρ) =− 1

β s l.g. (ρ) . (4.39)

ρ
f hard
β

(ρ)

Figure 4.3: The free energy of the hard-core lattice gas, strictly convex at all
temperatures.

The pressure can also be computed explicitly (see Figure 4.4), using either the
equivalence of ensembles, or simply (4.24):

Θhard
Λ;µ =

|Λ|∑
N=0

(
|Λ|
N

)
eβµN = (1+eβµ)|Λ| ,

which yields

phard
β (µ) = 1

β
log(1+eβµ) . (4.40)

The expressions obtained for f hard
β

(ρ) and phard
β

(µ) imply that these functions are

analytic. We will now see how to express the pressure as a function of ρ rather than
µ. To this end, one must answer the following question: can one realize a chosen
average density ρ by suitably tuning µ?

Observe that the average density of particles,

ρhard
β (µ) =

∂phard
β

∂µ
= eβµ

1+eβµ
, (4.41)

is smooth for all values of µ: when µ increases from −∞ to +∞, the density of the
hard-core gas increases from 0 to 1 without discontinuities and exhibits no phase
transition (see Figure 4.4). This absence of condensation is of course due to the lack
of attraction between the particles.

By Proposition 4.18, we also know that the density of particles in a large grand
canonical system, NΛ

|Λ| , concentrates on ρhard
β

(µ). Since ρhard
β

(µ) is increasing inµ, the
equation

ρhard
β (µ) = ρ (4.42)
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µ

phard
β

(µ)

µ

ρhard
β

(µ)

1

Figure 4.4: The pressure and average density of the hard-core lattice gas.

has a unique solution in µ, for each fixed ρ ∈ (0,1). This solution can of course be
given explicitly:

µhard
β (ρ) = 1

β log ρ
1−ρ .

Therefore, densities ρ ∈ (0,1) are in one-to-one correspondence with chemical po-
tentials µ ∈ R. This bijection allows to express the pressure as a function of the
density:

p̃hard
β (ρ)

def= phard
β (µhard

β (ρ)) =− 1
β log(1−ρ) .

At low densities, log(1−ρ) ≃ −ρ, which allows to recover the qualitative behavior
provided by the equation of state of the ideal gas:

βp̃hard
β (ρ) = ρ+O(ρ2) (ρ small) .

In terms of the volume per particle, v = ρ−1,

p̂hard
β (v)

def= p̃hard
β (v−1) =− 1

β log
(
1− 1

v

)
.

Remark 4.20. When v is large, − log(1− 1
v ) ≃ 1

v , and the above provides an approxi-
mation to the Ideal Gas Law (1.14), with R = 1,

pv = RT . ⋄

4.7.1 Parenthesis: equivalence of ensembles at the level of measures

Consider the canonical hard-core lattice gas along a sequenceΛ ⇑Zd , N →∞, with
N
|Λ| → ρ. What can be said about the distribution of particles in a smaller subsystem

∆⊂Λ, whose size remains fixed asΛ ⇑Zd ?

Although the density of particles in Λ is fixed, close to ρ, the number of par-
ticles in ∆ can fluctuate. We therefore expect to obtain, when Λ ⇑ Zd , some dis-
tribution of the grand canonical type inside ∆, with a chemical potential µ to be
determined; not surprisingly, it will be exactly the one obtained earlier through the
relation (4.42).



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

184 Chapter 4. Liquid-Vapor Equilibrium

Λ, N

∆

Figure 4.5: In a large systemΛwith a fixed number of particles N , what can be
said about the probability distribution describing a smaller subsystem∆⊂Λ?

Proposition 4.21. Let ∆ ⋐ Zd , Λ ⇑ Zd , and assume that N
|Λ| → ρ ∈ (0,1). Let η∆ ∈

{0,1}∆ be any configuration of particles in ∆. Then, as Λ ⇑Zd ,

νΛ;β,N
(
{η : η|∆ = η∆}

)−→ ν∆;β,µ(η∆) , (4.43)

where µ is the unique solution to (4.42).

Relation (4.43) is the simplest instance of equivalence of ensembles at the level
of measures. A similar statement holds much more generally, at least away from
phase transitions, but is substantially harder to establish [2].

Proof. The proof is a direct application of Stirling’s formula: if M = N∆(η∆),

νΛ;β,N
(
{η : η|∆ = η∆}

)=
(|Λ|−|∆|

N−M

)
(|Λ|

N

) = (1+o(1))
(
1− N

|Λ|
)|∆|( N

|Λ|−N

)M
.

Since N
|Λ| → ρ and since (4.42) can be written as ρ

1−ρ = e
βµhard

β
(ρ)

,

( N

|Λ|−N

)M
−→

( ρ

1−ρ
)M

= exp
{
βµhard

β (ρ)M
}

,

and (
1− N

|Λ|
)|∆|

−→ (1−ρ)|∆| = 1

(1+e
βµhard

β
(ρ)

)|∆|
= 1

Θ∆;β,µhard
β

(ρ)

.

4.8 The nearest-neighbor lattice gas

In this section, we take further advantage of the binary nature of the lattice gas to
link it precisely to the Ising ferromagnet. The occupation numbers ηi ∈ {0,1} of the
lattice gas can be mapped to Ising spins ωi ∈ {−1,+1}, by

ηi 7→ωi
def= 2ηi −1. (4.44)

Expressed in terms of the Ising spins, the exponent in (4.22) becomes

β
{
HΛ;K (η)−µNΛ(η)

}=−β
4

∑
{i , j }⊂Λ

K (i , j )ωiω j − β
4 (κ+2µ)

∑
i∈Λ

ωi −β(µ2 + κ
8 )|Λ|+bΛ ,
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−→
ϕ

Figure 4.6: On the left, a configuration of the lattice gas, in which each cell
i is either occupied by a particle, or empty. The occupation variables ηi ∈
{0,1} are mapped to spin variables ωi ∈ {±1} (picture on the right) using the
mapping (4.44).

where bΛ = o(|Λ|) (see exercise below). We thus see that the lattice gas is linked to

an Ising ferromagnet with coupling constants Ji j = β
4 K (i , j ) ≥ 0 and magnetic field

h′ = β
4 (κ+2µ).

Exercise 4.8. Compute bΛ, and show that

lim
Λ⇑Zd

|bΛ|
|Λ| = 0.

In order to take advantage of the results obtained in Chapter 3, in this subsection
we restrict to the nearest-neighbor lattice gas, for which

K (i , j )
def= 1{i∼ j } . (4.45)

In this case, κ= 2d .

4.8.1 The pressure

The parameters (β,µ) of the grand-canonical lattice gas are related to those of the
nearest-neighbor Ising model, (β′,h′), by the relations

β′ = 1
4β , h′ = β

4 (κ+2µ) .

By Exercise 4.8, for all ϵ> 0, one can take n sufficiently large so that

e−ϵ|B(n)|eβ( µ2 + κ
8 )|B(n)|Z∅

B(n);β′,h′ ≤ΘB(n);β,µ ≤ eϵ|B(n)|eβ( µ2 + κ
8 )|B(n)|Z∅

B(n);β′,h′ .

We thus get, after taking the limits n →∞ and ϵ ↓ 0,

βpβ(µ) =ψβ′ (h′)+ βµ
2 + βκ

8 . (4.46)

We can now extract qualitative information from the Ising model and translate it
into the lattice gas language.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

186 Chapter 4. Liquid-Vapor Equilibrium

For instance, we know from Theorem 3.9 that, in d = 1, h′ 7→ ψβ′ (h′) is every-
where analytic in h′ (at all temperatures). This implies that the corresponding lat-
tice gas has no phase transition, µ 7→ pβ(µ) being analytic everywhere. In fact, the
exact solution of Theorem 3.9, together with (4.46), yields an explicit expression for
pβ(µ).

When d ≥ 2, it follows from the Lee–Yang Circle Theorem and Theorem 3.40
that ψβ′ is analytic at least outside h′ = 0. Therefore, to h′ = 0 corresponds the
unique value of the chemical potential at which the lattice gas can exhibit a first-
order phase transition, namely:

µ∗
def= − 1

2κ .

We also know, from Theorem 3.34 and Peierls’ argument, that there exists an inverse
critical temperature βc(d) ∈ (0,∞) such that a first-order phase transition does oc-
cur whenever β′ >βc(d); see (3.27). We gather these results in the following

Theorem 4.22. Let µ 7→ pβ(µ) denote the pressure of the nearest-neighbor lattice gas.

1. When d = 1, pβ is analytic everywhere.

2. When d ≥ 2, pβ is analytic everywhere on {µ :µ ̸=µ∗}. Moreover, letting

βl.g.
c =βl.g.

c (d)
def= 4βc(d) ,

pβ is differentiable at µ∗ if β<βl.g.
c , but non-differentiable at µ∗ if β>βl.g.

c .

In particular, at all temperatures, the density of particles µ 7→ ρβ(µ) = ∂pβ
∂µ exists

(and is analytic) everywhere outside µ∗. Using (4.46), the latter can be related di-
rectly to the infinite-volume magnetization mβ′ of the Ising model:

ρβ(µ) =
∂pβ
∂µ

= 1

β

∂ψβ′

∂h′
∂h′

∂µ
+ 1

2
=

1+mβ′ (h′)

2
.

(We write mβ′ (h′) rather than m(β′,h′), since we are mainly interested in the de-
pendence on h′.) We call (−∞,µ∗) the gas branch of the pressure, and (µ∗,+∞)
the liquid branch. Although the pressure is not differentiable at µ∗ when β> β

l.g.
c ,

convexity guarantees that its one-sided derivatives are well defined and given by

ρl
def=
∂pβ
∂µ+

∣∣∣
µ∗

=
1+m∗

β′

2
, ρg

def=
∂pβ
∂µ−

∣∣∣
µ∗

=
1−m∗

β′

2
.

At µ∗, the grand-canonical system becomes sensitive to the boundary condition,
and the density is only guaranteed to satisfy ρg ≤ ρ ≤ ρl . The reader can actually
take a look back at the pictures of Figure 1.9 for the typical configurations of the
lattice gas at low and high temperature. Observe that the densities ρg ,ρl always
satisfy

ρg +ρl = 1. (4.47)

(Let us mention that this property is really a consequence of the hidden spin-
flip symmetry of the underlying Ising model, and does not hold in general lattice
gases.) The pressure and the density have therefore the qualitative behavior dis-
played in Figure 4.7. (We remind the reader that the graphs shown in this section
are only qualitative; their purpose is to emphasize the main features observed in
the nearest-neighbor lattice gas.)
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pβ(µ)

µ∗
µ

liquid

gas

ρβ(µ)

µ∗

1

ρg

ρl

µ

Figure 4.7: The pressure and density of the nearest-neighbor lattice gas, ex-
hibiting a first-order phase transition when β>βl.g.

c . The function µ 7→ pβ(µ)
is analytic everywhere, except at µ∗, at which the one-sided derivatives dif-
fer, implying a jump in density, corresponding to the change from a gas of
density ρg to a liquid of density ρl .

4.8.2 The free energy

In the canonical ensemble, we can obtain the main qualitative properties of the free
energy using the fact that it is the Legendre transform of the pressure and applying
Theorem B.20.

At high temperature, β< βl.g.
c , the pressure is differentiable everywhere and the

free energy is therefore strictly convex; see Figure 4.8. By Theorem 4.19, this implies
that the typical configurations under the canonical Gibbs distribution are always
spatially homogeneous, at all densities.

ρ

fβ(ρ)
1

Figure 4.8: The free energy of the nearest-neighbor lattice gas is strictly con-
vex when β<βl.g.

c .

At low temperature, when β > β
l.g.
c , pβ is not differentiable at µ∗ and, again by

Theorem B.20, fβ is affine on the interval [ρg ,ρl ], called the coexistence plateau.
As for the pressure, we refer to (0,ρg ) as the gas branch, and to (ρl ,1) as the liquid
branch; see Figure 4.9.

Exercise 4.9. Show that when β>βl.g.
c , fβ is analytic on the gas and liquid branches.

Hint: use Theorem 4.22, the strict convexity of the pressure, and the implicit function
theorem.
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ρg

gas

liquid

coex.

ρl
ρ

fβ(ρ)
1

Figure 4.9: The free energy of the nearest-neighbor lattice gas, when β>βl.g.
c ,

is analytic everywhere (see Exercise 4.9) except at ρg and ρl . On the coexis-
tence plateau [ρg ,ρl ], both gas and liquid are present in the system, in vari-
ous proportions: there is coexistence and phase separation.

4.8.3 Typical densities

The typical density NΛ
|Λ| under the grand canonical Gibbs distribution νΛ;β,µ can be

characterized using the analysis following Theorem 4.15; see Figure 4.10.
When β ≤ β

l.g.
c and for all µ ∈ R, the rate function Iβ,µ is strictly convex and

has a unique minimizer, Mβ,µ = {∂pβ/∂µ}, at which the density concentrates. The

scenario is similar if β>βl.g.
c and µ ̸=µ∗.

When β > β
l.g.
c and µ = µ∗, the rate function attains its minima on the coexis-

tence plateau: Mβ,µ = [ρg ,ρl ].

gas liquid

ρβ(µ) ρg ρl 1
ρ

1
ρ

Iβ,µ(ρ) Iβ,µ∗ (ρ)

Figure 4.10: Values of the density at which the rate function does not attain
its minimum are very unlikely to be observed in a large system distributed
according to νΛ;β,µ. When β<βl.g.

c , or when β>βl.g.
c and µ ̸=µ∗ (on the left),

Iβ,µ(ρ) has a unique minimum at ρβ(µ). When β > β
l.g.
c and µ = µ∗ (on the

right), Iβ,µ∗ (ρ) is minimal on the whole coexistence plateau.

Theorem 4.15 does not provide any information on the typical densities when
µ = µ∗, beyond concentration on the coexistence plateau, and a more detailed
analysis is necessary; this will be discussed in Section 4.12.1.

4.8.4 The pressure as a function of ρ and v.

Let us now express the pressure in terms of either the density ρ or the volume per
particle v = ρ−1.

When β≤βl.g.
c , pβ is differentiable for all values of µ and ρβ(µ) = ∂pβ

∂µ is continu-
ous (Theorem B.12) and increasing. Remember from Exercise 4.6 that ρβ(µ) → 0 as
µ→−∞, and ρβ(µ) → 1 as µ→+∞. Therefore, one can proceed as for the hardcore
gas: for any ρ ∈ (0,1), the equation

ρβ(µ) = ρ (4.48)
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has a unique solution, which we denote µl.g.

β
(ρ). We can thus define

p̃β(ρ)
def= pβ(µl.g.

β
(ρ)) , ρ ∈ (0,1) . (4.49)

Whenβ>βl.g.
c , existence of a solution to (4.48) is not guaranteed for all ρ ∈ (0,1),

because of the jump ofρβ(µ) atµ∗ (see Figure 4.7). In fact, inversion is only possible

when ρ < ρg or ρ > ρl ; in this case, we also denote the inverse by µl.g.

β
(ρ). To extend

this function to a well-defined µl.g.

β
: (0,1) →R, we set

µ
l.g.

β
(ρ)

def= µ∗ ∀ρ ∈ [ρg ,ρl ] . (4.50)

The reason for defining the inverse that way on the coexistence plateau is that,

for finite systems, the average particle density in Λ, which is equal to
∂pΛ;β(µ)

∂µ , is in-
creasing and differentiable (in fact, analytic) as a function of µ. In particular, to any
density ρ ∈ (0,1) is associated a unique value µΛ;β(ρ) of the chemical potential. The

latter function being increasing, it is clear that it converges for all ρ ∈ (0,1), asΛ ⇑Zd ,
to the function µl.g.

β
(ρ) defined above. ⋄

We can then define p̃β(ρ) as in (4.49). Its qualitative behavior is sketched in
Figure 4.11.

ρg ρl

coex.
gas

liquid

ρ
1

p̃β(ρ)

Figure 4.11: The pressure of the nearest-neighbor lattice gas at low tempera-
ture, as a function of the density ρ ∈ (0,1).

Remark 4.23. In Section 5.7.2, we will see that the nearest-neighbor lattice gas also
presents the ideal gas behavior at small densities:

βp̃β(ρ) = ρ+O(ρ2) , (ρ small) .

Using the cluster expansion technique, we will see in Theorem 5.12 that the coeffi-
cients of the virial expansion can actually be computed, yielding the exact higher-
order corrections to the pressure at low density:

βp̃β(ρ) = ρ+b2ρ
2 +b3ρ

3 + . . . (ρ small). ⋄

Exercise 4.10. Show that, when β>βl.g.
c , ρ 7→ p̃β(ρ) is analytic on the gas and liquid

branches.
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Finally, we can also express the pressure as a function of the volume per particle,
v = ρ−1,

p̂β(v)
def= p̃β(v−1) , v ∈ (1,∞) ,

to obtain the qualitative behavior of the isotherms in a form directly compara-
ble to the van der Waals–Maxwell theory. The sketch of a typical low temperature

isotherm is given in Figure 4.12, where we have set vl
def= ρ−1

l and vg
def= ρ−1

g .

vgvl

gas

liquid

coex.
ps

v
1

p̂β(v)

Figure 4.12: The pressure of the nearest-neighbor lattice gas at low tempera-
ture, as a function of the volume per particle v > 1. The value v = 1 plays the
same role as v = b in van der Waals’ isotherms (Figure 1.4). The saturation
pressure is given by ps = pβ(µ∗).

4.9 The van der Waals lattice gas

In this section, we consider a lattice gas that does not fit in the general framework
described earlier, but which will be important from the point of view of the van der
Waals–Maxwell theory, especially in the next section.

Consider a lattice gas in a vessel Λ⋐ Zd , in which the interaction between the
particles at vertices i , j ∈Λ is given by

K (i , j )
def= 1

|Λ| . (4.51)

This type of interaction is not physical, since the contribution to the total energy
from a pair of particles depends on the size of the region Λ in which they live: it
becomes of infinite range and tends to zero when |Λ| →∞. Nevertheless, the sum
over the pairs of particles can be expressed as

∑
{i , j }⊂Λ

K (i , j )ηiη j =
1

2|Λ|
∑
i∈Λ

∑
j∈Λ
j ̸=i

ηiη j

= 1

2|Λ|
∑
i∈Λ

ηi

( ∑
j∈Λ

η j −ηi

)
= 1

2ρ
2
Λ|Λ|− 1

2ρΛ ,

where ρΛ
def= NΛ

|Λ| is the empirical density. Since it is bounded, the second term − 1
2ρΛ

does not contribute on the macroscopic scale and will be neglected.
Therefore, although not physically realistic, interactions of the form (4.51) lead

to a model in which the square of the density appears explicitly in the Hamiltonian.
In this sense, it can be considered as a microscopic toy model that embodies the
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main assumption made by van der Waals and discussed in Chapter 1. This model,
with Hamiltonian

H vW
Λ;µ

def= − 1
2ρ

2
Λ|Λ|−µρΛ|Λ| ,

will be called the van der Waals model.
We already encountered the same interaction (formulated in the spin language)

when considering the Curie–Weiss Model in Section 2.1 (remember in particular
the Curie–Weiss Hamiltonian (2.4)). Therefore, this model could also be called the
mean-field or Curie–Weiss lattice gas. A large part of the rest of this section will
be the translation of the discussion of Section 2.1 in the lattice gas language. We
nevertheless discuss a new important feature: its link with Maxwell’s Construction.

Let us denote the canonical and grand canonical partition functions of the van
der Waals model by QvW

Λ;β,N , respectively ΘvW
Λ;β,µ , and consider the associated free

energy and pressure:

f vW
β (ρ)

def= lim
n→∞

−1

β|Λn |
logQvW

Λn ;β,⌈ρ|Λn |⌉ , ρ ∈ [0,1] ,

pvW
β (µ)

def= lim
n→∞

1

β|Λn |
logΘvW

Λn ;β,µ , µ ∈R .

The dependence of K (i , j ) on Λ prevents us from using Theorems 4.5 and 4.11 to
show the existence of these limits. However, it is not difficult to compute the latter
explicitly. Remember the definition of s l.g. (ρ) in (4.14).

Theorem 4.24. The above limits exist, and are given by

f vW
β (ρ) =− 1

2ρ
2 − 1

β s l.g. (ρ) , (4.52)

pvW
β (µ) = sup

ρ∈[0,1]
{µρ− f vW

β (ρ)} . (4.53)

Exactly as we already saw in (2.5), the free energy splits into an energy term − 1
2ρ

2

and an entropy term − 1
β s l.g. (ρ).

Proof. The simple structure of the Hamiltonian yields

QvW
Λ;β,N =

(
|Λ|
N

)
e

1
2βρ

2
Λ|Λ| .

We then use (4.13) and get (4.52). For the pressure, we use a decomposition as the
one in (4.24) and proceed as in the proof of (4.32).

Of course, the properties of f vW
β

and pvW
β

can also be derived directly from those

of the Curie–Weiss model. Therefore, parts of the material presented below has
already been presented, in a different form, in Chapter 2.

By (4.53), pvW
β

is the Legendre transform of f vW
β

, but the converse is only true

when f vW
β

is convex.
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ρ
1 1

β≤βvW
c β>βvW

c

f vW
β

(ρ) f vW
β

(ρ)

Figure 4.13: The free energy (4.52) of the van der Waals model at high (on the
left) and low (on the right) temperatures.

4.9.1 (Non-)convexity of the free energy.

Since f vW
β

(ρ) is the sum of a concave energy term and of a convex entropy term, its

convexity is not clear a priori. But an elementary computation shows that

∂2 f vW
β

∂ρ2 ≥ 0 ∀ρ ∈ (0,1) if and only if β≤βvW
c , (4.54)

where the critical inverse temperature is

βvW
c

def= 4.

We can thus determine exactly when f vW
β

is the Legendre transform of pvW
β

:

1. When β≤βvW
c , f vW

β
is convex and, since the Legendre transform is an involu-

tion on convex lower semicontinuous functions (Theorem B.19), this means
that

f vW
β (ρ) = sup

µ∈R

{
ρµ−pvW

β (µ)
}

.

Therefore, equivalence of ensembles holds at high temperature.

2. When β > βvW
c , f vW

β
is non-convex and therefore cannot be the Legendre

transform of pvW
β

(see Exercise B.6): there exist values of ρ for which

f vW
β (ρ) ̸= sup

µ∈R

{
ρµ−pvW

β (µ)
}

. (4.55)

Therefore, equivalence of ensembles does not hold at low temperature.

The reader might wonder whether physical significance can be attached to the Leg-
endre transform of the pressure, namely the right-hand side of (4.55). In fact, since
the pressure is the Legendre transform of the free energy (by (4.53)), its Legendre
transform is given by (see Theorem B.17)

sup
µ∈R

{ρµ−pvW
β (µ)} = CE f vW

β (ρ) , (4.56)

where CE f vW
β

(ρ) is the convex envelope 2 of f vW
β

, defined by

CE f vW
β

def= largest convex function g such that g ≤ f vW
β . (4.57)

2A more precise definition can be found in Appendix B.2.3.
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The regime β>βvW
c thus corresponds to CE f vW

β
̸= f vW

β
(see Figure 4.14). In the next

section, we will relate this to Maxwell’s construction.

ρlρg

fβ(ρl )

fβ(ρg )

ρ
1

CE f vW
β

Figure 4.14: At low temperature, the free energy of the van der Waals model
differs from its convex envelope. The points ρg and ρl will be identified be-
low.

The non-convexity observed at low temperature in the van der Waals model is
due to the fact that the geometry of the system plays no role: any pair of particles
interacts in the same way, no matter how distant. Therefore, not surprisingly, we
end up with the same conclusions as in van der Waals’ theory when making the
homogeneity assumption.

Convexity is known, since Chapter 1, to be a consequence of the variational
principles satisfied by the fundamental functions of thermostatics. For systems with
finite-range interactions, it appeared in the proof of Theorem 4.5. In the present set-
ting, the argument can be formulated as follows. A system with density ρ ∈ (ρg ,ρl )
living in Λ can always be split into two subsystems: a first one, with volume |Λ1| =
α|Λ| and density ρg and a second one with volume |Λ2| = (1−α)|Λ| and density ρl ,
where α is chosen such that the overall density is unchanged: αρg +(1−α)ρl = ρ. In-
deed, the free energy density associated to these two systems is α f (ρg )+ (1−α) f (ρl ),
which is smaller than the free energy density of the original system: α f (ρg )+ (1−
α) f (ρl ) ≤ f

(
αρg + (1−α)ρl

)= f (ρ).
The reason this does not occur in the van der Waals model is that it is impossible

to split the system into two pieces in such a way that the energy of interaction between
the two subsystems is negligible (that is, is o(|Λ|)). It is this peculiarity, ultimately due
to the long-range nature of the interactions, which explains the unphysical features
of these systems, such as the non-convexity of the free energy. In models with short-
range interactions, such a splitting is indeed possible, and the spatial coexistence of
gas and liquid phases occurs at the phase transition. ⋄

4.9.2 An expression for the pressure; Maxwell’s construction

We have already seen in (4.56) that the Legendre transform of the pressure is given
by CE f vW

β
. At low temperature, CE f vW

β
is affine on a segment (Figure 4.14), and by

Theorem B.20, this implies that pvW
β

has a point of non-differentiability. We make

this analysis more explicit below.
Using (4.53), the analysis of the pressure pvW

β
(µ) for a fixed µ can be done

through the study of the maxima of the function ρ 7→ µρ − f vW
β

(ρ). Since f vW
β

is
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differentiable, these can be found by solving

∂ f vW
β

∂ρ
=µ , (4.58)

which can be written as
θ(ρ) =β(ρ+µ) , (4.59)

where θ(ρ)
def= log ρ

1−ρ . We fix µ and make a qualitative analysis of the solutions (in
ρ) to (4.59). Observe that θ(ρ) →−∞ when ρ ↓ 0, and θ(ρ) →+∞ when ρ ↑ 1. The
graph of θ(ρ) therefore intersects the straight line ρ 7→β(ρ+µ) at least once, for all
µ ∈ R and β> 0; see Figure 4.15. However, the graph of θ(ρ) may intersect that line
more than once. Actually, since θ′(ρ) ≥ θ′( 1

2 ) = 4 =βvW
c , we see that this intersection

is unique when β≤βvW
c , but not necessarily so when β>βvW

c .

−µ

β(ρ+µ)

ρ1
1
2

θ(ρ)

Figure 4.15: Solving (4.59).

The van der Waals pressure when β≤βvW
c

When β≤ βvW
c , the unique solution to (4.59), denoted µ 7→ ρvW

β
(µ), is differentiable

(analytic in fact) with respect to µ, and the pressure is given by

pvW
β (µ) =µρvW

β (µ)− f vW
β (ρvW

β (µ)) . (4.60)

Since ρvW
β

(µ) = ρ can be inverted to obtain µvW
β

(ρ), we can express the pressure as a

function of the density; from (4.58),

p̃vW
β (ρ)

def= pvW
β (µβ(ρ)) =

∂ f vW
β

∂ρ
ρ− f vW

β (ρ) =− 1
2ρ

2 − 1
β log(1−ρ) . (4.61)

Exercise 4.11. Check (4.61).

Once more, at low densities, (4.61) reduces to the equation of state for the ideal
gas (1.14):

βp̃vW
β (ρ) = ρ+O(ρ2) .
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As a function of v = ρ−1 (see Figure 4.19),

p̂vW
β (v) =− 1

2v2 − 1

β
log

(
1− 1

v

)
. (4.62)

Once more, for fixed β, once v is taken large enough, p̂vW
β

(v) is well approximated

by the solution to (
p + ( 1

2 + 1
2β

) 1

v2

)
(v −1) =β−1 ,

which is essentially van der Waals’ expression (1.23), with a = 1
2 + 1

2β and b = 1.

The van der Waals pressure when β>βvW
c

When β>βvW
c , the pressure is also of the form (4.60), but the solution to (4.59) may

not be unique. In that case, one must select those that correspond to a maxima of
ρ 7→µρ− fβ(ρ). This can be made visually transparent by defining a new variable:

x
def= ρ− 1

2 .

(This change of variable symmetrizes the problem using a variable better suited
than ρ. The analysis then reduces to the one done for the Curie–Weiss model, in
Section 2.3.) After rearranging the terms, we are thus looking for the points x ∈[− 1

2 , 1
2

]
that maximize the function

x 7→ϕµ(x)
def= (

µ+ 1
2

)
x − gβ(x) ,

where gβ(x)
def= − 1

2 x2− 1
β s l.g. ( 1

2 +x), and where we have ignored a term that depends
on µ but not on x. The advantage of working with the variable x is that gβ(−x) =
gβ(x). This shows that

µvW
∗

def= − 1
2

is the only value of µ for which ϕµ is symmetric and has two distinct maximizers.
For all other values of µ this maximizer is unique; see Figure 4.16.

xg

ϕµ(x) ϕµ(x) ϕµ(x)

xl

µ<µvW∗ : µ=µvW∗ : µ>µvW∗ :

xβ(µ) xβ(µ)

Figure 4.16: Left and right: the unique maximizer xβ(µ) of ϕµ when µ ̸=µvW∗ .
Middle: The two maximizers xg and xl when µ=µ∗.

When µ increases from µ< µvW
∗ to µ> µvW

∗ , the unique maximizer of x 7→ϕµ(x)

jumps discontinuously from a value xg
def= ρg − 1

2 < 0 to a value xl
def= ρl − 1

2 > 0. We
conclude that ρ 7→ µρ− f vW

β
(ρ) has two distinct maximizers when µ= µvW

∗ : ρg and
ρl = 1−ρg . Moreover,

pvW
β (µvW

∗ ) =µvW
∗ ρg − f vW

β (ρg ) =µvW
∗ ρl − f vW

β (ρl ) . (4.63)
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When µ ̸= µvW
∗ , the maximizer is unique; we continue denoting it by ρvW

β
(µ). Of

course, ρvW
β

(µ) < ρg when µ<µvW
∗ , ρvW

β
(µ) > ρl when µ>µvW

∗ , and

ρg = lim
µ↑µvW∗

ρvW
β (µ) , ρl = lim

µ↓µvW∗
ρvW
β (µ) .

Since we have, for µ ̸=µvW
∗ ,

∂pvW
β

∂µ
= ∂

∂µ

{
µρvW

β (µ)− f vW
β (ρvW

β (µ))
}= ρvW

µ (µ)

and since pvW
β

is convex (being a Legendre transform), Theorem B.12 then gives

∂pvW
β

∂µ−

∣∣∣
µvW∗

= ρg < ρl =
∂pvW

β

∂µ+

∣∣∣
µvW∗

.

Remark 4.25. By Theorem B.20, the lack of differentiability of pvW
β

at µvW
∗ implies

that its Legendre transform is affine on [ρg ,ρl ] and µvW
∗ gives the slope of CE f vW

β
on

[ρg ,ρl ]. Using the second and third terms in (4.63), we get

f vW
β (ρl )− f vW

β (ρg ) =µvW
∗ (ρl −ρg ) =

∂ f vW
β

∂ρ

∣∣∣
ρg

(ρl −ρg ) .

This is clearly seen on the graph of Figure 4.14. ⋄
Let us then complete the description of the pressure in terms of the variables

ρ and v . Since ρvW
β

(µ) behaves discontinuously at µvW
∗ , we define its inverse as we

did earlier (see page 189). For ρ < ρg or ρ > ρl , ρvW
β

(µ) = ρ has an inverse which we

again denote µvW
β

(ρ) and, for those densities, the pressure is obtained as in (4.61).

Then,

µ̃β(ρ)
def=





µvW
β

(ρ) if ρ ∈ (0,ρg ) ,

µvW
∗ if ρ ∈ [ρg ,ρl ] ,

µvW
β

(ρ) if ρ ∈ (ρl ,1) .

As a function of the density, p̃vW
β

(ρ)
def= pβ(µ̃vW

β
(ρ)) then takes the following form (see

Figure 4.17).

p̃vW
β (ρ) =





− 1
2ρ

2 − 1
β log(1−ρ) if ρ ∈ (0,ρg ) ,

pvW
β

(µvW
∗ ) if ρ ∈ [ρg ,ρl ] ,

− 1
2ρ

2 − 1
β log(1−ρ) if ρ ∈ (ρl ,1) .

(4.64)

Remark 4.26. On the gas branch, at any temperature, we can use the Taylor expan-
sion for log(1−ρ), and get

βp̃vW
β (ρ) = ρ+ 1

2 (1−β)ρ2 + 1
3ρ

3 + 1
4ρ

4 +·· ·

The above series, which in fact converges for all complex ρ inside the unit disk, is
called the virial expansion for the pressure. It provides high-order corrections to
the equation of the ideal gas. ⋄
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ρ 1

p̃vW
β

(ρ)

1

p̃vW
β

(ρ)

ρlρg

Figure 4.17: The pressure of the van der Waals model, as a function of the
density. On the left, the regime β≤βvW

c , on the right, β>βvW
c .

Finally, we can express the pressure as a function of the volume per particle,
v = ρ−1. At low temperature, p̂vW

β
(v) presents a striking difference with its high-

temperature counterpart, computed earlier. Namely, at low temperature, the ex-
pression (4.62) has to be replaced by a constant on the coexistence plateau [vl , vg ],

where vl
def= ρ−1

l , vg
def= ρ−1

g . Quite remarkably, this constant is the same as the one
provided by Maxwell’s construction; see Figure 4.18.

1 vl vg

− 1
2v2 − 1

β log(1− 1
v )

v

p̂vW
β

(v)

Figure 4.18: The pressure of the van der Waals model at low temperature, as
a function of the volume per particle v > 1, obtained by applying the equal
area rule (Maxwell construction) to an everywhere smooth function: the two
shaded areas are equal. The coexistence plateau is at a height given by the
saturation pressure pvW

β
(µvW∗ ).

Theorem 4.27 (Maxwell’s Construction). When β>βvW
c ,

p̂vW
β (v) = MC

{
− 1

2v2 − 1

β
log

(
1− 1

v

)}
. (4.65)

Proof. As in (1.24), we must show that

∫ vg

vl

{
− 1

2v2 − 1

β
log

(
1− 1

v

)}
dv = pvW

β (µvW
∗ )(vg − vl ) . (4.66)
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A straightforward integration shows that this integral equals, after rearrangement,

1
2

[
1
v

]vg

vl
− 1

β

[
(v −1)log(v −1)− v log v

]vg

vl
= 1

2

{
1

vg
− 1

vl

}
− 1

β

[
−v s l.g. ( 1

v )
]vg

vl

=− 1
2

vg −vl

vl vg
− 1

β

{
vl s l.g. ( 1

vl
)− vg s l.g. ( 1

vg
)
}

.

We then use the fact that − 1
2 = µvW

∗ , 1
vl vg

= ρlρg = ρg (1−ρg ), s l.g. ( 1
vl

) = s l.g. (ρl ) =
s l.g. (1−ρl ) = s l.g. (ρg ) = s l.g. ( 1

vg
), as well as (4.63), to obtain

∫ vg

vl

{
− 1

2v2 − 1

β
log

(
1− 1

v

)}
dv = (vg − vl )

{
µvW
∗ ρg + 1

2ρ
2
g + 1

β s l.g. (ρg )
}

= (vg − vl )
{
µvW
∗ ρg − fβ(ρg )

}

= (vg − vl )pvW
β (µvW

∗ ) .

1
v

p̂vW
β

(v)

Figure 4.19: The pressure of the van der Waals–Maxwell model as a func-
tion of v > 1. The top four curves represent isotherms for values of β ≤
βvW

c (see (4.62)) and are smooth everywhere; the fourth one is the critical
isotherm. The remaining curves correspond to values β>βvW

c and include a
coexistence plateau due to Maxwell’s Construction. The shaded region rep-
resents the values of the parameters (v, p) located on a coexistence plateau.
These plots were obtained from (4.65).

4.10 Kac interactions and the van der Waals limit

Although Maxwell’s construction was obtained rigorously in the previous section,
it was only proved to occur in a model with non-physical interactions. It therefore
remains to understand whether the van der Waals–Maxwell theory can be given a
precise meaning in the framework of equilibrium statistical mechanics, but starting
from finite-range interactions. This will be done in this section.

Consider a lattice gas in a large vessel, with a fixed density. We have seen how
van der Waals’ main simplifying hypothesis could be realized in a model (the van
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der Waals model), in which a quadratic term ρ2
Λ appears in the Hamiltonian, as a

consequence of the non-local structure of the interaction.

As explained earlier, the local density of a real gas at fixed overall density ρ can
undergo large fluctuations, in particular in the coexistence regime. This makes it
possible to observe the true physical phenomenon of interest: condensation.

Instead of making homogeneity assumptions on the density, we introduce a
class of interactions that allows one to compute the energy in large but finite re-
gions, whatever the density of particles is (in that region). To this end, we will con-
sider some initial pair interaction, given by some functionϕ, and then scale it in an
appropriate way:

Definition 4.28. Let ϕ : Rd → R≥0 be a Riemann-integrable function with compact
support, satisfying ϕ(−x) =ϕ(x) and

∫
ϕ(x)dx = 1. (4.67)

The Kac interaction associated toϕwith scaling parameter γ> 0 is

Kγ(i , j )
def= γdϕ

(
γ( j − i )

)
.

We will mostly be interested in small values of γ,that is, when the interaction of
a particle at i ∈ Zd is essentially the same with all the other particles located in a
neighborhood of i of diameter γ−1. The smaller γ, the more particles interact, but
the less a pair {i , j } contributes to the total energy. In this respect, the interaction
Kγ is similar, at a microscopic scale, to the van der Waals model. Nevertheless,
because ϕ is compactly supported, Kγ always has a finite range of order γ−1. Let
us denote the maximal interaction of a particle with the rest of the system by κγ =∑

j ̸=0 Kγ(0, j ).

Exercise 4.12. Show, using (4.67), that

lim
γ↓0

κγ = 1. (4.68)

A possible choice for ϕ is

ϕ(x)
def=

{
2−d if ∥x∥∞ ≤ 1,

0 if ∥x∥∞ > 1.
(4.69)

The scaling of this function, for some 0 < γ< 1, is depicted in Figure 4.20.
The canonical and grand canonical partition functions associated to HΛ;Kγ will

be denoted QΛ;γ,β,N , respectively ΘΛ;γ,β,µ. The free energy and pressure will be de-
noted fΛ;γ,β(ρ), respectively pΛ;γ,β(µ).

We will consider a two-steps limiting procedure: first, we will take the thermo-
dynamic limit at a fixed positive value of γ (below, Λ ⇑ Zd actually means using
R ∋Λn ⇑Zd ):

fγ,β(ρ) = lim
Λ⇑Zd

fΛ;γ,β(ρ) , pγ,β(µ) = lim
Λ⇑Zd

pΛ;γ,β(µ) .

The existence of these limits is guaranteed by Theorems 4.5 and 4.11. In the second
step, we will let the parameter γ tend to 0.
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x ∈Rd

2−d

γdϕ(γx)

γd 2−d

+1−1

γ−1

ϕ(x)

Figure 4.20: The function ϕ in (4.69)

Definition 4.29. The limit γ ↓ 0 is called the van der Waals limit 2. When they exist,
we denote the limits by

f0+,β(ρ)
def= lim

γ↓0
fγ,β(ρ) , p0+,β(µ)

def= lim
γ↓0

pγ,β(µ) .

Remark 4.30. To summarize, the relevant limiting procedure, in the study of Kac
interactions, is limγ↓0 limΛ⇑Zd {. . . }. Observe that if the limits are taken in the other
order, limΛ⇑Zd limγ↓0{. . . }, this yields the hard-core model of Section 4.7. Indeed, for

all fixed i , j ∈Zd ,
lim
γ↓0

Kγ(i , j ) = 0. (4.70)

Therefore,

lim
Λ⇑Zd

lim
γ↓0

fΛ;γ,β(ρ) = lim
Λ⇑Zd

f hard
Λ;β (ρ) = f hard

β (ρ) =− 1
β s l.g. (ρ) ,

lim
Λ⇑Zd

lim
γ↓0

pΛ;γ,β(µ) = lim
Λ⇑Zd

phard
Λ;β (µ) = phard

β (µ) = 1
β log(1+eβµ) ,

as seen in (4.39) and (4.40)). Therefore, taking the limits in that order does not lead
to interesting phenomena. ⋄

4.10.1 van der Waals limit of the thermodynamic potentials

When γ ↓ 0, Kac interactions become, loosely speaking, infinitely weak and of infi-
nite range. We therefore expect p0+,β and f0+,β to be related to the thermodynamic
potentials of the van der Waals model, in some sense.

Notice also that, since pγ,β and fγ,β are convex, their limits as γ ↓ 0 must also be
convex. Since we know that non-convexity does occur in the van der Waals model
at low temperature, some new feature is to be expected.

Theorem 4.31 (van der Waals limit of Kac interactions). For all β> 0,

f0+,β(ρ) = CE f vW
β (ρ) , ∀ρ ∈ [0,1] , (4.71)

p0+,β(µ) = pvW
β (µ) , ∀µ ∈R . (4.72)

2This limit is also called mean field, Kac or Lebowitz–Penrose limit.
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The most remarkable feature of this result is that the limiting behavior of Kac in-
teractions is described by the van der Waals model, but with a free energy having
the correct convexity property. (We remind the reader that the convex envelope did
not appear naturally in the van der Waals model, but only when considering the
Legendre transform of the pressure in (4.56).) Remember that

f vW
β (ρ) =− 1

2ρ
2 − 1

β s l.g. (ρ) .

The double limiting procedure limγ↓0 limΛ⇑Zd {·} thus leads to two main features.

The first is the appearance of a quadratic term in the free energy, − 1
2ρ

2, without
it having been introduced artificially in the Hamiltonian. Here, as will be seen, it
stems from the interaction of a particle with the rest of the system, which provides
a non-vanishing contribution even in the limit γ ↓ 0. The second new feature is of
course the geometric modification of f vW

β
by the convex envelope. This modifica-

tion is non-trivial at low temperature, since it leads to the appearance of an affine
portion on the graph of the free energy, as seen earlier; see Figure 4.21.

ρlρg
ρ

1 1

f vW
β

(ρ)

f0+,β(ρ)f0+,β(ρ)

Figure 4.21: The van der Waals limit of the free energy; left: β ≤ βvW
c , right:

β>βvW
c .

Proof of (4.71):

Since the temperature plays no role in the proof below, we will usually omit β from
the notations.

As the mechanism of the proof will show, the appearance of the convex enve-
lope in (4.71) is precisely due to the fact that, for finite-range interactions, the sys-
tem is free to let the density of particles vary from place to place.

We thus use an intermediate scale, ℓ ∈ N, which we assume to be large, of the
form ℓ = 2p , but smaller than the scale of the interaction, ℓ≪ γ−1. In the end, we
shall consecutively take the limitsΛ ⇑Zd , then γ ↓ 0 and finally ℓ ↑∞.

By Theorem 4.5, the free energy can be computed using a sequence of cubic
boxes Λ ⇑ Zd whose sidelength is always a multiple of ℓ. We therefore consider a
partition of Zd into cubes Λ(α), α = 1,2, . . . , of sidelength ℓ (see Figure 4.22). For
simplicity, we can assume that Λ(1) always contains the origin, that Λ is a cube of
sidelength ℓ2n , given by the union of M cubes of the partition and centered on the
cubeΛ(1), and denote these cubes byΛ(1), . . . ,Λ(M).

We fix ρ and take N = ⌈ρ|Λ|⌉. The starting point is to consider all possible ar-
rangements of the N particles in the boxesΛ(α), by writing

QΛ;γ,N =
∑

N1,...,NM :
N1+···+NM=N

QΛ;γ,N (N1, . . . , NM ) , (4.73)
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ℓΛ(1)

ℓ

Λ

Figure 4.22: Zd is partitioned into cubes Λ(α), α = 1,2, . . ., of sidelength ℓ.
The box Λ is assumed to be built from boxes of the partition, and centered
on the boxΛ(1).

where QΛ;γ,N (N1, . . . , NM ) denotes the canonical partition function in which the
sum is restricted to configurations in whichΛ(α) contains Nα particles,α= 1, . . . , M .
We then express the Hamiltonian in a way that takes into account the location of
the particles among the boxesΛ(α):

HΛ;Kγ =
∑
α

HΛ(α);Kγ
+

∑
{α,α′}
α̸=α′

Iγ(α,α′) ,

where Iγ(α,α′) represents the interactions between the particles in Λ(α) and those

inΛ(α′):
Iγ(α,α′) =−

∑

i∈Λ(α)

∑

j∈Λ(α′)
Kγ(i , j )ηiη j .

By defining

K γ(α,α′) def= max
i∈Λ(α), j∈Λ(α′)

Kγ(i , j ) ,

K γ(α,α′) def= min
i∈Λ(α), j∈Λ(α′)

Kγ(i , j ) ,

we have
−K γ(α,α′)N

Λ(α) N
Λ(α′) ≤ Iγ(α,α′) ≤−K γ(α,α′)N

Λ(α) N
Λ(α′) . (4.74)

Upper bound. Since fγ(ρ) is convex, its limit as γ ↓ 0 is also convex, and there-
fore continuous (Exercise B.3 and Proposition B.9). (Continuity at 0 and 1 follows
from (4.9), (4.15), (4.16) and (4.19).) It is thus sufficient to prove an upper bound
for (4.71) for densities ρ belonging to a dense subset of (0,1). So, let us fix a dyadic
density, of the form ρ = k

2m , 0 < k < 2m . By construction, when ℓ is large enough,

N∗
def= ⌈ρ|Λ(α)|⌉ = ρ|Λ(α)| for each α. We thus get a lower bound on the partition
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function by keeping only the configurations in which each box Λ(α) contains ex-
actly N∗ particles:

QΛ;γ,N ≥ QΛ;γ,N (N∗, . . . , N∗) . (4.75)

Using (4.74) and performing separately the sums over the configurations of N∗ par-
ticles in each boxΛ(α),

QΛ;γ,N (N∗, . . . , N∗) ≥ {QΛ(1);γ,N∗ }M
∏

{α,α′}
α̸=α′

eβK γ(α,α′)N 2∗

= {QΛ(1);γ,N∗ }M exp
(

1
2βN 2

∗
M∑
α=1

M∑
α′=1

(α′ ̸=α)

K γ(α,α′)
)

.

Now,
M∑
α′=1

(α′ ̸=α)

K γ(α,α′) =
∑
α′≥1

(α′ ̸=α)

K γ(α,α′)−
∑
α′≥1

(Λ(α′) ̸⊂Λ)

K γ(α,α′) . (4.76)

By translation invariance, the first sum on the right-hand side does not depend on
α, which can thus be assumed to be equal to 1. Then, since Kγ has finite range, say
Rγ, the second sum is (finite and) non-zero only if Λ(α) is at distance at most Rγ

from Λc. It thus represents a boundary term, of order (Rγ/ℓ)d |∂exΛ|. Since we take
the thermodynamic limit before the limit γ ↓ 0, we get, after letting Λ ⇑ Zd (along
that specific sequence of cubes),

fγ(ρ) ≤ −1

β|Λ(1)| logQΛ(1);γ,N∗ −
ρ2

2
|Λ(1)|

∑
α′>1

K γ(1,α′) . (4.77)

Exercise 4.13. For all fixed ℓ ∈N,

lim
γ↓0

|Λ(1)|
∑
α′>1

K γ(1,α′) =
∫
ϕ(x)dx = lim

γ↓0
|Λ(1)|

∑
α′>1

K γ(1,α′) . (4.78)

We can now compute the van der Waals limit. By (4.70), limγ↓0 QΛ;γ,N∗ = Qhard
Λ;N∗ and,

since we assumed that
∫
ϕ(x)dx = 1, (4.77) and (4.78) yield

limsup
γ↓0

fγ(ρ) ≤ f hard

Λ(1) (ρ)− 1
2ρ

2 .

Taking ℓ→∞ gives

limsup
γ↓0

fγ(ρ) ≤− 1
2ρ

2 − 1
β s l.g. (ρ) = f vW

β (ρ) .

This bound holds for all dyadic ρ ∈ (0,1). Since fγ(ρ) is convex, limsupγ↓0 fγ(ρ) also
is; in particular, it is continuous. This implies that this last upper bound holds for
all ρ ∈ (0,1), and, using again the convexity of limsupγ↓0 fγ(ρ),

limsup
γ↓0

fγ(ρ) ≤ CE f vW
β (ρ) .
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Lower bound. We start by bounding (4.73) as follows:

QΛ;γ,N ≤N (N ; M) max
N1,...,NM :

N1+···+NM=N

QΛ;γ,N (N1, . . . , NM ) ,

where N (N ; M) is the number of M-tuples (N1, . . . , NM ) with N1 +·· ·+NM = N .

Exercise 4.14. Show that, for all ρ ∈ (0,1),

lim
ℓ→∞

lim
Λ⇑Zd

1

|Λ| logN (⌈ρ|Λ|⌉; M) = 0. (4.79)

Then, using again (4.74),

QΛ;γ,N (N1, . . . , NM ) ≤
{∏
α

QΛ(α);γ,Nα

} ∏
{α,α′}
α̸=α′

eβK γ(α,α′)NαNα′ .

For the first product, we write

QΛ(α);γ,Nα
= exp

(−β fΛ(1);γ( Nα

|Λ(α)| )|Λ
(1)|) .

For the second, we use NαNα′ ≤ 1
2 (N 2

α
+ N 2

α′ ) and the same argument given af-
ter (4.76) to obtain

∏
{α,α′}
α̸=α′

eβK γ(α,α′)NαNα′ ≤ ec|∂exΛ| exp
(

1
2βκγ|Λ(1)|

M∑
α=1

( Nα

|Λ(α)|
)2

)
,

where c depends on γ and ℓ, and

κγ
def= |Λ(1)|

∑
α′>1

K γ(1,α′) .

By Lemma 4.13, κγ→ 1 as γ ↓ 0. If we define gΛ(1),γ(ρ)
def= − 1

2κγρ
2 + fΛ(1);γ(ρ), then

−1

β|Λ| logQΛ;γ,N ≥ −1

β|Λ| logN (N ; M)

+ min
N1,...,NM :

N1+···+NM=N

1

M

M∑
α=1

gΛ(1);γ

( Nα

|Λ(α)|
)− c|∂exΛ|

β|Λ| .

Now, for each M-tuple (N1, . . . , NM ) above,

1

M

M∑
α=1

gΛ(1);γ

( Nα

|Λ(α)|
)≥ 1

M

M∑
α=1

CE gΛ(1);γ

( Nα

|Λ(α)|
)

≥ CE gΛ(1);γ

(
1

M

M∑
α=1

Nα

|Λ(α)|

)
= CE gΛ(1);γ

( N
|Λ|

)
.

For the first inequality, we used that g ≥ CE g , and then that CE g is convex (see
Exercise B.2). Since N

|Λ| → ρ,

fγ(ρ) ≥ liminf
Λ⇑Zd

−1

β|Λ| logN (N ; M)+CE gΛ(1);γ(ρ) .
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By (4.79), the first term on the right-hand side will vanish once we take the limit
ℓ→∞. To take the van der Waals limit in the second term, we first observe that

lim
γ↓0

gΛ(1);γ(ρ) =− 1
2ρ

2 + f hard

Λ(1) (ρ) , (4.80)

uniformly in ρ ∈ (0,1), and rely on the following

Exercise 4.15. Let fn : [a,b] → R be a sequence of functions converging uniformly
to f : [a,b] →R. Then CE fn converges uniformly to CE f .

We therefore get, for all ρ ∈ [a,b] ⊂ [0,1],

liminf
γ↓0

fγ(ρ) ≥ liminf
Λ⇑Zd

−1

β|Λ| logN (N ; M)+CE
{−ρ2

2 + f hard

Λ(1) (ρ)
}

.

We finally take the limit ℓ→∞, which yields

liminf
γ↓0

fγ(ρ) ≥ CE f vW
β (ρ) .

This concludes the proof of (4.71).

Proof of (4.72):

For a fixed µ ∈R, we take γ ↓ 0 on both sides of

pγ,β(µ) = sup
ρ∈[0,1]

{ρµ− fγ,β(ρ)} .

We first show that the right-hand side converges to supρ∈[0,1]{ρµ− f0+,β(ρ)}.

Since they are fixed, let us omit β and µ from the notations. Let Fγ(ρ)
def= ρµ−

fγ(ρ) and F0+ (ρ)
def= limγ↓0 Fγ(ρ) = ρµ− f0+ (ρ). As we already know, F0+ attains its

maximum away from 0 and 1. Therefore we can take δ > 0 small enough so that
supρ F0+ (ρ) = supρ∈K F0+ (ρ), where K = [δ,1−δ]. Observe that, because ρ 7→ F0+ (ρ)
is concave and by our choice of δ, ∂+F0+ (δ) > 0 and ∂−F0+ (1 − δ) < 0; by Theo-
rem B.12, this implies that ∂+Fγ(δ) > 0, ∂−Fγ(1−δ) < 0, for all small enough γ > 0.
Since the family ( fγ)γ>0 is bounded by (4.15)–(4.19), the convergence fγ → f0+ is
uniform on K (Lemma B.10). This implies

lim
γ↓0

sup
ρ∈K

Fγ(ρ) = sup
ρ∈K

F0+ (ρ) ,

which implies what we wanted. Therefore, in terms of the Legendre transform (·)∗,
we have obtained p0+ = ( f0+ )∗ = (CE f vW )∗. But, by Corollary B.18, (CE f vW )∗ =
( f vW )∗ = pvW .

4.11 Bibliographical references

Lattice models of gases have been studied since the early stages of statistical me-
chanics; Boltzmann, in particular, already considered similar approximations as a
computational device. See the book of Gallavotti [130] and references therein.
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Thermodynamic potentials and equivalence of ensembles. The construction of
the thermodynamic potentials and the derivation of their general convexity prop-
erties are classical and can be found in several sources. A very general approach
can be found in the important work of Lanford [205]. A classical reference for the
existence of the pressure is the book of Ruelle [289]. See also, the more recent book
of Presutti [279], in which the equivalence of ensembles is proved at the level of
thermodynamic potentials. More on the equivalence of ensembles at the level of
measures can be found in Section 6.14.1.

Van der Waals lattice gas. The van der Waals model studied in Section 4.9 in-
corporates the main assumptions made by van der Waals [339] about the interac-
tions of a gas of particles, which we had already discussed in Chapter 1. As already
mentioned in Chapter 2, the Curie–Weiss version of the van der Waals lattice gas
model was introduced independently by many people, including Temperley [328],
Husimi [167] and Kac [183]. Our treatment of its pressure, as a function of the vari-
ables ρ and v , was taken from Dorlas’ book [90].

Ising lattice gas. The mapping between the Ising model and the lattice gas ap-
peared first explicitly in [220].

Kac limit. The first justification of Maxwell’s construction based on the van der
Waals limit was given by Kac, Uhlenbeck and Hemmer [184] for a one-dimension-
al gas of hard rods. The result was then substantially generalized by Lebowitz and
Penrose [215]; our proof of Theorem 4.31 follows essentially theirs. A general ref-
erence covering much more material on systems with Kac interactions is Presutti’s
book [279]. More bibliographical references on Kac interactions will be given in the
complements.

4.12 Complements and further reading

4.12.1 The phase separation phenomenon

In the current chapter, we have provided a satisfactory description of the conden-
sation phenomenon in terms of the thermodynamic potentials, but we have not
discussed what really happens during condensation, as observed in typical config-
urations. In this section, we provide a brief description of what can be said about
this problem from a mathematical point of view. To keep the discussion as sim-
ple as possible, only the nearest-neighbor lattice gas will be considered, although
much of what follows can be extended to general finite-range ferromagnetic inter-
actions. Detailed information and more references can be found in the review [28].

Consider the nearest-neighbor lattice gas in B(n) ⊂ Zd , d ≥ 2. We have seen in
Theorem 4.15 that, in the grand canonical ensemble with µ=µ∗, the typical values
of the density lie in the interval [ρg ,ρl ], on which the rate function Iβ,µ vanishes. In
particular, this result does not allow us to discriminate between the various possi-
ble values of the density in this interval. There is a reason for that: in this regime,
the average density in the box is in fact very sensitive to the boundary condition
and thus cannot be derived using only the thermodynamic limit of the pressure
and of the free energy.
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Similarly, in the canonical ensemble with ρ ∈ [ρg ,ρl ], the lack of strict convex-
ity of the free energy prevents us from using Theorem 4.19 to determine the typical
values of the local density in various subsets of the box Λ = B(n) for such values
of ρ. As we will see, in this regime, typical values of the local density are still given
by ρg and ρl . However, on a macroscopic scale, typical configurations are not ho-
mogeneous anymore, but exhibit phase coexistence. Namely, in order to satisfy the
constraint that the overall density in Λ is ρ, the system reacts by spatially segregat-
ing the gas and liquid phases: for example, if the boundary condition favors the gas
phase, there is spontaneous creation of a droplet of liquid phase surrounded by the
gas phase, as depicted in Figure 4.23.

Figure 4.23: A typical configuration of the nearest-neighbor lattice gas in a
box of size 500×500 in the canonical ensemble at inverse temperature β= 2
(with a boundary condition favoring the gas phase). The simulation was
made by fixing the density to the value ρ = 1

2 ∈ (ρg ,ρl ). Clearly, spatial ho-
mogeneity in the sense of (4.34) is no longer true; phase separation occurs. In
a typical configuration, a macroscopic liquid droplet of density ρl appears,
immersed in a gas phase of density ρg . This droplet’s shape is described,
asymptotically, by a Wulff crystal (see below).

In the thermodynamic limit, the droplet’s macroscopic shape becomes deter-
ministic, with microscopic fluctuations. Namely, let us denote by V ⊂Λ the droplet.
The following occurs with a probability tending to 1 asΛ ↑Zd :

1. Up to microscopic corrections, its volume is given by |V | = ρ−ρg

ρl−ρg
|Λ|. In this

way, the average density inΛ is indeed ρ, since

ρl |V |+ρg (|Λ|− |V |) ≃ ρ|Λ| .

2. The shape of the droplet converges to a deterministic shape characterized as
a minimizer of a surface functional involving the surface free energy, to be
defined below.
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These two statements will be given a more precise form in Theorem 4.33 below.
We will see that the macroscopic geometry of the regions occupied by the gas and
liquid phases depends strongly on the boundary condition and thus, again, cannot
be deduced using only the thermodynamic limit of the pressure and of the free
energy. In order to go further, we need to go beyond such bulk quantities, and
consider corrections coming from surface effects.

Surface corrections to the pressure

In order to discuss corrections to the pressure, we need to consider non-trivial
boundary conditions. Similarly to what we did in Chapter 3, we consider the Hamil-
tonian

HΛ;µ∗ (η)
def= −

∑

{i , j }∈E b
Λ

ηiη j −µ∗
∑
i∈Λ

ηi ,

defined on infinite configurations η ∈Ω def= {0,1}Z
d

. Let

Ω1
Λ

def= {
η ∈Ω : ηi = 1 for all i ̸∈Λ}

, Ω0
Λ

def= {
η ∈Ω : ηi = 0 for all i ̸∈Λ}

.

We denote by ν1
Λ;β,µ∗ and ν0

Λ;β,µ∗ the corresponding Gibbs distributions inΛ:

ν1
Λ;β,µ∗ (η)

def= e−βHΛ;µ∗ (η)

Θ1
Λ;β,µ∗

1{η∈Ω1
Λ

} , ν0
Λ;β,µ∗ (η)

def= e−βHΛ;µ∗ (η)

Θ0
Λ;β,µ∗

1{η∈Ω0
Λ

} ,

whereΘ1
Λ;β,µ∗

andΘ0
Λ;β,µ∗

are the associated partition functions.

Using the mapping between the lattice gas and the Ising model, it is easy to
check that these two probability measures correspond exactly to the Gibbs distri-
bution of the Ising model, at inverse temperatureβ/4 and with magnetic field h = 0,
inΛwith +, respectively −, boundary condition. It thus follows from the analysis in
Chapter 3 that, when β > β

l.g.
c , typical configurations under ν1

Λ;β,µ∗ have a (homo-

geneous) density larger than 1/2, while typical configurations under ν0
Λ;β,µ∗ have

a (homogeneous) density smaller than 1/2. They thus describe, respectively, the
liquid and gas phases.

Let us now turn to the corresponding finite-volume pressures:

p1
Λ;β

def= 1

β|Λ| logΘ1
Λ;β,µ∗ , p0

Λ;β
def= 1

β|Λ| logΘ0
Λ;β,µ∗ .

(For simplicity, we do not indicate µ∗ in the notations for the pressures.) As usual,
since the boundary condition plays no role in the definition of the thermodynamic
pressure, p1

Λ;β and p0
Λ;β both converge to pβ in the thermodynamic limit, which

implies in particular that

p1
Λ;β|Λ| = pβ|Λ|+o(|Λ|) ,

and similarly for p0
Λ;β. In fact, it follows from the proof of Theorem 3.6 that the error

o(|Λ|) is in fact a boundary term, that is, it is O(|∂inΛ|). It should thus not come as
a surprise that this error term depends in general on the choice of the boundary
condition. We therefore expect a more accurate description of the following type:

p1
Λ;β|Λ| = pβ|Λ|−τ1

β|∂inΛ|+o(|∂inΛ|) ,

p0
Λ;β|Λ| = pβ|Λ|−τ0

β|∂inΛ|+o(|∂inΛ|) .
(4.81)



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

4.12. Complements and further reading 209

Here, −τ1
β

(resp. −τ0
β

) should be interpreted as the contribution per unit of area to

p1
Λ;β|Λ| (resp. p0

Λ;β|Λ|), resulting from the interaction between the phase contained

insideΛ and the boundary of the box. (The negative signs are introduced to respect
the conventions, making τ1

β
and τ0

β
non-negative.)

Surface tension. Up to now, we have only considered the correction to the pres-
sure in cases in which the boundary condition typically induces homogeneous con-
figurations inside the box. We now consider what happens when the boundary
condition induces the presence of a macroscopic interface. The surface tension
measures the free energy (per unit of area) associated to an interface. It is given
by a function τβ(·) defined on

{
n ∈Rd : ∥n∥2 = 1

}
, where n represents the direction

perpendicular to the interface.

In order to induce the presence of a macroscopic interface, we proceed as in
Section 3.10.7. Let us fix a direction n ∈Rd and define, for each i ∈Zd ,

ηn
i

def=
{

0 if i ·n ≥ 0,

1 otherwise,

where i ·n denotes the scalar product on Rd . This boundary condition is illustrated
in Figure 4.24; it is a natural generalization of Dobrushin’s boundary condition,
which was introduced in Section 3.10.7. As explained there, the boundary con-
dition ηn leads to the presence of an interface, separating the lower part of the box
(filled with liquid) from its upper half (filled with gas).

n

∂inΛ+

Πn(Λ)

∂inΛ−

Figure 4.24: A picture representing the construction of the surface tension
τβ(n), by fixing a boundary condition in which all cells below (resp. above)
the plane {x ·n = 0} are occupied by particles (resp. vacant).

Let us now extract the contribution to the pressure pn
Λ;β due to this interface.

Let Πn(Λ)
def= {

x ∈ [−n,n]d : x ·n = 0
}

be the intersection of the hyperplane or-
thogonal to n with the box (seen as a subset of Rd ). In the discussion below, we
assume that n has its last coordinate positive. This will allow to refer to the parts of
Λ located above and below Πn(Λ).
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Figure 4.25: The surface tension of the two-dimensional nearest-neighbor
lattice gas (as a function of the direction) for β = 2.0, 4.0, 8.0 and 16.0 (the
scale differs for each value of β).

With the boundary condition ηn, two contributions to the pressure should
come from ∂inΛ: one coming from the contact of the liquid with the lower part of
the boundary of the box (below Πn(Λ)), denoted −τ1

β
|∂inΛ−|, and the other coming

from the contact of the gas with the upper part of the boundary of the box (above
Πn(Λ)), denoted −τ0

β
|∂inΛ+|.

Finally, the third contribution to the pressure should come from the interface
that crosses the box, whose existence is forced by the choice of the boundary con-
dition; it should depend on n and be proportional to |Πn(Λ)| (that is, the area of
Πn(Λ)). The decomposition of the pressure into its volume and surface contribu-
tions should therefore be

pn
Λ;β|Λ| = pβ|Λ|−τ0

β|∂inΛ+|−τ1
β|∂inΛ−|−τβ(n)|Πn(Λ)|+o(|∂inΛ|) . (4.82)

Using (4.82), (4.81) and the fact that |∂inΛ| = 2|∂inΛ±|, we get

τβ(n)|Πn(Λ)| = −pn
Λ;β|Λ|+ 1

2 (p0
Λ;β+p1

Λ;β)|Λ|+o(|∂inΛ|)

=− 1

β
log

Θn
Λ;β,µ∗(

Θ0
Λ;β,µ∗

Θ1
Λ;β,µ∗

)1/2
+o(|∂inΛ|) .

This then leads to the following natural definition.

Definition 4.32. Let n be a unit vector in Rd . The surface tension per unit area,
orthogonally to the direction n, is defined by

τβ(n)
def= − lim

k→∞
1

β|Πn(B(k))| log
Θn
B(k);β,µ∗(

Θ0
B(k);β,µ∗

Θ1
B(k);β,µ∗

)1/2
.

The existence of the above limit can be proved using a subadditivity argument. We
refer to [244] for a proof in a more general setup.

The surface tension has a number of important properties, the main one, for
our purposes, being the following: for all n,

τβ(n) > 0 if and only if β>βl.g.
c . (4.83)

The proof can be found in [53] and [217]. More information on the surface tension
can be found in the review [271].
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Equilibrium crystal shapes

We can then define a functional on subsets V ⊂ Rd with a smooth boundary (suf-
ficiently smooth, say, to have a well defined exterior unit normal nx at almost all
x ∈ ∂V):

W (V)
def=

∫

∂V
τβ(nx )dSx ,

where dSx represents the infinitesimal surface element of ∂V at x.

We can now get back to the problem of describing the droplet mentioned at
the beginning of the section. Let therefore Λ = B(n) with n large. Below, we also
identifyΛwith the subset of Rd given as the union of all closed unit cubes centered
at the vertices ofΛ.

Consider then the following variational problem 3:

Minimize W (V) among all V⊂Λwhose volume equals |V| = ρ−ρg

ρl−ρg
|Λ|.

It can be shown that, up to translations, the solution to this problem is unique; we
denote it by V∗ = V∗(β,ρ). As a matter of fact, it can be given explicitly. Consider
the Wulff shape or equilibrium crystal shape associated to τβ(·), defined by (see
Figure 4.26)

v∗ = v∗(β)
def= {

x ∈Rd : x ·n ≤ τβ(n) for every unit vector n ∈Rd }
.

A solution to the variational problem is then given by an appropriate dilation of v∗
(together with translations), provided that it is not too large to fit insideΛ:

V∗ = ρ−ρg

ρl −ρg
|Λ| v∗|v∗|

.

In the general case, the solution is also obtained starting from v∗, but with some
modifications; see [28].

Figure 4.26: The equilibrium crystal shape for the two-dimensional Ising lat-
tice gas at β= 2.0, 4.0, 8.0 and 16.0 (with the same fixed area).

Let us now state the result that characterizes the separation of phases. To keep
things simple, and because the most precise results have been obtained in this con-
text, we only discuss the two-dimensional case.

It will be convenient to describe the configurations using the Peierls contours
introduced in section 3.7.2; in the lattice gas language, the latter separate empty
vertices from those containing a particle.

Let us state a precise result, choosing a specific boundary condition:

3For this to make full sense, we should impose some regularity on the class of sets V involved, but
we will abstain from discussing these issues here and refer to [28] for more information.
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Theorem 4.33. Consider the two-dimensional nearest-neighbor lattice gas in the
box Λ=B(n) with 0-boundary condition. Assume that β>βl.g.

c , fix some ρ ∈ (ρg ,ρl )
and set N = ⌊ρ|Λ|⌋. Then,

lim
n→∞ν

0
Λ;β,N (D) = 1,

where D is the event defined as follows. There exist constants c1,c2, depending only
on β, such that

• all contours, except one which we denote by γ0, have diameter at most c1 logn;

• the contour γ0 has macroscopic size; it is closely approximated by a translate
of V∗:

min
x∈[−1,1]2

n−1dH
(
γ0, x +∂V∗

)≤ c2n−1/4(logn)1/2 ,

where dH(A;B) denotes the Hausdorff distance between A and B.

It can also be shown that the local density is given by ρg outside γ0 and by ρl inside.
Together with the analysis of the thermodynamic potentials developed earlier

in this chapter, this theory provides a satisfactory description of the condensation
phenomenon at equilibrium.

The first result on phase separation is due to Minlos and Sinai [248], who
showed that, at very low temperature, a unique large contour appears in Λ, whose
shape is close to a square. (Their result actually holds in all d ≥ 2.) For the two-
dimensional model, the proper understanding of the role played by the surface ten-
sion, and the description of the scaling limit of this contour as the Wulff shape was
first achieved by Dobrushin, Kotecký and Shlosman [79]. A different proof was then
obtained by Pfister [270]. Building on the latter work, Ioffe managed to extend the
proof to all β> βc(2) [170, 171]; the version stated above is due to Ioffe and Schon-
mann [173]. Extension to the Ising model in higher dimensions have been obtained
by Bodineau [26] (at sufficiently low temperatures) and Cerf and Pisztora [64] (for
all β> βc(d)). A detailed analysis of the effect of boundary conditions on the equi-
librium crystal shape is given in [272, 29]. Further relevant references and historical
notes can be found in the review paper [28]. Similar results have been obtained for
models with Kac interactions; see, for example, [18].

4.12.2 Kac interactions when γ is small but fixed

We saw in Theorem 4.31 that, at low temperature, the limiting free energy and pres-
sure obtained via the van der Waals limit exhibit the characteristic features of a
first-order phase transition. Let us make a few comments concerning what hap-
pens when studying these thermodynamic potentials when γ> 0 is small but fixed,
not necessarily tending to 0.

First of all, observe that regardless of the dimension of the system, the functions
obtained in the van der Waals limit are all given by some transformation of the
same function f vW

β
(ρ), that is, in the van der Waals limit γ ↓ 0, the system loses its

dependence on the dimension. This leads us to an important remark.
Namely, when d = 1, since γ> 0 corresponds to a potential with finite range in-

teractions, the associated pressure µ 7→ pγ,β(µ) is differentiable at all temperatures,
as will be seen in Exercise 6.34 (in fact, it is even analytic [289, Theorem 5.6.2]).
Therefore, by Theorem B.20, ρ 7→ fγ,β(ρ) is always strictly convex when β>βvW

c , for
all γ> 0, and only becomes affine on the coexistence plateau in the limit γ ↓ 0. This
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is of course not in contradiction with Theorem 4.31, since a convex but non-strictly
convex function can be uniformly approximated arbitrarily well by a strictly convex
function. Therefore when β > βvW

c , when d = 1, the functions obtained in the van
der Waals limit, f0+,β(ρ) and p0+,β(µ), present non-analytic behaviors that are not
representative of what happens when γ> 0, however small γ might be.

When d ≥ 2, the situation is different, since we know that the Ising model ex-
hibits a phase transition at sufficiently low temperature. One is thus naturally led
to ask about the behavior of fγ,β and pγ,β for small but fixed values of γ > 0. This
problem is not trivial since the interactions between two particles at fixed vertices
(for example nearest neighbors) becomes small when γ is small.

The next theorem answers this question; it follows from the original works of
Cassandro and Presutti [62] and Bovier and Zahradník [39], who introduced a con-
venient notion of contours for the Ising ferromagnet with Kac interactions.

Theorem 4.34. (d ≥ 2) Let β>βvW
c . There exists γ0 = γ0(β) > 0 such that, for all 0 <

γ < γ0, pγ,β(µ) is non-differentiable at µ∗,γ
def= −κγ/2 and, as a consequence, fγ,β(ρ)

is affine on [ρg ,γ,ρl ,γ], where

ρg ,γ =
∂pγ,β

∂µ−
∣∣
µ∗,γ

<
∂pγ,β

∂µ+
∣∣
µ∗,γ

= ρl ,γ .

Moreover, as γ ↓ 0, ρg ,γ→ ρg and ρl ,γ→ ρl , where ρg and ρl are the endpoints of the
coexistence plateau of van der Waals’ model.

Models with Kac interactions at small values of γ can be considered as perturba-
tions of the mean-field behavior observed in the limit γ ↓ 0. This allows for in-
stance to compare the expectation of local observables with their mean-field coun-
terparts, and extract useful information to study the model. This method was used
by Lebowitz, Mazel and Presutti in [214] to provide one of the very few rigorous
proofs of occurrence of a phase transition in the continuum.

For a much more detailed description of systems with Kac interactions, we refer
the reader to the book of Presutti [279]. More comments on the case γ> 0 are made
in the next section.

4.12.3 Condensation, metastability and the analytic structure of the isotherms

As we already said, from its very beginning, one of the central issues of statistical
mechanics was to provide an explanation to the phase transitions observed in gases
and liquids. In particular, the condensation phenomenon was used as a test to
decide whether the theory of Boltzmann and Gibbs provided a sufficient structure
on which phase transitions could be firmly understood. It was not even clear, at
that time, whether a detailed study of the partition function could lead to a single
function describing two distinct states, gas and liquid, or whether some additional
hypotheses had to be made in order to allow for their coexistence.

The results obtained in this chapter, in particular those concerning the con-
densation phenomenon at low temperature, provide a satisfactory answer. Since
condensation has been, historically, one of the cornerstones in the development
of statistical mechanics, we will end this chapter with some comments regarding
some of the first attempts made at describing condensation rigorously.
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Mayer’s conjecture. The first notable attempt at obtaining a theoretical explana-
tion of the condensation phenomenon, starting only from the partition function,
was initiated by Mayer in the 1930s. In a series of papers with several coauthors,
Mayer developed a theory to study the pressure of a model of particles in the con-
tinuum with pairwise interactions. Although not completely rigorous, his theory
also firmly established the basis of the method invented by Ursell [337], known
nowadays as the cluster expansion (see Chapter 5). We will not enter into too much
detail, but rather sketch the argument he proposed for the mathematical descrip-
tion of condensation.

In [236], Mayer provided an expression for the coefficients an of the expansion

of the pressure as a function of the fugacity z
def= eβµ:

βpβ(µ) = a1z +a2z2 +a3z3 + . . . . (4.84)

Mayer’s argument then proceeded as follows. The series should converge at least
for small values of z, which corresponds to large negative values of µ, that is, to a
dilute phase. But if the series converges when 0 ≤ z < r0, and z is allowed to take
complex values, then it defines a function, analytic in the disc {z ∈C : |z| < r0}.

With a function describing the gas phase for small values of z at hand, Mayer
associated the condensation phenomenon to the first singularity encountered when
continuing the pressure analytically along the real axis, from small to large values
of z. Let us assume that one such singularity is indeed encountered and denote
it by zs ; see Figure 4.27. This way of defining the condensation point (the same
characterization can be used when using other variables, like ρ or v) would later be
referred to as Mayer’s conjecture.

r0

Imz

Rez
zs

Figure 4.27: The determination of the condensation point according to
Mayer: find the first singularity of the function defined by the series a1z +
a2z2 +a3z3 + . . ., encountered along the positive real axis.

At that time, the question of whether Mayer’s method could really describe the
condensation phenomenon was debated (see [36]). One reason for that was that
Mayer obtained (4.84) under several radical assumptions, one of them being that
the particles of the system are sufficiently far apart, which is equivalent to assuming
that the system is in a dilute (gas) phase. Therefore the equation of state given
by the series had no reason a priori to be able to describe at the same time the
dense (liquid) phase. This indicates that, in order for the full equation of state to be
given, some other argument should be used to yield a second function describing
the dense phase (large values of z). The two functions should then be combined,
possibly using a thermodynamical argument similar to the Maxwell construction,
in order for equilibrium to be described.
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But another question was raised. If a singularity zs is indeed found on the pos-
itive real axis, closest to the origin, does it necessarily describe the true conden-
sation point? Here, van der Waals and Maxwell’s theory provides the immediate
counter-example showing that condensation is not necessarily related to a singu-
larity. Namely, consider the pressure of the van der Waals model at low tempera-
ture, computed in Section 4.9.2. On the gas branch, ρ ∈ (0,ρg ), we obtained

p̃vW
β (ρ) =− 1

2ρ
2 − 1

β log(1−ρ) ,

and Taylor expanded log(1−ρ) (Remark 4.26) to obtain the virial expansion

βp̃vW
β (ρ) = ρ+ 1

2 (1−β)ρ2 + 1
3ρ

3 + 1
4ρ

4 +·· ·
The radius of convergence of the latter series is equal to 1: it defines an analytic
function on the unit disk

{
ρ ∈C : |ρ| < 1

}
and, as ρ increases from ρ = 0, the first

singularity along the positive real axis is encountered at ρ = 1, not at ρ = ρg < 1.
This shows that, for this model, Mayer’s way of determining the condensation point
fails: the absence of a complex singularity at ρg makes it impossible to determine
the position of the condensation point only from the knowledge of the values of the
pressure on the gas branch.

Since the van der Waals–Maxwell theory remained of central importance at the
time, theoretical physicists had good reasons to believe that its way of describing
isotherms, by patching different branches together, was generic and should be a
consequence of the first principles of statistical mechanics. It was therefore taken
for granted at that time in the physics community that analytic continuations such
as the one observed in van der Waals’ theory were always possible. They were actu-
ally even given some importance, due to their relation to another important physi-
cal phenomenon.

Metastable states. Consider the isotherm of Figure 1.5. What is the significance of
the part of van der Waals’ isotherm p(v) that is left out after Maxwell’s construction,
that is for v ∈ [vl , vg ]?

From a mathematical point of view, p(v) provides of course the unique analytic
continuation from one of the branches of MC p(v) to the other, along the paths
v ↑ vl and v ↓ vg . From an experimental point of view, an interesting observation
can be made, which we have not described yet. Namely, if the experiment is done
with care, it is actually possible to slowly drive a real gas along the path v ↓ vg ,
across vg , without it starting to condense. The state obtained has a pressure which
is larger than the saturation pressure, and is called a super-saturated vapor. It is
not an equilibrium state, but what is called a metastable gas state. Such a state can
have a very long lifetime, but a sufficiently strong external perturbation abruptly
drives the system away from it, resulting in a mixture of equilibrium gas and liquid
phases at the saturation pressure. Similarly, it is possible to observe a metastable
liquid phase, the so-called superheated liquid, by slowly increasing v beyond vl

starting from the liquid phase.
Since metastable states are observed in the laboratory but are not equilibrium

states in the sense of statistical mechanics, theoretical physicists considered ana-
lytic continuation as a way of at least defining their pressure [206].

Moving back to the case considered earlier, the analytic continuation of p̃β(ρ)
through ρg coming from the gas branch, as represented by the dotted line below,
would therefore provide the pressure of a supersaturated vapor:



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

216 Chapter 4. Liquid-Vapor Equilibrium

ρg

p̃β(ρ)

Singularity and the droplet mechanism. However, the true analytic structure of
isotherms would later prove to be very different. In the 1960–1970s, an argument
of a completely different nature suggested that the branches of an isotherm were
separated by singularities preventing an analytic continuation. The argument was
based on the use of the droplet model, whose pressure mimics the pressure of a sin-
gle droplet of fluid immersed in a gas. This model was introduced for the first time
by Andreev [11] and studied more systematically by Fisher [106] (see Exercise 4.16
below).

The striking feature suggested by this toy model was that the actual condensa-
tion phenomenon, namely the appearance of large stable droplets of liquid, was
responsible for the presence of a singularity of the pressure at the condensation
point.

These predictions were confirmed rigorously in the celebrated work [174] of
Isakov, which we already mentioned in Section 3.10.9, Theorem 3.67. Isakov im-
plemented rigorously the mechanism suggested by Andreev and Fisher, by giving a
detailed study of the large contours (representing droplets) in the low-temperature
Ising model (d ≥ 2), as a function of the magnetic field. In essence, he showed that
the coexistence of both phases, at h = 0, was responsible for the peculiar behavior
of the derivatives of the pressure seen in (3.99).

When translated into the nearest-neighbor lattice gas language, Isakov’s anal-
ysis implies that, when β is sufficiently large, all the thermodynamic potentials
considered in Section 4.8 have singularities blocking analytic continuation at their
transition points. For instance pβ, which is analytic on the branches (−∞,µ∗) and
(µ∗,∞) by Theorem 4.22, has a singularity at µ∗ that forbids analytic continuations
along the paths µ ↑ µ∗ and µ ↓ µ∗. This can be shown to also prevent the existence
of analytic continuations of fβ and p̃β along ρ ↑ ρg or ρ ↓ ρl , or of p̂β along v ↑ vl or
v ↓ vg (see [112]).

These results strongly support Mayer’s conjecture, at least for discrete spin sys-
tems with finite-range interactions: the condensation point can in principle be de-
tected by studying a single branch up to its first singularity. They also definitely rule
out the possibility of studying metastability by means of analytic continuation (see
the bibliographical references given below).

Moreover, Isakov’s result indicates that the global structure of the isotherms in
“real” systems is more complex since the branches of the isotherms are represented
by functions that cannot be united into one single analytic function. In particular,
the pressure of a model with short range interactions is not obtained by applying
some Maxwell-type construction to a smooth function. This sharp contrast with the
van der Waals model comes from the fact that separation of phases (as briefly de-
scribed in Section 4.12.1) occurs in systems with finite-range interactions, but not
in mean-field models.

We mention further bibliographical references related to the topics discussed
above. Interesting papers related to Mayer’s conjecture include the papers of Kahn
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and Uhlenbeck [185], and Born and Fuchs [36]. In [204], Lanford and Ruelle ruled
out the possibility of analytic continuation of the pressure, using an argument in-
volving the variational principle for Gibbs states (this variational problem will be
described later in Chapter 6).

Prior to the work of Isakov, various attempts had been made at describing meta-
stability via analytic continuation for several toy models. These include papers of
Schulman and coauthors [253, 281, 280].

In [114], the analysis of Isakov was generalized to the class of two-phase mod-
els with finite-range interactions considered in Pirogov–Sinai Theory (Chapter 7).
The link between the absence of analytic continuation for finite-range models and
the mean-field behavior of the van der Waals model was clarified in [113], where
a Kać potential with a magnetic field was considered, and the disappearance of its
singularity in the van der Waals limit was analyzed in detail.

Additional information on the non-analytic aspects of thermodynamic poten-
tials at first-order phase transitions can be found in the review of Pfister [275] or
in [112].

It is widely accepted, nowadays, that metastability is a dynamical phenomenon
that does not enter the framework of equilibrium statistical mechanics. An impor-
tant contribution to the understanding of metastability from such a point of view
can be found in [297]. A modern presentation of metastability, from the point of
view of stochastic dynamics, can be found in the books by Olivieri and Vares [258]
and Bovier and den Hollander [38].

Exercise 4.16. Consider, for d ≥ 2,

ψβ(h)
def=

∑
n≥1

e−β2dn(d−1)/d
e−hn ,

which is a version of the droplet toy model considered by Fisher [106], formulated in
the spin language. (The sum is to be interpreted as the pressure of a cubic droplet of −
spins immersed in a sea of + spins, centered at the origin; if the droplet has volume
n, −β2dn(d−1)/d represents its surface energy, and −hn the energy due to the effect of

the magnetic field on its volume.) Verify that ψβ is analytic in H+ def= {Reh > 0}. Then,
show that ψβ has no analytic continuation across h = 0 (along h ↓ 0), by computing
the limits

lim
h↓0

dkψβ

dhk

∣∣∣
h

and showing that they have the same behavior as the one described in (3.99).
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