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In this appendix, the reader can find a number of basic definitions and results
concerning some of the mathematical tools that are used throughout the book.
Given their wide range, it is not possible to discuss these tools in a self-contained
manner in this appendix. Nevertheless, we believe that gathering a coherent set of
notions and notations could be useful to the reader.

Although most of the proofs can be found in the literature (we provide refer-
ences for most of them), often in a much more general form, we have occasionally
provided explicit elementary derivations tailored for the particular use made in the
book. The results are not always stated in their most general form, in order to avoid
introducing too many concepts and notations.

Since the elementary notions borrowed from topology are used only in the case
of metric spaces and are always presented and developed from scratch, they are
not exposed in a systematic way.

477



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

478 Appendix B. Mathematical Appendices

B.1 Real analysis

B.1.1 Elementary Inequalities

Lemma B.1 (Comparing arithmetic and geometric means). For any collection
x1, . . . , xn of nonnegative real numbers,

1

n

n∑
i=1

xi ≥
{ n∏

i=1
xi

}1/n
, (B.1)

with equality if and only if x1 = x2 = ·· · = xn .

Lemma B.2 (Hölder’s inequality, finite form). For all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn

and all p, q > 1 such that 1
p + 1

q = 1,

n∑
k=1

|xk yk | ≤
( n∑

k=1
|xk |p

)1/p( n∑
k=1

|xk |q
)1/q

.

Lemma B.3 (Stirling’s Formula). For all n ≥ 1,

e
1

12n+1
p

2πnnne−n ≤ n! ≤ e
1

12n
p

2πnnne−n . (B.2)

A proof of this version of Stirling’s Formula can be found in [285].

B.1.2 Double sequences

We say that a double sequence (am,n)m,n≥1 is nondecreasing if

m ≤ m′,n ≤ n′ =⇒ am,n ≤ am′,n′ ,

and nonincreasing if (−am,n)m,n≥1 is nondecreasing. It is bounded above (resp.
below) if there exists C <∞ such that am,n ≤C (resp. am,n ≥−C ), for all m,n ≥ 1.

Lemma B.4. Let (am,n)m,n≥1 be a nondecreasing double sequence bounded above.
Then,

lim
m→∞ lim

n→∞am,n = lim
n→∞ lim

m→∞am,n = lim
m,n→∞am,n = sup

{
am,n : m,n ≥ 1

}
. (B.3)

Proof. (am,n)m,n≥1 being bounded, s
def= supm,n am,n is finite. Let ϵ > 0, and take

m0,n0 such that am0,n0 ≥ s −ϵ. (am,n) being nondecreasing, we deduce that

s ≥ am,n ≥ s −ϵ, ∀m ≥ m0,n ≥ n0.

Consequently, limm,n→∞ am,n = s. For all fixed m ≥ 1, the sequence (am,n)n≥1 is
nondecreasing and bounded, and thus converges to some limit sm . For a fixed ϵ> 0,
let m1,n1 be such that

|am,n − s| ≤ ϵ
2 , ∀m ≥ m1,n ≥ n1.

For fixed m, we can also find n2(m) such that

|am,n − sm | ≤ ϵ
2 , ∀n ≥ n2(m).

Consequently,
|sm − s| ≤ ϵ, ∀m ≥ m1,

which implies that limm→∞ sm = s. We have thus proved (B.3).
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B.1.3 Subadditive sequences

A sequence (an)n≥1 ⊂R is called subadditive if

an+m ≤ an +am ∀m,n .

Lemma B.5. If (an)n≥1 is subadditive, then

lim
n→∞

an

n
= inf

n

an

n
.

Proof. Let α
def= infn

an
n , and fix α′ > α. Let ℓ be such that aℓ

ℓ ≤ α′. For all n, there
exists k and 0 ≤ j < ℓ such that n = kℓ+ j . We can then use the definition of α, and
k times the subadditivity of an to write

αn ≤ an = akℓ+ j ≤ kaℓ+a j .

Dividing by n,

α≤ liminf
n→∞

an

n
≤ limsup

n→∞
an

n
≤ aℓ

ℓ
≤α′ .

The desired result follows by letting α′ ↓α.

On the lattice Zd , a similar property holds. Let us denote by R the set of all
parallelepipeds of Zd , that is sets of the form Λ= [a1,b1]× [a2,b2]×·· ·× [ad ,bd ]∩
Zd . A set function a : R →R is subadditive if R1,R2 ∈R, R1 ∪R2 ∈R implies

a(R1 ∪R2) ≤ a(R1)+a(R2) .

Let, as usual, B(n) = {−n, . . . ,n}d .

Lemma B.6. Let a : R →R be subadditive and such that a(Λ+i ) = a(Λ) for allΛ ∈R
and all i ∈Zd . Then

lim
n→∞

a(B(n))

|B(n)| = inf
Λ∈R

a(Λ)

|Λ| .

The proof is a d-dimensional adaptation of the one given above for sequences
(an)n≥1; we leave it as an exercise (a proof can be found in [134]).

B.1.4 Functions defined by series

Theorem B.7. Let I ⊂R be an open interval. For each k ≥ 1, let φk : I →R be C 1. As-
sume that there exists a summable sequence (ϵk )k≥1 ⊂R≥0 such that supx∈I |φk (x)| ≤
ϵk , supx∈I |φ′

k (x)| ≤ ϵk . Then f (x)
def= ∑

k≥1φk (x) is well defined and C 1 on I . More-
over, f ′(x) =∑

k≥1φ
′
k (x).

Proof. Since
∑

k ϵk < ∞,
∑

k φk (x) is an absolutely convergent series for all x ∈ I ,
defining a function f : I →R. Then, fix x ∈ I and take some small h > 0:

f (x +h)− f (x)

h
=

∑
k

φk (x +h)−φk (x)

h
.

By the mean-value theorem, there exists x̃ ∈ [x, x +h] such that |φk (x+h)−φk (x)
h | =

|φ′
k (x̃)| ≤ ϵk . Using Exercise B.15, we can therefore interchange h ↓ 0 with

∑
k . The

same argument with h ↑ 0 then gives f ′(x) =∑
k φ

′
k (x). A similar argument guaran-

tees that f is C 1.
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B.2 Convex functions

In this section, we gather a few elementary results about convex functions of one
real variable. Rockafellar’s book [287] is a standard reference on the subject; an-
other nice and accessible reference is the book [286] by Roberts and Varberg.

We will use I to denote an (not necessarily bounded) open interval in R, that is,
I = (a,b) with −∞≤ a < b ≤+∞.

Definition B.8. A function f : I →R is convex if

f
(
αx + (1−α)y

)≤α f (x)+ (1−α) f (y), ∀x, y ∈ I ,∀α ∈ [0,1]. (B.4)

When the inequality is strict for all x ̸= y and all α ∈ (0,1), f is strictly convex. If − f
is (strictly) convex, then f is said to be (strictly) concave.

For the cases considered in the book, f always has a continuous extension to
the boundary of I (when I is finite). Sometimes, we need to extend the domain of f

from a finite I to the whole ofR; in such cases, one can do that by setting f (x)
def= +∞

for all x ̸∈ I . The definition of convexity can then be extended, allowing f to take
infinite values in B.4.

The following exercise is elementary, but emphasizes a property of convex func-
tions that will be used repeatedly in the sequel; it is illustrated on Figure B.1.

Exercise B.1. Show that f : I →R is convex if and only if, for any x < y < z in I ,

f (y) ≤ z − y

z −x
f (x)+ y −x

z −x
f (z). (B.5)

From this, deduce that if f is finite, then, for any x < y < z in I ,

f (y)− f (x)

y −x
≤ f (z)− f (x)

z −x
≤ f (z)− f (y)

z − y
. (B.6)

A

x

B

y

C

z

f

Figure B.1: The geometrical meaning of (B.6): for any triple of points on the
graph of a convex function, slope(AB) ≤ slope(AC ) ≤ slope(BC ).

Exercise B.2. Show that f : I → R is convex if and only if, for all α1, . . . ,αn ∈ [0,1]
such that α1 +·· ·+αn = 1 and all x1, . . . , xn ∈ I ,

f
( n∑

k=1
αk xk

)
≤

n∑
k=1

αk f (xk ) .
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An important property is that limits of convex functions are convex:

Exercise B.3. Show that if ( fn)n≥1 is a sequence of convex functions from I to R,

then x 7→ limsupn→∞ fn(x) is convex. In particular, if f (x)
def= limn→∞ fn(x) exists

(in R∪ {+∞}) for all x ∈ I , then it is also convex.

B.2.1 Convexity vs. continuity

Proposition B.9. Let f : I →R be convex. Then f is locally Lipschitz: for all compact
K ⊂ I , there exists CK < ∞ such that | f (x)− f (y)| ≤ CK |x − y | for all x, y ∈ K . In
particular, f is continuous.

Proof. Let K ⊂ I be compact, and let ϵ > 0 be small enough to ensure that Kϵ
def=

{z : d(z,K ) ≤ ϵ} ⊂ I . Let also M
def= supz∈Kϵ

f (z), m
def= infz∈Kϵ f (z). Observe that both

m and M are finite. (Otherwise, there would exist an interior point x∗ ∈ I and a
sequence xn → x∗, f (xn) ↑ +∞. Then, for all pair z < x∗ < z ′ one would get, for all
sufficiently large n, f (xn) > max{ f (z), f (z ′)}, a contradiction with the convexity of

f .) Let x, y ∈ K , and set z
def= y + ϵ y−x

|y−x| ∈ Kϵ. Then y = (1−λ)x +λz with λ= |y−x|
ϵ+|y−x| ,

and therefore f (y) ≤ (1−λ) f (x)+λ f (z), which gives after rearrangement

f (y)− f (x) ≤λ( f (z)− f (x)) ≤λ(M −m) ≤ M −m

ϵ
|y −x| .

Lemma B.10. Let ( fn)n≥1 be a sequence of convex functions on I converging point-
wise to f : I →R. Then fn → f uniformly on all compacts K ⊂ I .

Proof. Fix some compact K ⊂ I , and let a′ < a < b < b′ in I such that [a,b] ⊃ K .
It follows from (B.6) that, for all n and all distinct x, y ∈ [a,b],

fn(a)− fn(a′)
a −a′ ≤ fn(y)− fn(x)

y −x
≤ fn(b′)− fn(b)

b′−b
.

By pointwise convergence, the leftmost and rightmost ratios converge to finite val-
ues as n →∞. Therefore, there exists C , independent of n, such that

| fn(y)− fn(x)| ≤C |y −x| ∀x, y ∈ [a,b] .

Letting n →∞ in the last display shows that the same is also true for the limiting
function f .

Fix ϵ > 0. Let N ∈ N and define δ = (b − a)/N and xk = a + kδ, k = 0, . . . , N .
Pointwise convergence implies that there exists n0 such that, for all n ≥ n0,

| fn(xk )− f (xk )| < 1
3ϵ , ∀k ∈ {0, . . . , N } .

Let z ∈ [a,b] and let k ∈ {0, . . . , N } be such that |xk − z| < δ. Then, for all n ≥ n0,

| fn(z)− f (z)| ≤ | fn(z)− fn(xk )|︸ ︷︷ ︸
≤Cδ

+| fn(xk )− f (xk )|︸ ︷︷ ︸
≤ϵ/3

+| f (xk )− f (z)|︸ ︷︷ ︸
≤Cδ

≤ ϵ ,

provided we choose N such that Cδ≤ ϵ/3.
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A function f : I →R is said to be midpoint-convex if

f
( x + y

2

)
≤ f (x)+ f (y)

2
, ∀x, y ∈ I . (B.7)

Clearly, a convex function is also midpoint-convex.

Lemma B.11. If f is midpoint-convex and continuous, then it is convex.

Proof. Using the continuity of f , it suffices to show that (B.4) holds in the case

where α ∈ D
def= ⋃

m≥1 Dm , with Dm
def= { k

2m : 0 ≤ k < 2m
}
. Observe first that (B.7)

means that (B.4) holds for all x, y ∈ I and for α ∈D1.
We can now proceed by induction. Assume that (B.4) holds for all α ∈ Dm . Let

z =αx+(1−α)y , withα ∈Dm+1 \Dm ; with no loss of generality, we can assume that

α> 1/2. Let z ′ def= 2z−x =α′x+(1−α′)y where α′ def= 2α−1 ∈Dm . Applying (B.7) and
the induction assumption, we get

f (z) = f ( 1
2 x + 1

2 z ′) ≤ 1
2 f (x)+ 1

2 f (z ′)

≤ 1
2 f (x)+ 1

2

{
α′ f (x)+ (1−α′) f (y)

}=α f (x)+ (1−α) f (y) ,

so (B.4) also holds for all α ∈Dm+1.

B.2.2 Convexity vs. differentiability

The one-sided derivatives of a function f at a point x are defined by

∂+ f (x) = ∂ f

∂x+
def= lim

z↓x

f (z)− f (x)

z −x
,

∂− f (x) = ∂ f

∂x−
def= lim

z↑x

f (z)− f (x)

z −x
.

These quantities are always well defined for a convex function, and enjoy several
useful properties:

Theorem B.12. Let f : I →R be convex. The following properties hold.

1. ∂+ f (x) and ∂− f (x) exist at all points x ∈ I .

2. ∂− f (x) ≤ ∂+ f (x), for all x ∈ I .

3. ∂+ f (x) ≤ ∂− f (y) for all x < y in I .

4. ∂+ f and ∂− f are nondecreasing.

5. ∂+ f is right-continuous, ∂− f is left-continuous.

6.
{

x : ∂+ f (x) ̸= ∂− f (x)
}

is at most countable.

7. Let (gn)n≥1 be a sequence of convex functions from I to R converging point-
wise to a function g . If g is differentiable at x, then limn→∞∂+gn(x) =
limn→∞∂−gn(x) = g ′(x).

Note that Item 6 shows that a convex function f : I →R is differentiable everywhere
outside an at most countable set.
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Proof. From (B.6), we see that

x 7→ f (y)− f (x)

y −x
and y 7→ f (y)− f (x)

y −x
are nondecreasing. (B.8)

1. In I , consider x < y and a decreasing sequence (zk )k≥1 with zk > y , for all k,
and zk ↓ y . From (B.8), the sequence

((
f (zk )− f (y)

)
/(zk − y)

)
k≥1 is nonincreasing,

and (B.6) implies that it is bounded below by
(

f (y)− f (x)
)
/(y−x). It follows that the

sequence converges, which establishes the existence of ∂+ f (y). A similar argument
proves the existence of ∂− f (y).

2. Taking x ↑ y in the left-hand side, followed by z ↓ y in the right-hand side of (B.6)
gives ∂− f (y) ≤ ∂+ f (y).

3. Let x < y in I . It follows from (B.8) that

∂+ f (x) ≤ f (y)− f (x)

y −x
≤ ∂− f (y) . (B.9)

4. This is a consequence of the second and third points.

5. We prove the claim for ∂+ f ; the other one is treated in the same way. On the
one hand, it follows from the monotonicity of ∂+ f that limy↓x ∂

+ f (y) exists and
limy↓x ∂

+ f (y) ≥ ∂+ f (x). On the other hand, we know from Proposition B.9 that f is
continuous. It thus follows from (B.9) that, for each z > x,

f (z)− f (x)

z −x
= lim

y↓x

f (z)− f (y)

z − y
≥ lim

y↓x
∂+ f (y) .

Letting z ↓ x, we obtain that ∂+ f (x) ≥ limy↓x ∂
+ f (y) and the claim follows.

6. Since I can be written as the union of countably many closed intervals and
since a countable union of countable sets is countable, it is enough to prove the
statement for an arbitrary closed interval [a,b] contained in I . Let ϵ > 0 such that

[a−ϵ,b+ϵ] ⊂ I . Since f is continuous, M
def= supx∈[a−ϵ,b+ϵ] | f (x)| <∞. It thus follows

from (B.9) that

∂+ f (b) ≤ f (b +ϵ)− f (b)

ϵ
≤ 2M

ϵ

and

∂− f (a) ≥ f (a)− f (a −ϵ)

ϵ
≥−2M

ϵ
.

By what we saw above, ∂− f (a) ≤ ∂± f (x) ≤ ∂+ f (b) for all x ∈ [a,b], we deduce that
supx∈[a,b] |∂± f (x)| ≤ 2M/ϵ. For r ∈N, let

Ar =
{

x ∈ [a,b] : ∂+ f (x)−∂− f (x) ≥ 1
r

}
.

Since {
x ∈ [a,b] : ∂+ f (x) > ∂− f (x)

}=
⋃
r≥1

Ar ,

it suffices to prove that each Ar is finite. Consider n distinct points x1 < x2 < . . . < xn

from Ar . Then,

∂+ f (xn)−∂− f (x1) =
n∑

k=1

(
∂+ f (xk )−∂− f (xk )

)≥ n

r
,
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which implies n ≤ r
(
∂+ f (xn)−∂− f (x1)

)≤ 4Mr /ϵ; Ar is therefore finite.

7. Using again (B.9), for any h > 0,

limsup
n→∞

∂+gn(x) ≤ limsup
n→∞

gn(x +h)− gn(x)

h
= g (x +h)− g (x)

h
.

Letting h ↓ 0 gives ∂+g (x) ≥ limsupn→∞∂+gn(x). A similar argument yields
∂−g (x) ≤ liminfn→∞∂−gn(x). Therefore,

∂−g (x) ≤ liminf
n→∞ ∂−gn(x) ≤ limsup

n→∞
∂+gn(x) ≤ ∂+g (x) ,

and the differentiability of g at x indeed implies that

g ′(x) = lim
n→∞∂

−gn(x) = lim
n→∞∂

+gn(x).

We say that f : I 7→R has a supporting line of slope m at x0 if

f (x) ≥ m(x −x0)+ f (x0) , ∀x ∈ I . (B.10)

Theorem B.13. A function f : I →R is convex if and only if f has a supporting line
at each point x ∈ I . Moreover, in that case, there is a supporting line at x of slope m
for all m ∈ [∂− f (x),∂+ f (x)] .

Proof. Suppose first that f has a supporting line at each point of I . Let x < y be two
points of I , α ∈ [0,1] and z =αx + (1−α)y . By assumption, there exists m such that
f (u) ≥ f (z)+m(u − z) for all u ∈ I . Applying this at x and y , we deduce that

α f (x)+ (1−α) f (y) ≥ f (z)+m
(
α(x − z)+ (1−α)(y − z)︸ ︷︷ ︸

=0

)
,

which implies that α f (x)+ (1−α) f (y) ≥ f (αx + (1−α)y) as desired.
Assume now that f is convex and let x0 ∈ I . Let m ∈ [∂− f (x0),∂+ f (x0)]. By (B.9),

f (x)− f (x0)
x−x0

≥ ∂+ f (x0) ≥ m for all x > x0, and f (x)− f (x0)
x−x0

≤ ∂− f (x0) ≤ m for all x < x0,
which implies f (x) ≥ m(x −x0)+ f (x0) for all x.

We also remind the reader of a well-known property that relates convexity to
the positivity of the second derivative of a twice-differentiable function:

Exercise B.4. Let f be twice-differentiable at each point of I . Show that f is convex
if and only if f ′′(x) ≥ 0 for all x ∈ I .

Note that a sequence of strictly convex functions ( fn)n≥1 converging pointwise can
have a limit that is not strictly convex; consider, for example, fn(x) = |x|1+1/n . A
twice-differentiable function f for which one can find c > 0 such that f ′′(x) > c for
all x is said to be strongly convex. Note that a function can be strictly convex and
fail to be strongly convex, for example x 7→ x4.

Exercise B.5. Let ( fn)n≥1 be a sequence of twice-differentiable uniformly strongly
convex functions such that f = limn fn(x) exists and is finite everywhere. Show that
f is strictly convex.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

B.2. Convex functions 485

B.2.3 The Legendre transform

Definition B.14. Let f : I →R∪{+∞}. The Legendre–Fenchel Transform (or simply
Legendre transform 1) of f is defined by

f ∗(y)
def= sup

x∈I

{
y x − f (x)

}
, y ∈R . (B.11)

We will always suppose, from now on, that there exists at least one point at which
f is finite, which guarantees that f ∗(y) >−∞ for all y ∈R.

f

slope: y

f ∗(y)
x

Figure B.2: Visualizing the Legendre transform: for a given y ∈R, f ∗(y) is the
largest difference between the straight line x 7→ y x and the graph of f .

Exercise B.6. Show that any Legendre transform is convex.

Exercise B.7. Compute the Legendre transform f ∗
i of each of the following functions:

f1(x) = 1
2 x2 , f2(x) = x4 , f3(x) =

{
0 if x ∈ (−1,1) ,

+∞ if x ̸∈ (−1,1) .

Compute also f ∗∗
i

def= ( f ∗
i )∗ in each case. What do you observe?

As can be seen by solving the previous exercise, f ∗∗ is not always equal to f .
Nevertheless,

Exercise B.8. Show that, for all f :R→R∪ {+∞}, f ∗∗ ≤ f .

Let us see two more examples in which the geometrical effect of applying two
successive Legendre transforms is made transparent:

Exercise B.9. If f (x) =
∣∣|x|−1

∣∣, show that

f ∗∗(x) =





−x −1 if x <−1,

0 if |x| ≤ 1,

+x −1 if x >+1.

Exercise B.10. Let f (x) = x4 −x2. Using the geometrical picture of Figure B.2, study
qualitatively f ∗ and f ∗∗.

1Actually, the latter form is usually reserved for a particular case; nevertheless, we use the term
Legendre transform everywhere in this book.
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With the above examples in mind, we now impose restrictions on f to guarantee
that f ∗∗ = f .

We call f lower semi-continuous at x if, for any sequence xn → x,

liminf
n→∞ f (xn) ≥ f (x) .

Exercise B.11. Show that any Legendre transform is lower semi-continuous.

Lemma B.15. Let f :R→R∪{+∞} be convex and lower semi-continuous. For all x0,
if α ∈R is such that α< f (x0), then there exists an affine function h(x) = ax+b such
that h ≤ f and h(x0) ≥α.

Proof. For simplicity, we assume that f (x0) < +∞ (the case f (x0) = +∞ is treated
similarly). If either ∂+ f (x0), or ∂− f (x0), is finite, then Theorem B.13 implies the
result. If ∂− f (x0) = +∞, convexity implies that f (x) < f (x0) for all x ∈ (x0 −δ, x0)
(with δ> 0 sufficiently small), and f (x) =+∞ for all x > x0. Let

a
def= inf

{
m ≥ 0 : m(x −x0)+α≤ f (x), ∀x ∈ I

}
.

We claim that a < ∞. Indeed, assume that a = ∞. Then, there would exist a se-
quence xn < x0, xn ↑ x0, with f (xn) ≤α< f (x0), giving liminfn f (xn) < f (x0), which
would contradict the lower semi-continuity of f . When a <∞, the affine function
h(x) = a(x − x0) +α satisfies the requirements. The remaining cases are treated
similarly.

Exercise B.12. Show that if f has a supporting line of slope m at x0, then f ∗ has a
supporting line of slope x0 at m.

The epigraph of an arbitrary function f :R→R∪ {+∞} is defined by

epi( f )
def= {

(x, y) ∈R2 : y ≥ f (x)
}

.

Exercise B.13. Let f : I →R∪ {+∞}.

1. Show that f is convex if and only if epi( f ) is convex 2.

2. Show that f is lower semi-continuous if and only if epi( f ) is closed.

Definition B.16. The convex envelope (or convex hull) of f , denoted CE f , is de-
fined as the unique convex function g whose epigraph is

C
def=

⋂{
F ⊂R2 : F closed, convex, F ⊃ epi( f )

}
. (B.12)

That is,
CE f (x)

def= inf
{

y : (x, y) ∈C
}

.

2 A ⊂R2 is convex if z1, z2 ∈ A, λ ∈ [0,1] implies λz1 + (1−λ)z2 ∈ A.
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Clearly, if f is convex and lower semi-continuous, then CE f = f .
Observe that, since C is closed, (x,CE f (x)) ∈C for all x. Moreover, C is convex,

which implies that x 7→ CE f (x) is convex. In fact, epi(CE f ) =C . Since C is closed,
this implies (Exercise B.13) that CE f is lower semi-continuous.

In words, as will be seen in the next exercise, CE f is the largest convex function
g such that g ≤ f :

CE f

f

Exercise B.14. If g is convex, lower semi-continuous and g ≤ f , then g ≤ CE f .

Theorem B.17. If f :R→R is lower semi-continuous,

f ∗∗ = CE f .

Proof. We have already seen that f ∗∗ ≤ f . Since f ∗∗ is convex and lower semi-
continuous, this implies f ∗∗ ≤ CE f (Exercise B.14). To establish the reverse in-
equality at a point x0, f ∗∗(x0) ≥ CE f (x0), we must show that, for allα ∈R satisfying
α< CE f (x0),

there exists y ∈R such that x0 y − f ∗(y) ≥α . (B.13)

Since CE f is also lower semi-continuous, there exists, by Lemma B.15, an affine
function h such that (i) h ≤ f and (ii) α≤ h(x0) ≤ f (x0). If h(x) = ax +b, (i) means
that ax + b ≤ f (x) for all x, which gives f ∗(a) ≤ −b. Then, (ii) implies that α ≤
ax0 +b. Combining these bounds gives ax0 − f ∗(a) ≥α, which implies (B.13).

Corollary B.18. If f :R→R∪ {+∞} is lower semi-continuous, then

(CE f )∗ = f ∗ .

Proof. By Theorem B.17, CE f = f ∗∗, and so (CE f )∗ = f ∗∗∗. Since f ∗ is lower semi-
continuous, we have again by Theorem B.17 that f ∗∗∗ = ( f ∗)∗∗ = CE f ∗. But f ∗ is
convex, which implies that CE f ∗ = f ∗.

In particular, we proved:

Theorem B.19. If f :R→R∪ {+∞} is lower-semicontinuous and convex,

f ∗∗ = f .

B.2.4 Legendre transform of non-differentiable functions

We have seen that the right and left derivatives of a convex function f at a point
x∗, ∂+ f (x∗) and ∂− f (x∗), are well defined (Theorem B.12). If f is not differentiable
at x∗, then ∂− f (x∗) < ∂+ f (x∗), so f can have more than one supporting line at x∗,
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which has an important consequence on the qualitative behavior of the Legendre
Transform.

y

f ∗

∂+ f (x∗)∂− f (x∗)x∗
x

f

∂+ f (x∗)∂− f (x∗)

Theorem B.20. Let f be a convex function. Then:

1. If f is not differentiable at x∗, then f ∗ is affine on the interval
[∂− f (x∗),∂+ f (x∗)].

2. If f is affine on some interval [a,b], with a slope m, then f ∗ is non-
differentiable at m and ∂+ f ∗(m) ≥ b > a ≥ ∂− f ∗(m).

Note that if a continuous function f is not convex on an interval contining x, then
CE f must be affine on that interval. In that case, the above theorem, combined
with Corollary B.18, shows that f ∗ cannot be differentiable.

Proof. By Theorem B.13, for each value m ∈ [∂− f (x∗),∂+ f (x∗)], the line x 7→ m(x −
x∗)+ f (x∗) is a supporting line for f at x∗. By Exercise B.12, this implies that f ∗

admits, at each m ∈ [∂− f (x∗),∂+ f (x∗)], a supporting line with the same slope x∗.
Since f ∗ is convex, all these supporting lines actually coincide, which implies that
f ∗ is affine on the interval.

If CE f is affine on [a,b], with slope m, one has in particular that f ∗(m) =
(CE f )∗(m) = ma − f (a) = mb − f (b). Then, for all ϵ> 0,

f ∗(m +ϵ)− f ∗(m) ≥ {
(m +ϵ)b − f (b)

}− f ∗(m) = ϵb ,

and therefore ∂+ f ∗(m) ≥ b. Similarly, ∂− f ∗(m) ≤ a.

B.3 Complex analysis

Let D ⊂ C be a domain (that is, open and connected). Remember that a function
f : D →C is holomorphic if

f ′(z)
def= lim

w→z

f (w)− f (z)

w − z

exists and is finite at each z ∈ D . It is well known that holomorphic functions have
derivatives of all orders, and that f is holomorphic if and only if it is analytic, that
is, if and only if it can be represented at each point z0 ∈ D by a convergent Taylor
series:

f (z) =
∑

n≥0
an(z − z0)n ,

where an = 1
n! f (n)(z0) and z belongs to a small disk around z0. Therefore, holomor-

phic and analytic should be considered as synonyms in this section.
We start with the following fundamental result of complex analysis.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

B.3. Complex analysis 489

Theorem B.21 (Cauchy’s integral theorem). Let D ⊂ C be open and simply con-
nected, and let f be holomorphic on D. Then

∮

γ
f (ξ)dξ= 0,

for all closed paths γ⊂ D.

Proof. See, for example, [336, Theorem 4.14].

Corollary B.22. Let D ⊂C be open and simply connected, and let f be holomorphic
on D. Then, there exists a function F , holomorphic on D, such that F ′ = f .

Proof. We fix some point z0 ∈ D . Since D is open and connected, any other z ∈ D
can be joined from z0 by a continuous path γz ⊂ D . Let

F (z)
def=

∫

γz

f (ξ)dξ.

By Theorem B.21, this definition does not depend on the choice of the path γz .

Choose r > 0 small enough to ensure that the disc B(z,r )
def= {w ∈C : |w − z| ≤ r } ⊂

D . Then,

F (w) = F (z)+
∫

[z,w]
f (ξ)dξ, ∀w ∈ B(z,r ),

where [z, w] is the straight line segment connecting z to w . But f being holomor-
phic implies in particular that f (ξ) = f (z)+O(|ξ− z|) for all ξ ∈ B(z,r ), and so

lim
w→z

F (w)−F (z)

w − z
= lim

w→z

1

w − z

∫

[z,w]
f (ξ)dξ= f (z) .

This implies that F is holomorphic and that F ′ = f .

Theorem B.23. Let f be a holomorphic function on a simply connected open set
D ⊂ C, which has no zeroes on D. Then, there exists a function g analytic on D,
called a branch of the logarithm of f on D , such that f = eg .

Proof. Our assumptions imply that f ′/ f is holomorphic on D . Corollary B.22 thus
implies the existence of a function F , holomorphic on D , such that F ′ = f ′/ f . In
particular,

( f e−F )′ = f ′e−F − f F ′e−F ≡ 0.

Therefore, there exists c ∈C such that f e−F = ec , or equivalently f = eF+c .

Remark B.24. 1. Let g be a branch of the logarithm of f on D . Then Reg =
log | f |. Indeed,

| f | = |eg | = |eReg e iImg | = eReg .

2. Let g1 and g2 be two branches of the logarithm of f on D . Since, for each
z ∈ D ,

eg2(z)−g1(z) = eg2(z)

eg1(z)
= f (z)

f (z)
= 1,

we conclude that g2(z) = g1(z)+ 2ik(z)π for some k(z) ∈ Z. However, z 7→
k(z) = (g2(z) − g1(z))/2iπ is continuous and integer-valued; it is therefore
constant on D . This implies that g2 = g1 +2ikπ for some k ∈Z.
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3. Assume that the domain D in Theorem B.23 is such that D ∩R is connected.
Suppose also that f (z) ∈ R>0 for z ∈ D ∩R. Then there is a branch g of the
logarithm of f on D such that g (z) ∈ R for all z ∈ D ∩R; in particular, g coin-
cides with the usual logarithm of f (seen as a real function) on D∩R. Indeed,
it suffices to observe that the function F in the proof can be constructed by
starting from a point z0 ∈ D ∩R at which one can fix g (z0) = log | f (z0)| and
use the fact that F (z) = ∫ z

z0
f ′(x)/ f (x)dx for z ∈ D ∩R. ⋄

It is well known that the limit of a sequence of analytic functions need not be
analytic. Let us see how additional conditions can be imposed to guarantee that
the limiting function is also analytic.

Remember that a family A of functions on C is locally uniformly bounded on
a set D ⊂ C if, for each z ∈ D , there exists a real number M and a neighborhood U
of z such that | f (w)| ≤ M for all w ∈U and all f ∈A .

Theorem B.25 (Vitali Convergence Theorem). Let D be an open, connected subset
of C and ( fn)n≥1 be a sequence of analytic functions on D, which are locally uni-
formly bounded and converge on a set having a cluster point in D. Then the sequence
( fn)n≥1 converges locally uniformly on D to an analytic function.

Proof. See [71, p. 154].

Theorem B.26 (Hurwitz Theorem). Let D be an open subset of C and ( fn)n≥1 be
a sequence of analytic functions, which converge, locally uniformly, on D to an an-
alytic function f . If fn(z) ̸= 0, for all z ∈ D and for all n, then either f vanishes
identically, or f is never zero on D.

Proof. See [71, Corollary 2.6].

The following theorem is the complex counterpart to Theorem B.7. (Notice that,
in the complex case, no control is needed on the series of the derivatives.)

Theorem B.27 (Weierstrass’ Theorem on uniformly convergent series of analytic
functions). Let D ⊂ C be a domain. For each k, let fk : D → C be an analytic func-
tion. If the series

f (z)
def=

∑
k

fk (z)

is uniformly convergent on every compact subset K ⊂ D, then it defines an analytic
function on D. Moreover, for each n ∈N,

∑
k f (n)

k converges uniformly on every com-
pact K ⊂ D and

f (n)(z) =
∑
k

f (n)
k (z) , ∀z ∈ D .

Proof. See [228, Volume 1, Theorem 15.6].

Let U ,V ⊂C. A continuous function F : U×V →C is said to be analytic on U×V
if F (·, z) is analytic on U for any fixed z ∈V and F (z, ·) is analytic on V for any fixed
z ∈U .
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Theorem B.28 (Implicit function theorem). Let (ω, z) 7→ F (ω, z) be an analytic func-
tion on an open domain U ×V ⊂ C2. Let (ω0, z0) ∈U ×V be such that F (ω0, z0) = 0
and ∂F

∂z (ω0, z0) ̸= 0. Then there exists an open subset U0 ⊂U containing ω0 and an
analytic map ϕ : U0 →V such that ϕ(ω0) = z0 and

F (ω,ϕ(ω)) = 0 for all ω ∈U0 .

Proof. See [228, Volume 2, Theorem 3.11].

B.4 Metric spaces

All topological notions used in the book (in particular those of Chapter 6) concern
topologies induced by a metric. Let χ be an arbitrary set. A map d : χ×χ→ R≥0

is a metric (on χ) (or distance) if it satisfies: (i) d(x, y) = 0 if and only if x = y ,
(ii) d(x, y) = d(y, x) for all x, y ∈χ, (iii) d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈χ. The
pair (χ,d) is then called a metric space.

The open ball centered at x ∈ χ of radius ϵ > 0 is Bϵ(x)
def= {

y ∈χ : d(y, x) < ϵ}.
A set A ⊂ χ is open if, for each x ∈ A, there exists ϵ > 0 such that Bϵ(r ) ⊂ A. A set

A is closed if Ac def= χ \ A is open. Arbitrary unions and finite intersections of open
sets are open. A sequence (xn)n≥1 ⊂ χ converges to x∗ ∈ χ (denoted xn → x∗) if, for
all ϵ > 0, there exists n0 such that xn ∈ Bϵ(x∗) for all n ≥ n0. A set F ⊂ χ is closed if
and only if (xn)n≥1 ⊂ F , xn → x∗ implies x∗ ∈ F . A set D ⊂ χ is dense if, for all x ∈ χ
and all ϵ> 0, D ∩Bϵ(x) ̸=∅. χ is separable if there exists a countable dense subset
D ⊂χ.

On χ= Rn , one usually uses the Euclidean metric inherited from the Euclidean

norm: d(x, y)
def= ∥x − y∥2; on χ=C, one uses the modulus: d(w, z)

def= |w − z|.
A function f : χ→ χ′ is continuous if f (xn) → f (x∗) whenever xn → x∗. Equiv-

alently, f is continuous if and only if f −1(A′) ⊂χ is open for each open set A′ ⊂χ′.
A metric space (χ,d) is sequentially compact (or simply compact) if there ex-

ists, for each sequence (xn)n≥1 ⊂ χ, a subsequence (xnk )k≥1 and some x∗ ∈ χ such
that xnk → x∗ when k →∞. A compact metric space is always separable.

An introduction to metric spaces can be found in [284, Chapter 1].

B.5 Measure Theory

This section and the two following ones contain several definitions and results con-
cerning measure theory and integration. Many detailed books exist on the subject,
among which the one by Bogachev [30].

B.5.1 Measures and probability measures

Throughout this section, Ω denotes an arbitrary set and P(Ω) the collection of all

subsets ofΩ. The complement of a set A ⊂Ωwill be denoted Ac def= Ω\ A.

Definition B.29. A collection A ⊂ P(Ω) is an algebra if (i) ∅ ∈ A , (ii) A ∈ A im-
plies Ac ∈A , and (iii) A,B ∈A implies A∪B ∈A .

Definition B.30. A collection F ⊂ P(Ω) is a σ-algebra if (i) ∅ ∈ A , (ii) A ∈ A
implies Ac ∈F , and (iii) (An)n≥1 ⊂F implies

⋃
n≥1 An ∈F .
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Given an arbitrary collection S ⊂P(Ω) of subsets of Ω, there exists a smallest
σ-algebra containing S , called theσ-algebra generated by S , denoted σ(S ) and
given by

σ(S )
def=

⋂{
F : F a σ-algebra containing S

}
.

(Note that the intersection of an arbitrary collection of σ-algebras is a σ-algebra.)

Example B.31. If (χ,d) is a metric space whose collection of open sets is denoted

by O , then B
def= σ(O) is called the σ-algebra of Borel sets on χ. When (χ,d) is the

Euclidean spaceRn (equipped with the Euclidean metric), thisσ-algebra is denoted
B(Rn). ⋄

A pair (Ω,F ), where F is a σ-algebra of subsets of Ω, is called a measurable
space and the sets A ∈F are called measurable.

Definition B.32. On a measurable space (Ω,F ), a set function µ : F → [0,+∞] is
called a measure if the following holds:

1. µ(∅) = 0.

2. (σ-additivity) If (An)n≥1 ⊂ F is a sequence of pairwise disjoint sets, then
µ(

⋃
n An) =∑

n µ(An).

The measure µ is finite if µ(Ω) <∞; µ is a probability measure if µ(Ω) = 1. If there
exists a sequence (An)n≥1 ⊂ F such that

⋃
n≥1 An = Ω and µ(An) <∞ for each n,

then µ is σ-finite.
Let us remind the reader of two straightforward consequences of the above def-

inition. First, by the σ-additivity of item 2 above,

µ
(⋃

n
An

)
≤

∑
n
µ(An) ,

for any sequence An ∈F . In particular, if µ(An) = 0 for all n, then

µ
(⋃

n
An

)
= 0.

A property A, defined for each element ω ∈Ω, occurs µ-almost everywhere (or for
µ-almost all ω) if there exists B ∈ F such that {ω ∈Ω : A does not hold for ω} ⊂ B
and µ(B) = 0. When µ is a probability measure, one usually says µ-almost surely.

Measures are usually constructed by defining a finitely additive set function on
an algebra A and by extending it to the σ-algebra generated by A .

Let A be an algebra. A set function µ0 : A → [0,+∞] is said to be finitely ad-
ditive if µ0(A ∪ B) = µ0(A) +µ0(B) for all pairs of disjoint measurable sets; µ0 is
a measure if µ0(∅) = 0 and if µ0(

⋃
n≥1 An) = ∑

n≥1µ0(An) holds for all sequences
(An)n≥1 ⊂A of pairwise disjoint sets for which

⋃
n≥1 An ∈A .

Theorem B.33 (Carathéodory’s Extension Theorem). Let µ0 : A → [0,+∞] be a σ-

finite measure on an algebra A and let F
def= σ(A ). Then there exists a unique mea-

sure µ : F → [0,+∞], called the extension of µ0, which coincides with µ0 on A :
µ(A) =µ0(A) for all A ∈A .

The σ-algebra F =σ(A ) is in general a much larger collection of sets than A ;
nevertheless, each set B ∈ F can be approximated arbitrary well by sets in A ∈ A
in the sense of measure theory:
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Lemma B.34. Let µ be a probability measure on (Ω,F ), where F is generated by an
algebra A : F = σ(A ). Then, for all B ∈ F and all ϵ > 0, there exists A ∈ A such
that µ(B△A) ≤ ϵ.

Proof. Let G
def= {

B ∈F : ∀ϵ> 0,∃A ∈A s.t. µ(B△A) ≤ ϵ}. Since, obviously, G ⊃A ,
it suffices to show that G is a σ-algebra. Since µ(B△A) = µ(B c△Ac), we see that G
is stable under taking complements. Let (Bn)n≥1 ⊂G and set B =⋃

n≥1 Bn . Fix ϵ> 0.
For each n, let An ∈A be such that µ(Bn△An) ≤ ϵ/2n . Then, let A = ⋃N

n=1 An ∈A .
If N is large enough,

µ(B△A) ≤
∑

n≥1
µ(Bn△An) ≤ ϵ .

Therefore, B ∈G . This shows that G is a σ-algebra.

In measure theory, it is often useful to determine whether some property is ver-
ified by each measurable set of aσ-algebra F . If F is generated by an algebra, then
this can be done by checking conditions which are easier to verify than testing each
B ∈F .

A collection M ⊂P(Ω) is a monotone class if (i) Ω ∈M , (ii) for any sequence
(An)n≥1 ⊂M such that An ↑ A, one has A ∈M , and (iii) for any sequence (An)n≥1 ⊂
M such that An ↓ A, one has A ∈M . As before, there always exists a smallest mono-
tone class generated by a collection S , denoted M (S ).

Theorem B.35. If A is an algebra, then M (A ) =σ(A ).

A similar result holds for a slightly different notion of class. A collection D ⊂
P(Ω) is a Dynkin system if (i) ∅ ∈ D , (ii) A,B ∈ D with A ⊂ B implies B \ A ∈ D ,
and (iii) for any sequence (An)n≥1 ⊂ D such that An ↑ A, one has A ∈ D . Again,
there always exists a smallest Dynkin system generated by a collection S , denoted
δ(S ). A collection C ⊂P(Ω) is ∩-stable if A,B ∈C implies A∩B ∈C .

Theorem B.36. If C is ∩-stable (in particular, if C is an algebra), then δ(C ) =σ(C ).

This result can be used to determine when two measures are identical.

Corollary B.37. Let (Ω,F ) be a measurable space. Let C be a collection of sets which
is ∩-stable and which generates F : F =σ(C ). If µ and ν are two probability mea-
sures on (Ω,F ) which coincide on C (µ(C ) = ν(C ) for all C ∈C ), then µ= ν.

B.5.2 Measurable functions

Let (Ω,F ) and (Ω′,F ′) be two measurable spaces. A map f : Ω→ Ω′ is F /F ′-
measurable if f −1(B ′) ∈F for each B ′ ∈F ′.

Let (Ω′,F ′) be a measurable space. For any set Ω, given an arbitrary map h :
Ω→Ω′, we denote by σ(h) the smallest σ-algebra on Ω with respect to which h is

F /F ′-measurable: σ(h)
def= {

h−1(B ′) : B ′ ∈F ′}. σ(h) is called the σ-algebra gener-
ated by h.

Lemma B.38 (Doob–Dynkin lemma). Let (Ω,F ), (Ω′,F ′) be measurable spaces,
where F =σ(h) for some h :Ω→Ω′. For any F /B(R)-measurable map g :Ω→ R,
there exists an F ′/B(R)-measurable map ϕ :Ω′ →R such that g =ϕ◦h.

Proof. See [186, Lemma 1.13].
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(Ω,F ) (Ω′,F ′)

(R,B(R))

g =ϕ◦h

h

ϕ

Figure B.3: The setting of Lemma B.38.

B.6 Integration

Let F ⊂ P(Ω) be a σ-algebra. When integrating real-valued functions, it is con-

venient to include the possibility of these taking the values ±∞. Let therefore R
def=

R∪{±∞}, together with theσ-algebra B(R) containing sets of the form B , B∪{+∞},
B ∪ {−∞}, or B ∪ {+∞}∪ {−∞}, where B ∈B(R). An F /B(R)-measurable function
f : Ω → R will simply be called measurable: f −1(I ) ∈ F for all I ∈ B(R). To be
measurable, f needs only satisfy f −1({±∞}) ∈F and f −1((−∞, x]) ∈F for all x ∈R.

Integration is first defined for non-negative functions. A measurable function
ϕ :Ω→R∪{+∞} is simple if it takes a finite set of values; it can therefore be written
as a finite linear combination

ϕ=
n∑

k=1
ak 1Ek ,

where Ek = {
ω ∈Ω : ϕ(ω) = ak

} ∈F , where ϕ(R) = {a1, . . . , an} ⊂ R∪ {+∞} . A mea-
surable map f : Ω→ [0,+∞] can always be written as a limit of an increasing se-
quence of simple functions ϕn ↑ f . The integral ofϕwith respect toµ is

∫
ϕdµ

def=
n∑

k=1
akµ(Ek ) .

In this definition, we make the convention that 0 ·∞ = 0. If f : Ω→ R∪ {+∞} is
measurable and nonnegative, its integral with respect toµ is

∫
f dµ

def= sup
{∫

ϕdµ : ϕ simple, 0 ≤ϕ≤ f
}

.

For an arbitrary measurable function f , let f + def= f 1{ f ≥0}, f − def= (− f )+. We say
that f is integrable if

∫
f + dµ < ∞ and

∫
f − dµ < ∞. The set of integrable func-

tion is denoted by L1(µ) (we sometimes omit the measure when it is clear from the
context). The integral of f ∈ L1(µ) is

∫
f dµ

def=
∫

f + dµ−
∫

f − dµ .

In this book, we also use alternative notations for
∫

f dµ, such as µ( f ) or 〈 f 〉µ. We
list below a few properties of the integral.

• If f ≥ 0 and
∫

f dµ<∞, then f is µ-almost everywhere finite.

• If f ≥ 0 and
∫

f dµ= 0, then f = 0 µ-almost everywhere.

• If f , g ∈ L1(µ),
∫

( f + g )dµ= ∫
f dµ+∫

g dµ.
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• f ∈ L1(µ) if and only if
∫ | f |dµ<∞, and when this occurs, |∫ f dµ| ≤ ∫ | f |dµ.

• If 0 ≤ f ≤ g µ-almost everywhere, then
∫

f dµ≤ ∫
g dµ.

• If f , g ∈ L1(µ), f = g µ-almost everywhere, then
∫

f dµ= ∫
g dµ.

Theorem B.39 (Monotone Convergence Theorem). Let ( fn)n≥1 be a sequence of
nonnegative measurable functions such that fn ≤ fn+1 µ-almost everywhere. Then

∫
lim

n→∞ fn dµ= lim
n→∞

∫
fn dµ .

Theorem B.40 (Dominated Convergence Theorem). Let ( fn)n≥1 ⊂ L1(µ). Assume
there exists g ∈ L1(µ) such that | fn | ≤ g µ-almost everywhere, for all n ≥ 1. If fn → f
µ-almost everywhere, then f ∈ L1(µ) and

∫
f dµ= lim

n→∞

∫
fn dµ .

Exercise B.15. Let (ξk )k≥1 be a sequence of real functions defined on some open in-
terval I ⊂ R and x0 ∈ I . Let that sequence be such that, for each k, limx→x0 ξk (x)
exists. Assuming there exists a summable sequence (ϵk )k≥1 ⊂ R≥0 such that
supx∈I |ξk (x)| ≤ ϵk , show that

lim
x→x0

∑
k
ξk (x) =

∑
k

lim
x→x0

ξk (x) . (B.14)

Let µ,ν be two finite measures. ν is absolutely continuous with respect toµ if,
for all A ∈ F , µ(A) = 0 implies ν(A) = 0; we then write ν≪ µ. When both µ≪ ν

and ν≪ µ, the measures are said to be equivalent. If there exists A ∈F such that
µ(A) = 0, ν(Ac) = 0, then µ and ν are singular.

Theorem B.41 (Radon–Nikodým’s theorem). Let µ and ν be two finite measures
such that ν≪µ. There exists a measurable function f ≥ 0 such that

∀B ∈F , ν(B) =
∫

B
f dµ .

f is called the Radon–Nikodým derivative of ν with respect to µ and is often de-
noted dν

dµ .

Any two versions of the Radon–Nikodým derivative coincide µ-almost everywhere;
this is a consequence of the following lemma.

Lemma B.42. Let f , g ∈ L1(µ) be such that
∫

B f dµ = ∫
B g dµ for all B ∈ F . Then

f = g almost everywhere.

The Radon–Nikodým derivative enjoys properties similar to that of the ordinary
derivative. First, if ν1,ν2 ≪µ, then ν1 +ν2 ≪µ and

d(ν1 +ν2)

dµ
= dν1

dµ
+ dν2

dµ
. (B.15)

Then, a property similar to the chain rule holds: if ν,µ,ρ satisfy ν≪µ≪ ρ, then

dν

dρ
= dν

dµ

dµ

dρ
. (B.16)
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B.6.1 Product spaces

Given two measurable spaces (Ω,F ), (Ω′,F ′), we can consider the product

Ω×Ω′ def= {
(ω,ω′) : ω ∈Ω,ω′ ∈Ω′} ,

equipped with the product σ-algebra F ⊗F ′, generated by the algebra of finite
unions of rectangles, that is, sets of the form A×A′ with A ∈F and A ∈F ′. If µ is a
measure on (Ω,F ) and µ′ is a measure on (Ω′,F ′), we can define, for a rectangle,

(µ⊗µ′)(A× A′) def= µ(A)µ′(A′) .

Using Theorem B.33, it can be shown that, when µ and ν are σ-finite, µ⊗µ′ has a
unique extension to F ⊗F ′; we call it the product measure.

Theorem B.43 (Theorem of Fubini–Tonelli). If µ and µ′ are σ-finite and if F :Ω×
Ω′ →R≥0 is F ⊗F ′-measurable, then the functions

ω 7→
∫

Ω′
F (ω,ω′)µ′(dω′) and ω′ 7→

∫

Ω
F (ω,ω′)µ(dω)

are F - and F ′-measurable, respectively. Moreover,

∫

Ω×Ω′
F d(µ⊗µ′) =

∫

Ω

{∫

Ω′
F (ω,ω′)µ′(dω′)

}
µ(dω)

=
∫

Ω′

{∫

Ω
F (ω,ω′)µ(dω)

}
µ′(dω′)

The above construction extends to the product of an arbitrary finite number of σ-
finite measurable spaces: (Ω1,F1), . . . , (Ωn ,Fn).

B.7 Lebesgue measure

The Lebesgue measure is first constructed on the real line, by extending to all Borel
sets the basic notion of length of bounded intervals:

ℓ([a,b))
def= b −a .

(Unbounded intervals are defined to have measure +∞.) This allows to define a
natural measure on the algebra of finite unions of such intervals, that can be ex-
tended to all Borel sets B(R) using Theorem B.33. The resulting σ-finite measure ℓ
on (R,B(R)) is called the Lebesgue measure.

OnRn =R×·· ·×R, equipped with the Borelσ-algebra B(Rn), the Lebesgue mea-
sure is defined as the product measure, that is, it is first defined on parallelepipeds

ℓn(
[a1,b1)× [a2,b2)×·· ·× [an ,bn)

) def=
n∏

i=1
(bi −ai ) ,

and then extended. The Lebesgue measure is translation invariant, ℓn(B + x) =
ℓn(B) for all B ∈B(Rn), x ∈Rn , and enjoys the following scaling property: ℓn(αB) =
αnℓn(B) for all B ∈B(Rn) and all scaling factor α> 0.

One usually writes dx instead of ℓn(dx). For instance, the integration of a func-
tion f :Rn →Rwith respect to ℓn is written

∫
f (x)dx.
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B.8 Probability

We remind the reader of some basic elements from Probability Theory. The books
by Kallenberg [186] or Grimmett and Stirzaker [152] provide good references.

In probability theory, a probability space is a triple (Ω,F ,P ), where (Ω,F ) is
a measurable space and P : F → [0,1] is a probability measure. Each ω ∈ Ω is to
be interpreted as the outcome of a random experiment and each measurable set
A ∈F is interpreted as an event, with P (A) measuring the a priori likeliness of the
occurence of A when sampling some ω ∈Ω.

B.8.1 Random variables and vectors

A measurable map X : Ω → R is called a random variable. The distribution of

X : Ω→ R is the probability measure PX on R defined by PX (I )
def= P (X ∈ I ), for all

I ∈B(R). The cumulative distribution function of X :Ω→ R is FX (x)
def= P (X ≤ x),

x ∈ R. X has a density (with respect to the Lebesgue measure) if there exists a
measurable function fX :R→R≥0 such that

P (X ∈ B) =
∫

B
fX (x)dx , ∀B ∈B(R) .

The integral of a random variable X ∈ L1(P ) is denoted

E [X ]
def=

∫
X dP ,

and is called the expectation of X with respect to P . The variance of X is then
defined by

Var(X )
def= E

[
(X −E [X ])2] .

We list here a few inequalities that are used frequently:

• Jensen’s inequality: If X ∈ L1(P ) and if φ : R → R is convex and such that
φ(X ) ∈ L1(P ), then φ(E [X ]) ≤ E [φ(X )]. When φ is strictly convex, equality
holds if and only if X is almost surely constant.

• Markov’s inequality: for all non-negative X ∈ L1(P ) and all λ> 0,

P (X ≥λ) ≤ E [X ]

λ
. (B.17)

• Chebyshev’s inequality: for all X and all λ> 0,

P (|X −E [X ]| ≥λ) ≤ Var(X )

λ2 . (B.18)

• Chernov’s inequality: for all X and all λ> 0,

P (X ≥λ) ≤ inf
t>0

E [e t X ]

e tλ
. (B.19)

There are various ways by which a sequence of random variables (Xn)n≥1 can con-
verge to a limiting random variable X .
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• (Xn )n≥1 converges to X almost surely if there exists C ∈ F , P (C ) = 1, such
that Xn(ω) → X (ω) for all ω ∈C .

• (Xn )n≥1 converges to X in probability if, for all ϵ > 0, P (|Xn − X | ≥ ϵ) → 0 as
n →∞.

• Let p ≥ 1. (Xn )n≥1 converges to X in Lp if E [|X |p ] <∞, E [|X p
n |] <∞, for all n,

and E [|Xn −X |p ] → 0 when n →∞.

• (Xn )n≥1 converges to X in distribution if FXn (x) → FX (x) when n →∞, for
all x at which FX is continuous.

Almost sure convergence and convergence in Lp both imply convergence in prob-
ability, which in turn implies convergence in distribution. The remaining implica-
tions do not hold in general.

B.8.2 Independence

Two events A,B ∈F are independent if P (A∩B) = P (A)P (B). A collection of events
(Ai )i∈I is independent if P (

⋂
j∈J A j ) =∏

j∈J P (A j ) for all J ⊂ I finite.
A collection of random variables (Xi )i∈I is independent if the collection of

events ({Xi ≤αi })i∈I is independent for all (αi )i∈I ⊂R. If, moreover, all the variables
Xi have the same distribution, we say that (Xi )i∈I is i.i.d. (independent, identically
distributed).

We now state two central results of Probability Theory.

Theorem B.44 (Law of Large Numbers). Let (Xn)n≥1 ⊂ L1(P ) be an i.i.d. sequence.
Then, as n →∞,

X1 +·· ·+Xn

n
→ E [X1] P-almost surely. .

Remember that X is a standard normal random variable, X ∼N (0,1), if it has

a density with respect to the Lebesgue measure dt , given by 1p
2π

e−
t2
2 ; in particular,

its cumulative distribution function is

FX (x) = 1p
2π

∫ x

−∞
e−

t2
2 dt , ∀x ∈R.

Theorem B.45 (Central Limit Theorem). Let (Xn)n≥1 be an i.i.d. sequence with m
def=

E [X1] <∞ and σ2 def= Var(X1) <∞. Then, as n →∞,

(X1 −m)+·· ·+ (Xn −m)

σ
p

n
→N (0,1) in distribution.

In particular, for all a < b,

P
(
a ≤ (X1 −m)+·· ·+ (Xn −m)

σ
p

n
≤ b

)
→ 1p

2π

∫ b

a
e−

t2
2 dt .
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B.8.3 Moments and cumulants of random variables

Let X be a random variable. If r ∈N, the r th moment of X is defined by

mr (X )
def= E [X r ] ,

provided the expectation exists. The moment generating function associated to X
is the function

t 7→ MX (t )
def= E [e t X ] , t ∈R .

If MX (t ) possesses a convergent MacLaurin expansion, then all its moments exist
and can be recovered from the formula

mr (X ) = dr

dt r MX (t )|t=0 .

Under suitable conditions, the moments (mr (X ))r≥1 completely characterize the
distribution of X .

Theorem B.46. Assume that all moments mr (X ), r ≥ 1, exist. If there exists
some ϵ > 0 such that

∑
r≥1

1
r ! mr (X )t r converges for all t ∈ (−ϵ,ϵ), then MX (t ) =∑

r≥1
1
r ! mr (X )t r on that interval and any random variable Y with mr (Y ) = mr (X ),

for all r ≥ 1, has the same distribution as X .

Proof. See [186, Exercise 10, Chapter 5].

Let us now consider the cumulant generating function (also known as the log-
moment generating function) CX (t ) = log MX (t ). The coefficients of its MacLaurin
expansion (if it has one) are called the cumulants of the random variable X : for
r ∈N, the r th cumulant of X is defined by

cr (X )
def= dr

dt r CX (t )|t=0 .

Cumulants possess a variety of other names, depending on the context. When
r ≥ 2, they are also called semi-invariants, thanks to the following remarkable
property: for any a,b ∈R,

cr (aX +b) = ar cr (X ) . (B.20)

(This of course doesn’t hold for r = 1, since c1(aX +b) = ac1(X )+b.) In statistical
mechanics, cumulants are often called Ursell functions, truncated correlation
functions or connected correlation functions.

Exercise B.16. Show that cumulants can be expressed in terms of moments using
the following recursion formula:

cr = mr −
r−1∑
m=1

(
r −1

m −1

)
cmmr−m .

In particular,

c1 = m1 , c2 = m2 −m 2
1 , c3 = m3 −3m2m1 +2m 3

1 , . . .
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Cumulants of a random variable X characterize the distribution of X whenever its
moments do. The advantage of cumulants compared to moments, in addition to
their satisfying (B.20), is the way they act on sums of independent random vari-
ables: if X and Y are independent random variables, then

cr (X +Y ) = cr (X )+ cr (Y ) .

This follows immediately from the identity CX+Y =CX +CY .

B.8.4 Characteristic function

The characteristic function of a random variable X is defined by

ϕX (t )
def= E [e it X ]

def= E [cos(t X )]+ iE [sin(t X )] .

Note that, since
E [|e it X |] = 1,

the characteristic function is well defined for all random variables. If there exists
ϵ > 0 such that the moment generating function MX (t ) is finite for all |t | < ϵ, then
ϕX (−it ) = MX (t ).

Characteristic functions owe their name to the fact that they characterize the
distribution of a random variable: ϕX = ϕY if and only if X and Y have the same
distribution.

If X1, . . . , Xn are independent random variables, then

ϕX1+···+Xn (s) =ϕX1 (s) · · ·ϕXn (s) .

Theorem B.47 (Lévy’s continuity theorem). Let Xn be a sequence of random vari-

ables. Assume that ϕ(t )
def= limn→∞ϕXn (t ) exists, for all t ∈ R, and that ϕ is con-

tinuous at t = 0. Then there exists a random variable X such that ϕX = ϕ and Xn

converges to X in distribution.

B.8.5 Conditional Expectation

Conditional expectation is a fundamental concept in probability theory and plays
a central role in our study of infinite-volume Gibbs measures in Chapter 6. Before
giving its formal definition, we motivate it starting from the simplest possible case.

In elementary probability, the conditional probability of an event A with respect
to an event B with P (B) > 0 is defined by

P (A |B)
def= P (A∩B)

P (B)
.

This defines a new probability measure P (· |B) under which random variables can
be integrated, yielding a conditional expectation given B : for X ∈ L1(P ),

E [X |B ]
def=

∫
X (ω)P (dω |B) .

Often, one is more interested in considering the conditional expectation with re-
spect to a collection of events, associated to some partial information in a random
experiment.
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Example B.48. Consider an experiment in which two dice are rolled, modeled by
two independent random variables X1, X2 on a probability space Ω, taking values
in {1,2, . . . ,6}. Assume that some partial information is given about the outcome of
the sum S = X1 +X2, namely whether S > 5 or S ≤ 5. Given this partial information,
the expectation of X1 is E [X1 |S > 5] if {S > 5} occurred and E [X1 |S ≤ 5] if {S ≤ 5}
occurred. It thus appears natural to encode this information in a random variable

ω 7→ E [X1 |S > 5]1{S>5}(ω)+E [X1 |S ≤ 5]1{S≤5}(ω) . ⋄
This example leads to a first generalization of conditional expectation, as fol-

lows. Let (Bk )k ⊂ F be a countable partition of Ω: Bk ∩ Bk ′ = ∅ if k ̸= k ′ and⋃
k Bk = Ω. This means that, for each outcome ω of the experiment, exactly one

event Bk occurs. For convenience, let B ⊂F denote the sub-σ-algebra containing
the events which are unions of sets Bk . The occurrence of some B ∈ B provides
some information on the occurrence of some events Bk .

Now if we also assume that P (Bk ) > 0 for all k, we can define, for X ∈ L1(P ),

E [X |B](ω)
def=

∑
k

E [X |Bk ]1Bk (ω) .

Exercise B.17. Show that, as a random variable onΩ, E [X |B] satisfies the following
properties:

ω 7→ E [X |B](ω) is B-measurable, (B.21)

E
[
E [X |B]1B

]= E [X 1B ] for all B ∈B . (B.22)

In particular,
E

[
E [X |B]

]= E [X ] .

The above definition, although natural, is not yet suited to our needs, its main de-
fect being the necessity to assume that P (Bk ) > 0. Indeed, the theory of infinite-
volume Gibbs measures, exposed in Chapter 6, requires conditioning on a fixed
configuration outside a finite region, an event that always has zero probability. We
therefore need a definition of conditional expectation which allows to condition
with respect to events of zero probability.

It turns out that (B.21)-(B.22) characterize E [X |B] in an essentially unique
manner. This can be used to define conditional expectation in much greater gen-
erality:

Lemma B.49. Let (Ω,F ,P ) be a probability space. Consider X ∈ L1(P ) and a sub-
σ-algebra G ⊂F . There exists a random variable Y ∈ L1(P ) for which the following
conditions hold:

1. Y is G -measurable.

2. For all G ∈G , E [Y 1G ] = E [X 1G ].

If Y ′ is another variable satisfying these properties, then P (Y ̸= Y ′) = 0. Any of them
is called a version of the conditional expectation of X with respect to G and is
denoted by E [X |G ].

We list the main properties of conditional expectation. In view of the almost-sure
uniqueness, all the properties are to be understood as holding almost surely. All the
random variables below are assumed to be integrable.
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1. E [a1X1 +a2X2 |G ] = a1E [X1 |G ]+a2E [X2 |G ].

2. If X ≤ X ′, then E [X |G ] ≤ E [X ′ |G ].

3. |E [X |G ]| ≤ E [|X | |G ].

4. (Tower property) If G ⊂H , then

E
[
E [X |G ]

∣∣H ]= E [X |G ] = E
[
E [X |H ]

∣∣G ]
.

5. If Z is G -measurable, then E [X Z |G ] = Z E [X |G ].

Conditional expectation can be characterized equivalently in the following way:

Lemma B.50. Let X ∈ L1(P ), G ⊂ F a sub-σ-algebra. Then E [X |G ] is the (almost
sure) unique G -measurable random variable with the property that

E
[
(X −E [X |G ])Z

]= 0 for all G -measurable Z ∈ L1(P ). (B.23)

Remark B.51. The above definition provides a nice geometrical interpretation of
the conditional expectation of a random variable with finite variance. Let us denote
by L2(P ) the (real) vector space of all random variables such that E [X 2] < ∞ (or,
equivalently, with finite variance). The space L2(P ) is a Hilbert space for the inner
product (X ,Y ) 7→ E [X Y ]. (B.23) can then be interpreted as stating that the vector
X −E [X |G ] is orthogonal to the linear subspace

{
Z ∈ L2(P ) : Z is G -measurable

}
.

This implies that E [X |G ] coincides with the orthogonal projection of X on this
subspace; see Figure B.4. ⋄

G

X

E(X |G )

Figure B.4: Restricted to random variables with finite variance, the condi-
tional expectation E(X |G ) corresponds to the orthogonal projection of X
onto the linear subspace of all G -measurable random variables.

Finally, we will occasionally need the following classical result whose proof can
be found in [351].

Theorem B.52 (Backward martingale convergence). Let X ∈ L1 and let Gn be a de-

creasing sequence of σ-algebras, Gn ⊃Gn+1, and set G∞
def= ⋂

n Gn . Then,

E [X |Gn] → E [X |G∞] in L1 and almost surely.

B.8.6 Conditional probability

Let G ⊂ F . The conditional probability of A ∈ F with respect to G is defined by
the (almost surely unique) random variable

P (A |G )(ω)
def= E [1A |G ](ω) .
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By definition, P (A |G ) inherits many of the properties of the conditional expecta-
tion. In particular it is, up to almost-sure equivalence, the unique G -measurable
random variable for which

P (A∩G) =
∫

G
P (A |G )dP , ∀G ∈G .

Remember that, by linearity of the conditional expectation, one has, for disjoint
events A,B ∈F , P (A∪B |G )(ω) = P (A |G )(ω)+P (B |G )(ω) . It is important to notice
that even though this equality holds for P-almost all ω, the set of such ωs depends
in general on A and B . Since there are usually uncountably many events in F ,
one should therefore not expect, for a fixed ω, for P (· |G )(ω) to define a probability
measure on (Ω,F ). This leads to the following definition. A map P̂ (· |G )(·) : F ×
Ω → [0,1] is called a regular conditional probability with respect to G if (i) for
each ω ∈ Ω, P̂ (· |G )(ω) is a probability distribution on (Ω,F ), (ii) for each A ∈ F ,
P̂ (A |G )(·) is a version of P (A |G ).

Regular conditional probabilities exist under fairly general assumptions, which
can be found for example in [186].

The Gibbs measures constructed and studied in Chapter 6 are examples of
regular conditional probabilities. Indeed, when µ ∈G (π) is conditioned with respect
to the values taken by the spins outside a finite region Λ, the kernel πΛ(· |ω) is a
version of µ(· |FΛc )(ω). But by definition, πΛ(· |ω) is a probability measure for each
ω ∈Ω. See the comments of Section 6.3.1. ⋄

B.8.7 Random vectors

Most of what was said for random variables can be adapted to the case of measur-
able functions taking values in a space of larger dimension: X : Ω→ Rn is a ran-
dom vector if it is F /B(Rn)-measurable. The distribution of X is the probability

measure PX on (Rn ,B(Rn)) defined by PX(B)
def= P (X ∈ B), B ∈ B(Rn). The expec-

tation E [X] is to be understood as coordinate-wise integration. A random vector
has a density (with respect to the Lebesgue measure) if there exists a measurable
fX :Rn →R≥0 such that

P (X ∈ B) =
∫

B
fX(x)dx ∀B ∈B(Rn) .

Random variables X1, . . . , Xn with density f(X1,...,Xn ) are independent if and only if

f(X1,...,Xn )(x1, . . . , xn) = fX1 (x1) · · · fXn (xn) .

The different types of convergence defined earlier for random variables have
direct analogues for random vectors. Moreover, an equivalent version of Theo-
rem B.47 holds.

B.9 Gaussian vectors and fields

In this section, we recall some basic definitions and properties related to Gaussian
fields. A good reference is the first chapter of Le Gall’s book [212].
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B.9.1 Basic definitions and properties

We already defined a normal N (0,1) earlier. More generally, given m ∈ R and σ2 ∈
R≥0, a random variable X is called a Gaussian with mean m and variance σ2, X ∼
N (m,σ2), if it admits the density

fX (x) = 1p
2πσ2

e−(x−m)2/2σ2
.

As is easily verified, E [X ] = m and Var(X ) =σ2.

Exercise B.18. Show that X ∼ N (m,σ2) if and only if its characteristic function is
given by

E [e it X ] = exp
(− 1

2σ
2t 2 + imt

)
.

Exercise B.19. Let X1, . . . , Xn be independent Gaussian random variables with Xi ∼
N (mi ,σ2

i ) and let t1, . . . , tn ∈R. Show that

n∑
i=1

ti Xi ∼N (t1m1 +·· ·+ tnmn , t 2
1σ

2
1 +·· ·+ t 2

nσ
2
n) .

Let us now introduce Rn-valued Gaussian vectors. As before, elements of Rn will be
denoted using bold letters: x,y, . . . and the scalar product will be denoted x ·y.

Definition B.53. A random vector X :Ω→Rn is Gaussian if the random variable t·X
is Gaussian for each t ∈Rn .

By Exercise B.18, this is equivalent to requiring that, for all t ∈Rn ,

E [e it·X] = exp
(− 1

2 Var(t ·X)+ iE [t ·X]
)= exp

(− 1
2 t ·Σt+ im · t

)
,

where m = (m1, . . . ,mn) with mi = E [Xi ] and Σ is the n ×n matrix with elements
Σ(i , j ) = Cov(Xi , X j ). m and Σ are called the mean and covariance matrix of X. We
write in this case X ∼N (m,Σ).

Since 1 ≥ |E [e it·X]| = exp(− 1
2 t ·Σt), we have t ·Σt ≥ 0: the covariance matrix is

nonnegative-definite.

Lemma B.54. Let Σ be an n×n nonnegative-definite symmetric matrix. Then there
exists an n ×n matrix A such that Σ = A A⊺ (where A⊺ denotes the transpose of A).
Moreover, if Σ is invertible, then so is A.

Proof. Let us denote by λ1, . . . ,λn the eigenvalues of Σ; observe that λi ≥ 0, i =
1, . . . ,n, since Σ is nonnegative-definite. Symmetry of Σ implies the existence of an

orthogonal matrix O such that Σ = O⊺DO, where D = diag(λ1, . . . ,λn). Let D1/2 def=
diag(

√
λ1, . . . ,

√
λn) and A = O⊺D1/2. It then follows that A A⊺ = O⊺D1/2D1/2O =

O⊺DO =Σ, as required.
If Σ is invertible, then λi > 0, i = 1, . . . ,n. This implies that D1/2 is invertible.

Since O is also invertible, it follows that so is A.

Exercise B.20. Show that the components of a Gaussian vector X ∼ N (m,Σ) are
independent if and only if Σ is diagonal.
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Exercise B.21. Show that X ∼ N (m,Σ) if and only if X = AY + m with Y a ran-
dom vector with independent N (0,1) components and A an n×n matrix such that
A A⊺ =Σ.

Proposition B.55. Let Σ be a positive-definite symmetric n ×n matrix and m ∈ Rn .
Then X ∼N (m,Σ) if and only if it possesses the following density with respect to the
Lebesgue measure dx:

x 7→ 1

(2π)n/2
√
|detΣ|

exp
(− 1

2 (x−m) ·Σ−1(x−m)
)

.

Proof. Using Exercise B.21, X ∼N (m,Σ) if and only X = AY+m, with Σ= A A⊺ and
Y a Gaussian random vector with i.i.d. N (0,1) components. The density of Y is
given by

fY(y) = 1

(2π)n/2
exp

(− 1
2∥y∥2

2

)
.

Note that, by Lemma B.54, A is invertible. The claim therefore follows from the
change of variable formula, fX(x) = fY(A−1(x−m)) |detΣ|−1/2, where we have used
the fact that the absolute value of the Jacobian of the transformation is equal to
|det(A−1)| = |det A|−1 = |detΣ|−1/2.

Exercise B.22. Use the method exposed in the previous proof to prove (8.61).

B.9.2 Convergence of Gaussian vectors

The following result shows that limits of convergent sequences of Gaussian random
vectors are themselves Gaussian.

Proposition B.56. Let (X(k))k≥1 be a sequence of Gaussian random vectors, with
mean m(k) and covariance matrix Σ(k). Then X(k) converges to a random vector X
in distribution if and only if the limits m = limk→∞ m(k) and Σ = limk→∞Σ(k) both
exist. In that case, X is also a Gaussian vector, with mean m and covariance matrix Σ.

Proof. Assume that m = limk→∞ m(k) and Σ= limk→∞Σ(k) exist. Then,

lim
k→∞

E [e it·X(k)
] = lim

k→∞
exp

(− 1
2 t ·Σ(k)t+ im(k) · t

)= exp
(− 1

2 t ·Σt+ im · t
)

exists and is continuous at t = 0. It thus follows from Levy’s continuity theorem
(n-dimensional version of Theorem B.47) that the sequence (X(k))k≥1 converges in
distribution and that the limit is a Gaussian random vector with mean m and co-
variance matrix Σ.

Assume now that X(k) → X in distribution. The characteristic function of X sat-
isfies, for any t ∈Rn ,

E [e it·X] = lim
k→∞

E [e it·X(k)
] = lim

k→∞
exp

(− 1
2 t ·Σ(k)t+ im(k) · t

)
.

In particular, choosing t = tei , this yields

lim
k→∞

exp
(− 1

2 t 2Σ(k)(i , i )
)= |E [e itX·ei ]| ≤ 1.
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This implies that the limits limk→∞Σ(k)(i , i ) (i = 1, . . . ,n) exist in [0,∞]; moreover,
the value +∞ can be excluded, since it would contradict the continuity at t = 0 of
the characteristic function of X.

Similarly, letting t = t (ei +e j ), we obtain the existence of limk→∞Σ(k)(i , j ) for all
i ̸= j . This in turn implies the existence and continuity of

lim
k→∞

exp
(
im(k) · t

)= exp
(− 1

2 t ·Σt
)
E [e it·X] .

Consequently, limk→∞ m(k) also exists. This proves the claim.

Definition B.57. A collection of random variables ϕ = (ϕi )i∈S indexed by a count-
able set S is a Gaussian random field (or simply Gaussian field) if all its finite-
dimensional distributions are Gaussian, that is, if

E [e i
∑

i∈S tiϕi ] = exp
(
− 1

2

∑
i , j∈S

ti t j Cov(ϕi ,ϕ j )+ i
∑
i∈S

ti E [ϕi ]
)

,

for all (ti )i∈S taking only finitely many nonzero values.

As follows from the definition, Proposition B.56 and the Kolmogorov extension the-
orem, a sequence of Gaussian random fields ϕ(k) on S converges to a random field
ϕ on S if and only if the limits

lim
k→∞

E [ϕ(k)
i ], lim

k→∞
Cov(ϕ(k)

i ,ϕ(k)
j )

exist for all i , j ∈ S. Moreover, in that case, (ϕi )i∈S is Gaussian with

E [ϕi ] = lim
k→∞

E [ϕ(k)
i ], Cov(ϕi ,ϕ j ) = lim

k→∞
Cov(ϕ(k)

i ,ϕ(k)
j ) ,

for all i , j ∈ S.

B.9.3 Gaussian fields and independence

For T ⊂ S, let FT
def= σ(ϕ j , j ∈ T ) (defined as the smallest σ-algebra on Ω such that

each ϕ j , j ∈ T , is measurable).

Proposition B.58. Let ϕ = (ϕi )i∈S be a Gaussian field and T ⊂ S. Then FT and
FS\T are independent if and only if Cov(ϕi ,ϕ j ) = 0 for all i ∈ T , j ∈ S \ T .

Proof. See [212, Section 1.3].

B.10 The total variation distance

There are various ways by which one can measure the similarity of two probability
measures. The simplest is the total variation distance.

Definition B.59. The total variation distance between two probability measures µ
and ν on (Ω,F ) is defined by

∥µ−ν∥T V
def= 2 sup

A∈F
|µ(A)−ν(A)| .
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We warn the reader that some authors define ∥µ−ν∥T V without the factor 2.

Lemma B.60. Let µ and ν be two probability measures on (Ω,F ), withµ≪ ν. Then,

∥µ−ν∥T V =
〈∣∣∣1− dµ

dν

∣∣∣
〉
ν
= sup

f :∥ f ∥∞≤1

∣∣〈 f 〉µ−〈 f 〉ν
∣∣ .

Proof. If ρ = dµ/dν, then

µ(A)−ν(A) =
∫

A
(ρ−1)dν≤

∫
(ρ−1)+dν .

Since the inequality is saturated for A = {ρ ≥ 1}, we get

sup
A∈F

{µ(A)−ν(A)} =
∫

(ρ−1)+dν .

In the same way,

sup
A∈F

{ν(A)−µ(A)} =
∫

(ρ−1)−dν .

But since
∫

(ρ−1)+dν−∫
(ρ−1)−dν= ∫

(ρ−1)dν= 0, this gives

sup
A∈F

{µ(A)−ν(A)} = sup
A∈F

{ν(A)−µ(A)} = sup
A∈F

|µ(A)−ν(A)| .

We conclude that
∫

|ρ−1|dν=
∫

(ρ−1)+dν+
∫

(ρ−1)−dν= 2 sup
A∈F

|µ(A)−ν(A)| ,

which proves the first identity. The second is a consequence of the first:

sup
f :∥ f ∥∞≤1

∣∣∣
∫

f dµ−
∫

f dν
∣∣∣= sup

f :∥ f ∥∞≤1

∣∣∣
∫

f (ρ−1)dν
∣∣∣=

∫
|ρ−1|dν= ∥µ−ν∥T V ,

the supremum being achieved by the function 1{ρ≥1} −1{ρ<1}.

B.11 Shannon’s Entropy

Shannon’s Entropy SSh(·) is the central object for the implementation of the Max-
imum Entropy Principle, which was used in Chapter 1 to motivate the Gibbs dis-
tribution. In this section, we show that SSh(·) is unique, up to a multiplicative con-
stant, among a class of functions S : M1(Ω) → R satisfying a certain set of condi-
tions, one of which being to be maximal for the uniform distribution. We follow the
approach of Khinchin [191].

Consider a random experiment modeled by some probability space (Ω,F ,P ).
Consider a partition A ofΩ into a finite number of events, called atoms. When A is
a partition with k atoms, we will write A = {A1, . . . , Ak }. For convenience, we allow
some atoms to be empty.

We should consider such a partition as corresponding to some partial informa-
tion about the outcome ω ∈ Ω of the experiment. For example, when throwing a
dice, A= {A1, A2}, where A1 = {the outcome is even} A2 = {the outcome is odd}.
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Our aim is to define the unpredictability of the outcome of the measurement,
corresponding to a partition A. Since the probability P is fixed, the unpredictabil-
ity associated to the partition A = {A1, . . . , Ak } will be defined through a function
S(P (A1), . . . ,P (Ak )), usually denoted simply S(A) or S(A1, . . . , Ak ) and called a func-
tion of the partition A. Notice that, since k is arbitrary, we are actually looking for a
collection of functions.

Below, we define four conditions, most of which will be natural in terms of un-
predictability, and then show that the only function that satisfies these conditions
is, up to a positive multiplicative constant, the Shannon Entropy.

The first three assumptions are natural. First, for all partitions A= {A1, · · · , Ak },

S(A1, · · · , Ak ) is continuous in (P (A1), . . . ,P (Ak )) . (U1)

Second, we assume that unpredictability is not sensitive to the presence of atoms
that have zero probability; for a partition A= {A1, . . . , Ak },

P (Ak ) = 0 implies S(A1, · · · , Ak−1, Ak ) = S(A1, . . . , Ak−2, Ak−1 ∪ Ak ) . (U2)

Third, as discussed in Section 1.2.2, we want the unpredictability to be maximal
for partitions whose atoms have equal probabilities. Namely, call a partition U =
{U1, . . . ,Um} uniform if P (Ui ) = P (U j ) = 1

m for all i , j .

Among partitions with m atoms, S is maximal for the uniform partitions. (U3)

To motivate the fourth assumption, we introduce some more terminology. A parti-
tion A is finer than a partition B if each atom of B is a union of atoms of A. When
realizing the random experiment, if A is finer than B, information about the out-
come ω ∈Ω can be revealed in two stages: first, by revealing the atom B j such that
B j ∋ω, and then, given B j , one reveals the atom Ai such that B j ⊃ Ai ∋ω.

The unpredictability associated to the first stage is measured by S(B). After ob-
serving the result of the first stage, one should update our probability measure:
assuming that the atom B j occurred in the first stage, the relevant probability mea-
sure is P (· |B j ). The unpredictability of the second stage is thus measured by

S(A |B j )
def= S

(
P (A1 |B j ), . . . ,P (An |B j )

)
.

Averaging over the possible outcomes B j of the first stage, we are led to define the
entropy of the second stage by

S(A |B)
def=

∑
j

P (B j )S(A |B j ) .

Now, the unpredictability of the complete experience should not depend on the
way the experiment was conducted (in one stage or in two stages). It is therefore
natural to assume that

S(A) = S(B)+S(A |B) . (U4)

Lemma B.61. The Shannon entropy, defined by

SSh(B)
def= −

k∑
j=1

P (B j ) logP (B j ) (B.24)

for all partitions B= {B1, . . . ,Bk }, satisfies (U1)-(U4).
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Proof. (U1) and (U2) are clearly satisfied, (U3) has been shown in Lemma 1.9,
and (U4) can be verified by a straightforward computation.

Theorem B.62. Let S(·) be a function on finite partitions satisfying (U1)–(U4). Then
there exists a constant λ> 0 such that

S(·) =λSSh(·) .

We express (U4) in a slightly different way, better suited for the computations to
come. For two arbitrary partitions A,B, consider the composite partition

A∨B
def= {A∩B : A ∈A,B ∈B} .

Then, (U2) implies that S(A∨B |B) = S(A |B) and (U4) can be used in the following
form:

S(A∨B) = S(B)+S(A |B) . (U4)

Notice that if P (A ∩B) = P (A)P (B) for all A ∈ A and all B ∈ B, then S(A |B) = S(A)
and (U4) implies

S(A∨B) = S(A)+S(B) . (B.25)

We will first start by proving a version of Theorem B.62 for uniform partitions U.
Below, |U| denotes the number of atoms in U.

Proposition B.63. Let S(·) be a function defined on uniform partitions, which is
monotone increasing in |U| and which is additive in the sense that if P (U ∩U ′) =
P (U )P (U ′) for all U ∈U and all U ′ ∈U′. Then,

S(U∨U′) = S(U)+S(U′) . (B.26)

Then there exists λ> 0 such that S(U) =λ log |U| for all uniform partitions U.

Proof. Since S(·) is constant on partitions with the same number of atoms, we de-

fine L(k)
def= S(U) if |U| = k. By the assumption, L(k) is increasing in k. Let then

U1, . . . ,Un be independent partitions, each containing k atoms. On the one hand,
U1 ∨ ·· · ∨Un is also a uniform partition that contains kn atoms and, therefore,
S(U1 ∨·· ·∨Un) = L(kn). On the other hand, by (B.26),

S(U1 ∨·· ·∨Un) =
n∑

j=1
S(U j ) = n L(k) ,

and so L(kn) = nL(k). We verify that L(·) is necessarily of the form L(k) =λ logk, for
some λ > 0. Namely, fix two arbitrary integers k,ℓ ≥ 2. Choose some large integer
m ≥ 1 and find some integer n so that kn ≤ ℓm < kn+1. On the one hand, n logk ≤
m logℓ < (n + 1)logk. On the other hand, the monotonicity of L(·) implies that
nL(k) = L(kn) ≤ L(ℓm) = mL(ℓ) and, similarly, mL(ℓ) ≤ (n +1)L(k), which with the
previous set of inequalities gives

∣∣∣ L(ℓ)

L(k)
− logℓ

logk

∣∣∣≤ 1

m
.

Since m was arbitrary, this shows that L(k)/ logk does not depend on k and must
be equal to a constant.
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Proof of Theorem B.62: Assume S(·) satisfies (U1)–(U4). Let us temporarily denote
by Sk (·) the function S(·) when restricted to partitions with k atoms. Using (U2),
followed by (U3),

Sk
( 1

k , . . . , 1
k

)= Sk+1
( 1

k , . . . , 1
k ,0

)≤ Sk+1
( 1

k+1 , . . . , 1
k+1

)
.

Note that (B.25) guarantees (B.26). This shows that, when restricted to uniform
partitions, S(·) satisfies the hypotheses of Proposition B.63, yielding the existence
of a constant λ> 0 such that S(U) =λ log |U| for all uniform partitions U.

Let us now consider an arbitrary partition B = {B1, . . . ,Bk }. By (U1), we can
safely assume that the probabilities P (B j ) ∈ Q. If we consider a collection of in-

tegers w1, . . . , wk such that P (B j ) = w j

Z , where Z = w1 +·· ·+wk , the partition B can
be reinterpreted as follows. Consider a collection of Z labeled balls, each of a spe-
cific color, among k different colors. Assume that there are exactly w j balls of color
j , j = 1, . . . ,k. A ball is sampled at random, uniformly. Then clearly, the color of the
ball sampled has color j with probability

w j

Z = P (B j ). We therefore reinterpret B j

as the event “the sampled ball has color j ” and use this to compute S(B).
In this same experiment, consider now the partition A= {A1, . . . , AZ } defined by

Ai = {the ball i was sampled}.
Since A is finer than B we have A∨B = A and, since A is uniform, S(B∨A) =

S(A) =λ log Z .
Now, observe that

P (Ai |B j ) =
{

1
w j

if i ∈ B j ,

0 otherwise.

Therefore, using (U2), S(A |B j ) =λ log w j =λ logP (B j )+λ log Z , and so

S(A |B) =λ
k∑

j=1
P (B j ) logP (B j )+λ log Z .

This proves the claim, since assumption (U4) implies

S(B) = S(A)−S(A |B) =−λ
k∑

j=1
P (B j ) logP (B j ) .

B.12 Relative entropy

B.12.1 Definition, basic properties

We have seen that, when µ,ν are two probability measures such that µ ≪ ν,
then there exists a nonnegative measurable function dµ/dν, the Radon–Nikodým

derivative of µ with respect to ν, such that µ(A) = ∫
A

dµ
dνdν for all A ∈F .

Definition B.64. The relative entropy h(µ |ν) of µ with respect to ν is defined as

h(µ |ν)
def=

{〈 dµ
dν log dµ

dν

〉
ν, if µ≪ ν,

∞ otherwise.

Since x log x ≥−e−1 on R>0, h(µ |ν) is always well defined (but can be equal to +∞).
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Lemma B.65. h(µ |ν) ≥ 0, with equality if and only if µ= ν.

Proof. We can assume that h(µ |ν) < ∞. Since Ψ(x) = x log x is strictly convex on
(0,∞), Jensen’s inequality implies that

h(µ |ν) = 〈
Ψ( dµ

dν )
〉
ν ≥Ψ

(〈dµ
dν 〉ν

)=Ψ(1) = 0.

Moreover, Jensen’s inequality is an equality if and only if dµ
dν is almost surely a con-

stant, and the latter can only be 1.

Proposition B.66. 1. (µ,ν) 7→ h(µ |ν) is convex.

2. µ 7→ h(µ |ν) is strictly convex.

To prove this proposition, we will need the following elementary inequality.

Exercise B.23. Let ai ,bi , i = 1, . . . ,n, be nonnegative real numbers. Set A
def= ∑n

i=1 ai

and B
def= ∑n

i=1 bi . Then,
n∑

i=1
ai log

ai

bi
≥ A log

A

B
,

with equality if and only if there exists λ such that ai = λbi for all 1 ≤ i ≤ n. Hint:
use Lemma B.65.

Proof of Proposition B.66. 1. Let α ∈ (0,1) and take four probability measures µ1,

µ2, ν1, ν2. Set µ
def= αµ1 + (1−α)µ2 and ν

def= αν1 + (1−α)ν2. We need to prove that

h(µ |ν) ≤αh(µ1 |ν1)+ (1−α)h(µ2 |ν2) . (B.27)

We can assume that µi ≪ νi , i = 1,2, so that the right-hand side is finite and the
following Radon–Nikodým derivatives are well defined: for i = 1,2,

fi
def= dµi

dν
, gi

def= dνi

dν
, hi

def= dµi

dνi
, φ

def= dµ

dν
.

With these notations, (B.27) can be rewritten, thanks to (B.16),

〈φ logφ〉ν ≤α〈h1 logh1〉ν1 + (1−α)〈h2 logh2〉ν2

=
〈
α f1 log

f1

g1
+ (1−α) f2 log

f2

g2

〉
ν

. (B.28)

By (B.15), we haveα f1+(1−α) f2 =φ andαg1+(1−α)g2 = 1, so Exercise B.23 implies
that

α f1 log
f1

g1
+ (1−α) f2 log

f2

g2
=α f1 log

α f1

αg1
+ (1−α) f2 log

(1−α) f2

(1−α)g2
≥φ logφ ,

pointwise inΩ. Integrating this inequality with respect to ν yields (B.28).
2. This claim follows immediately from the corresponding properties of the

function x 7→ x log x.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

512 Appendix B. Mathematical Appendices

B.12.2 Two useful inequalities

Pinsker’s inequality

The relative entropy is a measure of the similarity of two measures µ and ν. How-
ever, it is not a metric, as it is not even symmetric in its two arguments. Actually,
even its symmetrized version h(ν |µ)+h(µ |ν) fails to be a metric, as it violates the
triangle inequality. Nevertheless, smallness of the relative entropy between two
measures allows one to control their total variation distance (see Section B.10).

Lemma B.67 (Pinsker’s inequality). Let µ and ν be two probability measures on the
same measurable space, with µ≪ ν. Then

∥µ−ν∥T V ≤
√

2h(µ |ν) . (B.29)

Proof. Notice that, by applying Jensen’s inequality,

(1+x) log(1+x)−x = x2
∫ 1

0
dt

∫ t

0
ds

1

1+xs

≥ 1
2 x2 1

1+x
∫ 1

0 dt
∫ t

0 ds 2s
= x2

2(1+ x
3 )

. (B.30)

Let m
def= dµ

dν −1. Then 〈m〉ν = 0 and, using (B.30),

h(µ |ν) = 〈(1+m) log(1+m)〉ν = 〈(1+m) log(1+m)−m〉ν ≥
〈 m2

2(1+ m
3 )

〉
ν

.

But, using Lemma B.60 and the Cauchy-Schwartz inequality,

(∥µ−ν∥T V

)2 = 〈|m|〉2
ν =

〈 |m|
(1+ m

3 )1/2

(
1+ m

3

)1/2
〉2

ν
≤

〈 m2

1+ m
3

〉
ν

〈
1+ m

3

〉
ν .

Since
〈

1+ m
3

〉
ν = 1, this proves (B.29).

An exponential inequality

Pinsker’s inequality (Lemma B.67) allows one to control the differences |µ(A)−ν(A)|
uniformly in A ∈ F in terms of the relative entropy between the two measures.
Sometimes, however, we need to control ratio of such probabilities. The following
result can then be useful.

Lemma B.68. Let µ and ν be two equivalent probability measures on some measur-
able space (Ω,F ). If ν(A) > 0, then

µ(A)

ν(A)
≥ exp

(
−h(ν |µ)+e−1

ν(A)

)
.
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Proof. From Jensen’s inequality and the inequality x log x ≥ −e−1, which holds for
all x > 0, we can write

log
µ(A)

ν(A)
= log

〈dµ
dν1A〉ν
〈1A〉ν

= log〈dµ
dν | A〉ν

≥ 〈log dµ
dν | A〉ν =−

〈 dν
dµ log dν

dµ 1A〉µ
ν(A)

≥−
〈 dν

dµ log dν
dµ 〉µ+e−1

ν(A)
.

B.13 The symmetric simple random walk on Zd

Good references for these topics are the books by Spitzer [319], Lawler [209] and
Lawler and Limic [211].

Let (ξn)n≥1 be an i.i.d. sequence of random vectors uniformly distributed in the
set

{
j ∈Zd : j ∼ 0

}
. The simple random walk onZd started at i ∈Zd is the random

process (Xn)n≥0 with X0 = i and defined by

Xn
def= i +

n∑
k=1

ξk .

We denote the distribution of this process by Pi .

B.13.1 Stopping times and the strong Markov property

For each n ≥ 0, we consider the σ-algebra Fn
def= σ(X0, . . . , Xn). A random variable

T with values in Z≥0 ∪ {+∞} is a stopping time if {T ≤ n} ∈ Fn for all n, that is, if
the occurrence of the event {T ≤ n} can be decided by considering only the first n
steps of the walk. Given a stopping time T , let FT denote the σ-algebra containing
all events A such that A∩ {T ≤ n} ∈Fn for all n. That is, FT contains all events that
depend only on the part of the trajectory of the random walk up to time T .

We then have the following result.

Theorem B.69 (Strong Markov property). Let T be a stopping time. Then, on the
event {T < ∞}, the random process (XT+n − XT )n≥0 has the same distribution as a
simple random walk started at 0 and is independent of FT .

B.13.2 Local Limit Theorem

Theorem B.70. There exists ρ > 0 such that, for any i = (i1, . . . , id ) ∈ Zd such that∑d
k=1 ik and n have the same parity and ∥i∥2 < ρn,

P0(Xn = i ) = 2(2πn/d)−d/2 exp
(
−d∥i∥2

2

2n
+O

(
n−1)+O

(∥i∥4
2 n−3)) . (B.31)

Proof. See, for example, [211, Theorem 2.3.11], using the fact that the random walk
(X2n)n≥0 is aperiodic (see [211, Theorem 2.1.3] for a similar argument).
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B.13.3 Recurrence and transience

Given A ⊂ Zd , we consider the first entrance times in A, τA
def= inf{n ≥ 0 : Xn ∈ A}

and τ+A
def= inf{n ≥ 1 : Xn ∈ A}, with the usual convention that inf∅ = +∞. When

A = {k}, we write simply τk ,τ+k .

Definition B.71. The random walk is recurrent if P0(τ+0 <∞) = 1. Otherwise, it is
transient.

Theorem B.72. The simple random walk on Zd is transient if and only if

∫

[−π,π]d

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

dp <∞ . (B.32)

Proof. Let (Xn)n≥0 be the walk starting at 0 and let p
def= P0(τ+0 <∞). First observe

that, by the strong Markov property, the number N0 of returns of the walk to 0 sat-
isfies, for all k ≥ 0, P0(N0 = k) = pk (1−p). In particular,

∑
n≥1

P0(Xn = 0) = E0
[ ∑

n≥1
1{Xn=0}

]= E0[N0]

if finite if and only if p < 1, that is, if and only if X is transient. We show that the
convergence of this series is equivalent to (B.32).

Using the identity (2π)−d
∫

[−π,π]d e ip· j dp = 1{ j=0}, for all j ∈ Zd , we can rewrite

P0(Xn = 0) = (2π)−d
∫

[−π,π]d E0
[
e ip·Xn

]
dp. Now observe that,

E0
[
e ip·Xn

]= E[e ip·(ξ1+···+ξn )]= ( 1
2d

∑
j∼0

cos(p · j )
)n def= (

φξ(p)
)n .

Therefore, for any λ ∈ (0,1),

∑
n≥1

λnP0(Xn = 0) =
∫

[−π,π]d

∑
n≥1

(
λφξ(p)

)n dp

(2π)d
=

∫

[−π,π]d

λφξ(p)

1−λφξ(p)

dp

(2π)d
.

Clearly, limλ↑1
∑

n≥1λ
nP0(Xn = 0) = ∑

n≥1P0(Xn = 0). It thus only remains for us to
show that the limit can be taken inside the integral in the right-hand side. To do
that, first observe that φξ(p) is positive for all p ∈ [−δ,δ]d , as soon as 0 < δ < π

2 .
Therefore, by monotone convergence,

lim
λ↑1

∫

[−δ,δ]d

λφξ(p)

1−λφξ(p)

dp

(2π)d
=

∫

[−δ,δ]d

φξ(p)

1−φξ(p)

dp

(2π)d
.

To deal with the integral over [−π,π]d \ [−δ,δ]d , observe that, on this domain, the
sequence of functions

(
λφξ(p)/

(
1−λφξ(p)

))
0<λ<1 converges pointwise as λ ↑ 1 and

is uniformly bounded. Thus, by dominated convergence,

lim
λ↑1

∫

[−π,π]d \[−δ,δ]d

λφξ(p)

1−λφξ(p)

dp

(2π)d
=

∫

[−π,π]d \[−δ,δ]d

φξ(p)

1−φξ(p)

dp

(2π)d

and we are done.

The following corollary, a result originally due to Pólya, shows that the simple ran-
dom walk behaves very differently in low dimensions (d = 1,2) and in high dimen-
sions (d ≥ 3).
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Corollary B.73. The simple random walk X is transient if and only if d ≥ 3.

Proof. A Taylor expansion yields cos(x) = 1− 1
2 x2 + 1

24 x4
0 for some 0 ≤ x0 ≤ x. It

follows that, for any x ∈ [−1,1], 1− 1
2 x2 ≤ cos(x) ≤ 1− 11

24 x2. Therefore, changing
variables to spherical coordinates, we see that the integral in (B.32) is convergent if
and only if ∫ 1

0
r−2r d−1 dr =

∫ 1

0
r d−3 dr <∞ ,

which is true if and only if d > 2.

By definition, a recurrent random walk returns to its starting point with prob-
ability one. The next result quantifies the probability that it manages to travel far
away before the first return.

Theorem B.74. For all n ≥ 1,

P0
(
τB(n)c < τ+0

)=
{

1
n+1 in d = 1,

O
( 1

logn

)
in d = 2.

Proof. The first statement is a particular instance of the gambler’s ruin estimate;
it is discussed, for example, in [209, equation (1.20)]. The second estimate can be
found in [209, Proposition 1.6.7].

The next result shows that, while a recurrent random walk visits a.s. all vertices,
a transient one will a.s. miss arbitrarily large regions on its way to infinity.

Theorem B.75. For any r ≥ 0 and any i ∈Zd \B(r −1),

lim
n→∞Pi

(
τB(n)c > τ+B(r )

)= 1,

if and only if X is recurrent.

Proof. See, for example, [209, Chapter 2].

B.13.4 Discrete potential theory

The n-step Green function is defined by

Gn(i , j )
def= Ei

[ n∑
k=0

1{Xk= j }

]
, i , j ∈Zd .

Let A be a nonempty, proper subset of Zd . The Green function in A is defined by

G A(i , j )
def= Ei

[τAc−1∑
k=0

1{Xk= j }

]
, i , j ∈Zd .

In the transient case, d ≥ 3, the Green function is defined by

G(i , j )
def= Ei

[ ∞∑
n=0

1{Xn= j }

]
, i , j ∈Zd .
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In the recurrent case, d ≤ 2, the potential kernel is defined by

a(i , j )
def= lim

n→∞
{
Gn(i , j )−Gn(i , i )

}
, i , j ∈Zd .

We will also use the shorter notations Gn(i ) ≡ Gn(0, i ), G A(i ) ≡ G A(0, i ), G(i ) ≡
G(0, i ), a(i ) ≡ a(0, i ).

Theorem B.76. 1. In d = 1,

GB(n)(0) = a(n +1) = n +1, ∀n ≥ 1.

2. In d = 2,

GB(n)(0) = 2

π
logn +O(1) , a(i ) = 2

π
log∥i∥2 +O(1) .

3. In d ≥ 3,

GB(n)(0) =G(0)+O(n2−d ) , G(i ) = ad∥i∥2−d
2 +O(∥i∥−d

2 ) ,

where ad
def= d

2 Γ( d
2 −1)π−d/2 (Γ denotes here the gamma function).

Proof. The claim in d = 1 is proved in [209, Theorem 1.6.4]. Those in d = 2 can
be found in [209, Theorems 1.6.2 and 1.6.6], and those in higher dimensions are
established in [209, Theorem 1.5.4 and Proposition 1.5.8]

Exercise B.24. Show that, in d = 1,2,

lim
n→∞

(
GB(n)(i )−GB(n)(0)

)= a(i ) .

Finally, we will need the following estimate on the spatial variation of the Green
function.

Theorem B.77. There exists C < ∞ such that, for any A ⋐ Z2 and any neighbors
i , j ∈Zd ,

G A(i )−G A( j ) ≤C .

Proof. This follows from [209, Proposition 1.6.3] and the asymptotic behavior of
the potential kernel.

B.14 The isoperimetric inequality on Zd

In this section, we provide a version of the isoperimetric inequality in Zd . Given

S ⊂Zd , we denote by ∂e S
def= {

{i , j } ∈ EZd : i ∈ S, j ̸∈ S
}

the edge boundary of S.

Theorem B.78. For any S ⋐Zd ,

|∂e S| ≥ 2d |S|(d−1)/d . (B.33)
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Notice that (B.33) is saturated for cubes, for example S =B(n).

For simplicity, let |D| def= ℓd (D) denote the Lebesgue measure of D ⊂ Rd . The
scaling property of the Lebesgue measure then reads |λD| = λd |D| for all λ > 0. If

A,B ⊂Rd , let A+B
def= {

x + y : x ∈ A, y ∈ B
}
.

The following is a weak version of the Brunn–Minkowski inequality, adapted
from [131, Theorem 4.1]. Let P denote the collection of all parallelepipeds of Rd

whose faces are perpendicular to the coordinate axes.

Proposition B.79. If A,B ⊂Rd are finite unions of elements of P , then

|A+B |1/d ≥ |A|1/d +|B |1/d . (B.34)

Proof. First observe that, for all x ∈Rd , |A+B | = |A+B+x| = |A+(B+x)|. Therefore,
one can always translate A or B in an arbitrary way. In particular, one can always
assume A and B to be disjoint.

Now if A and B are arbitrary unions of parallelepipeds, we can express A ∪B
as a union

⋃n
k=1 Ck , where Ck ∈ P , and the interior of the Ck s are nonoverlapping

(they can, however, share points on their boundaries). We will prove the statement
by induction on n.

To prove the claim for n = 2, assume that A ∈ P has volume
∏d

i=1 ai and that

B ∈P is disjoint from A and of volume
∏d

i=1 bi . Then, |A +B | =∏d
i=1(ai +bi ) and,

since (
∏d

i=1 xi )1/d ≤ 1
d

∑d
i=1 xi , see (B.1), we have

( d∏
i=1

ai

ai +bi

)1/d
+

( d∏
i=1

bi

ai +bi

)1/d
≤ 1

d

d∑
i=1

ai

ai +bi
+ 1

d

d∑
i=1

bi

ai +bi
= 1,

which proves (B.34) for those particular sets.
Let us then suppose that the claim has been proved up to n and assume that

A and B are such that their union can be expressed as a union of n + 1 non-
overlapping parallelepipeds: A ∪B = ⋃n+1

i=1 Ci . Since A and B can be assumed to
be far apart, A and B can each be expressed using a subset of {C1, . . . ,Cn+1}. For
simplicity, assume that A =⋃l

i=1 Ci , l ≥ 2 and B =⋃n+1
i=l+1 Ci .

Observe that C1 and C2 can always be separated by some plane π, perpendicu-
lar to one of the coordinate axes. Denoting byΠ+ andΠ− the two closed half spaces

delimited by π, let A± def= A ∩Π± and B± def= B ∩Π±. Again using the fact that B can
be translated in an arbitrary manner, we can assume that

|B±|
|B | = |A±|

|A| .

Now, observe that A+∪B+ and A−∪B− can each be expressed as unions of at most
n parallelepipeds. We can therefore use the induction hypothesis as follows:

|A∪B | = |A+∪B+|+ |A−∪B−|
≥ (|A+|1/d +|B+|1/d )d + (|A−|1/d +|B−|1/d )d

= |A+|
{

1+
( |B+|
|A+|

)1/d }d
+|A−|

{
1+

( |B−|
|A−|

)1/d }d

= |A|
{

1+
( |B |
|A|

)1/d }d

= (|A|1/d +|B |1/d )d .
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Proof of Theorem B.78. Remember the notation S0 = [− 1
2 , 1

2 ]d used for the closed

unit cube of Rd . We can always identify S ⋐ Zd with AS
def= ⋃

i∈S {i +S0} ⊂ Rd . Note
that the (Euclidean) boundary of AS is made of (d − 1)-dimensional unit cubes
which are crossed in their middle by the edges of ∂e S. Notice also that, for all small
ϵ> 0, (AS +ϵS0)\ AS is a thin layer wrapping AS , of thickness ϵ/2. We can therefore
count the number of edges in ∂e S by computing the following limit:

|∂e S| = lim
ϵ↓0

|AS +ϵS0|− |AS |
ϵ/2

. (B.35)

For a fixed ϵ> 0, we use (B.34) as follows:

|AS +ϵS0| =
(|AS +ϵS0|1/d )d ≥ |AS |+ϵd |AS |(d−1)/d .

In the last step, we used (a +b)n ≥ an +nan−1b for a,b ≥ 0, the scaling property
of the Lebesgue measure and |S0| = 1. Using this in (B.35), we get (B.33) since
|AS | = |S|.

Let us finally state an immediate consequence, that is used in Chapter 7.

Corollary B.80. Let S ⋐Zd and write ∂exS
def= {

i ∈ Sc : d∞(i ,S) ≤ 1
}
. Then,

|∂exS| ≥ |S| d−1
d .

Proof. Since there can be at most 2d edges of ∂e S incident at a given vertex of ∂exS,
we have |∂e S| ≤ 2d |∂exS|. The conclusion thus follows from (B.33).

B.15 A result on the boundary of subsets of Zd

In this section, we provide the tools needed to prove Lemma 7.19.
Consider the set of ⋆-edges of Zd , defined by

E ⋆
Zd

def= {
{i , j } ∈Zd ×Zd : ∥ j − i∥∞ = 1

}
.

That is, E ⋆
Zd contains all edges between pairs of vertices which are corners of the

same unit cube in Zd .
Given E ⊂ E ⋆

Zd and a vertex i ∈ Zd , we denote by I (i ;E) the number of ⋆-edges

of E having i as an endpoint. The boundary of E is then defined as the set ∂E
def={

i ∈Zd : I (i ;E) is odd
}
.

A ⋆-path between two vertices i , j ∈ Zd is a set E ⊂ E ⋆
Zd with ∂E = {i , j }. A ⋆-

cycle is a non-empty set E ⊂ E ⋆
Zd with ∂E =∅.

Two vertices i , j ∈ Zd are ⋆-connected in A ⊂ Zd if there exists a ⋆-path be-
tween i to j , all of whose⋆-edges are made of two vertices of A. (A vertex i is always
considered to be ⋆-connected to itself.) A set A ⊂ Zd is ⋆-connected if all pairs of

vertices i , j ∈ A are ⋆-connected in A. A set A ⊂Zd is c-connected if Ac def= Zd \ A is
⋆-connected.

For a set A ⊂Zd , the⋆-interior-boundary is ∂in
⋆ A

def= {
i ∈ A : ∃ j ̸∈ A, {i , j } ∈ E ⋆

Zd

}
,

the ⋆-exterior-boundary is ∂ex
⋆ A

def= {
i ̸∈ A : ∃ j ∈ A, {i , j } ∈ E ⋆

Zd

}
and the ⋆-edge-

boundary is ∂⋆A
def= {

{i , j } ∈ E ⋆
Zd : i ∈ A, j ̸∈ A

}
.
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Let the set of ⋆-triangles be defined by

T
def= {

[i , j ,k]
def= {

{i , j }, { j ,k}, {k, i }
}⊂ E ⋆

Zd

}
.

That is, a ⋆-triangle is a cycle built out of three distinct ⋆-edges whose endpoints
all belong to the vertices of a common unit cube in Zd .

In the sequel, it will be convenient to identify a subset E ⊂ E ⋆
Zd with the element

of {0,1}
E ⋆

Zd equal to 1 at each ⋆-edge e ∈ E and 0 everywhere else. The set {0,1}
E ⋆

Zd

can be seen as a group for the coordinate-wise addition modulo 2, which we denote
by ⊕. With this identification, the symmetric difference between two sets E and F
can be expressed as E △F = E ⊕F . In particular, E ⊕E =∅.

The following is a discrete version of (a special case of) the Poincaré Lemma of
differential topology. Informally, it states that any ⋆-cycle can be realized as the
boundary of a surface built out of ⋆-triangles.

Lemma B.81. Let C be a bounded ⋆-cycle. There exists a finite collection of ⋆-
triangles T ′ ⊂T such that

C =
⊕

T∈T ′
T .

The constructive proof given below uses the following elementary property: if C is
a cycle and T is a triangle, then C ⊕T is again a cycle or is empty.

Proof of Lemma B.81: We construct T ′ using the following algorithm.

Step 0. Set T ′ =∅.

Step 1. If C is empty, then stop. Otherwise, go to Step 2.

Step 2. If there exist two ⋆-edges e = {i , j },e ′ = { j ,k} in C with ∥k − i∥∞ = 1, then:

– T = [i , j ,k] is a ⋆-triangle;

– replace T ′ by T ′∪ {T };

– replace C by C ⊕T . Note that the number of ⋆-edges in C decreases at
least by 1 in this operation.

– Go to Step 1.

Otherwise go to Step 3.

Step 3. Let us denote by [C ] the smallest (with respect to inclusion) parallelepiped
{a1, . . . ,b1}× ·· · × {ad , . . . ,bd } ⊂ Zd , am ≤ bm , such that C is a ⋆-cycle in [C ].
Let ℓ = min{1 ≤ m ≤ d : am < bm}. Let e = {i , j },e ′ = { j ,k} be two ⋆-edges in
C such that j ∈ ∂in

⋆ [C ] and the ℓth component of j is equal to bℓ. Note that,
necessarily, ∥k−i∥∞ = 2. Let j ′ ∈ [C ]\∂in

⋆ [C ] such that ∥ j ′−i∥∞ = ∥ j ′−k∥∞ = 1.
We add to T ′ the two triangles T1 = [i , j , j ′] and T2 = [ j ,k, j ′] and replace C
by C ⊕T1 ⊕T2. Note that during this operation, the number of ⋆-edges in C
does not increase and either (i) [C ] decreases (with respect to inclusion), or
(ii) the number of vertices in C ∩∂in

⋆ [C ] decreases. Go to Step 1.

The algorithm terminates after finitely many steps, yielding a finite set of triangles
T ′ such that C =⊕

T∈T ′ T .
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Proposition B.82. Let A ⊂Zd be⋆-connected and c-connected. Then ∂in
⋆ A and ∂ex

⋆ A
are ⋆-connected.

The idea used in the proof is due to [333]. It is based on

Lemma B.83. Let ∂⋆A = E1 ∪E2 be an arbitrary partition of ∂⋆A. Then there exists
a ⋆-triangle containing at least one ⋆-edge from both E1 and E2.

Proof of Proposition B.82: To prove that ∂in
⋆ A is ⋆-connected, consider an arbitrary

partition ∂in
⋆ A = B1 ∪B2. This partition induces a natural partition of ∂⋆A: Ek , k =

1,2, is the set of all ⋆-edges of ∂⋆A with one endpoint in Bk . By Lemma B.83, there
exists a ⋆-triangle containing at least one ⋆-edge of both E1 and E2. This implies
that there exist u ∈ B1 and v ∈ B2 with {u, v} ∈ E ⋆

Zd . Since the partition was arbitrary,
the conclusion follows. The same argument can be made for ∂ex

⋆ A.

Proof of Lemma B.83: Consider two arbitrary vertices i ∈ A, j ̸∈ A. Let π1 be a ⋆-
path between i and j which does not cross E2 and π2 a ⋆-path between i and j
which does not cross E1. The existence of such ⋆-paths follows from our assump-
tions: given any ⋆-edge {u, v} ∈ ∂⋆A with u ∈ A and v ̸∈ A, i is ⋆-connected to u
in A (since A is ⋆-connected), while v is ⋆-connected to j in Ac (since Ac is ⋆-
connected).

Since every vertex has an even number of incident⋆-edges in π1⊕π2, the latter
set is a ⋆-cycle. Therefore, by Lemma B.81, there exists Tπ1,π2 ⊂T such that

π1 ⊕π2 =
⊕

T∈Tπ1,π2

T . (B.36)

Let us denote by T ′ the subset of Tπ1,π2 composed of all ⋆-triangles containing

at least one ⋆-edge of E1 and set T ′′ def= Tπ1,π2 \ T ′. Identity (B.36) can then be
rewritten as

π1 ⊕
⊕

T∈T ′
T =π2 ⊕

⊕
T∈T ′′

T
def= F . (B.37)

Since i and j are the only vertices with an odd number of incident⋆-edges, F must
contain a path π̃ between i and j . Removing the latter’s ⋆-edges from F , one is left
with a cycle C̃ , which can be decomposed as C̃ =⊕

T∈T̃ T .
By construction, neither π2, nor any ⋆-triangle in T ′′ contains a ⋆-edge of E1.

This implies that π̃ must contain an odd number of ⋆-edges of E2 (since each such
⋆-edge connects a vertex of A and a vertex of Ac), while each of the⋆-triangles in T̃
must contain either 0 or 2. We conclude that F contains an odd number of⋆-edges
of E2 and therefore F ∩E2 ̸=∅.

Returning to (B.37), this implies that at least one of the ⋆-triangles in T ′ con-
tains a ⋆-edge of E2, since π1 does not contain any ⋆-edge of E2. However, by
definition, every triangle of T ′ contain at least one ⋆-edge of E1. This proves the
claim.


