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9 Models with Continuous Symmetry

In Chapter 3, we have analyzed the phase transition occurring in the Ising model.
We have seen, in particular, that the change of behavior observed (when h = 0 and
d ≥ 2) as the inverse temperature β crosses the critical value βc = βc(d) was asso-
ciated to the spontaneous breaking of a discrete symmetry: when β < βc, there is
a unique infinite-volume Gibbs measure, invariant under a global spin flip (that
is, interchange of all + and − spins); on the contrary, when β > βc, uniqueness
fails, and we proved the existence of two distinct infinite-volume Gibbs measures
µ+
β,0 and µ−

β,0, which are not invariant under a global spin flip (since 〈σ0〉+β,0 > 0 >
〈σ0〉−β,0).

Our goal in the present chapter is to analyze the effect of the existence of a con-
tinuous symmetry (that is, corresponding to a Lie group) on phase transitions. We
will see that, in one- and two-dimensional models, a global continuous symmetry
is in general never spontaneously broken. In this sense, continuous symmetries are
more robust.

9.1 O(N )-symmetric models

The systems we consider in this chapter are models for which the spins are N -
dimensional unit vectors, living at the vertices of Zd .

Let us thus fix some N ∈N, and define the single-spin space

Ω0
def= {

v ∈RN : ∥v∥2 = 1
}≡SN−1 .

Correspondingly, the set of configurations in a finite setΛ⋐Zd (resp. inZd ) is given
by

ΩΛ
def= ΩΛ0 (resp.Ω=ΩZd

0 ) .

To each vertex i ∈Zd , we associate the random variable Si = (S1
i ,S2

i , . . . ,SN
i ) defined

by

Si (ω)
def= ωi ,

which we call, as usual, the spin at i . We assume that spins interact only with their
nearest-neighbors and, most importantly, that the interaction is invariant under
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412 Chapter 9. Models with Continuous Symmetry

simultaneous rotations of all the spins. We can therefore assume that the interac-
tion between two spins located at nearest-neighbor vertices i and j contribute an
amount to the total energy which is a function of their scalar product Si ·S j .

Definition 9.1. Let W : [−1,1] →R. The Hamiltonian of anO(N )-symmetric model
in Λ⋐Zd is defined by

HΛ;β
def= β

∑

{i , j }∈E b
Λ

W (Si ·S j ) . (9.1)

A particularly important class of models is given by the O(N ) models, for which
W (x) =−x:

HΛ;β =−β
∑

{i , j }∈E b
Λ

Si ·S j . (9.2)

With this choice, different values of N then lead to different models, some of which
have their own names. When N = 1, Ω0 = {±e1} can be identified with {±1}, so
that the O(1)-model reduces to the Ising model. The case N = 2 corresponds to the
X Y model, and N = 3 corresponds to the (classical) Heisenberg model.

Given the Hamiltonian (9.1), we can define finite-volume Gibbs distributions
and Gibbs measures in the usual way. We use the measurable structures on ΩΛ
and Ω, denoted respectively FΛ and F , introduced in Section 6.10. The reference
measure for the spin at vertex i is the Lebesgue measure on SN−1, denoted simply
dωi .

Given Λ⋐Zd and η ∈Ω, the Gibbs distribution of the O(N )-symmetric models
in Λ with boundary condition η is the probability measure µη

Λ;β on (Ω,F ) defined

by

∀A ∈F , µ
η

Λ;β(A)
def=

∫

ΩΛ

e−HΛ;β(ωΛηΛc )

Zη
Λ;β

1A(ωΛηΛc )
∏
i∈Λ

dωi ,

where the partition function is given by

Zη
Λ;β

def=
∫

ΩΛ

e−HΛ;β(ωΛηΛc )
∏
i∈Λ

dωi .

As in Chapter 6, we can consider the specification associated to the kernels (A,η) 7→
πΛ(A |η)

def= µ
η

Λ;β(A),Λ⋐Zd , and then denote by G (N ) the set of associated infinite-

volume Gibbs measures. (To lighten the notations, we do not indicate the depen-
dence of G (N ) on the choice of W and β.) Notice that Ω0, and hence Ω, are com-
pact, and so the results of Section 6.10.2 guarantee that the model has at least one
infinite-volume Gibbs measure: G (N ) ̸=∅.

Even though our results below are stated in terms of infinite-volume Gibbs mea-
sures, the estimates in the proofs are actually valid for large finite systems. There-
fore, readers not comfortable with the DLR formalism of Chapter 6 should be able
to understand most of the content of this chapter.

9.1.1 Overview

Inspired by what was done for the Ising model, one of our goals in this chapter will
be to determine whether suitable boundary conditions can lead to orientational
long-range order, that is, whether spins align macroscopically along a preferred
direction, giving rise to a non-zero spontaneous magnetization. For the sake of
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9.1. O(N )-symmetric models 413

Figure 9.1: A configuration of the two-dimensional X Y model with e1 bound-
ary conditions, at high temperature: β= 0.7.

concreteness, one can think of those Gibbs measures obtained by fixing a boundary
condition η and taking the thermodynamic limit:

µ
η

B(n);β
⇒µ .

• Dimensions 1 and 2; N ≥ 2. We will see that, when d = 1 or d = 2, under
any measure µ ∈ G (N ), the distribution µ(Si ∈ ·) of each individual spin Si is
uniform on SN−1; in particular,

〈Si 〉µ = 0 .

Therefore, even in dimension 2 at very low temperature, orientational order
does not occur in O(N )-symmetric models. This is due, as will be seen, to the
existence of order-destroying excitations of arbitrarily low energy (Proposi-
tion 9.7 below). The above will actually be a consequence of a more general
result, the celebrated Mermin–Wagner Theorem (Theorem 9.2).

• Dimension 2; N = 2. Even though there is no orientational long-range or-
der when d = 2, we will see (but not prove) that there is quasi-long-range
order at low temperatures: the 2-point correlation function decays only al-
gebraically with the distance:

〈Si ·S j 〉µ ≈ ∥ j − i∥−C /β
2 ,
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414 Chapter 9. Models with Continuous Symmetry

Figure 9.2: A configuration of the two-dimensional X Y model with e1 bound-
ary conditions, at low temperature: β = 5. In spite of the apparent ordering
of the spins, we shall prove that, in large enough systems, there is no orienta-
tional long-range order at any temperature.

for some C > 0. This is in sharp contrast with d = 1 (for all β≥ 0), or with d ≥
2 at sufficiently high temperatures, where the 2-point correlation functions
decay exponentially.

• Dimensions d ≥ 3; N ≥ 2. It turns out that spontaneous breaking of the
continuous symmetry does indeed occur at low enough temperatures in the
O(N ) models, in dimensions d ≥ 3, as will be discussed in Remark 9.5, and
proved later in Chapter 10 (Theorem 10.25).

Additional information, including some outstanding open problems, can be found
in the complements.

9.2 Absence of continuous symmetry breaking

Symmetries in the study of Gibbs measures were described in Section 6.6. Let
R ∈ SO(N ) be any rotation on SN−1; R can of course be represented as an N × N
orthogonal matrix of determinant 1. We can use R to define a global rotation r on a
configuration ω ∈Ω by

(rω)i
def= Rωi , ∀i ∈Zd .
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A global rotation can also be defined on events A ∈F , by letting rA
def= {rω : ω ∈ A},

as well as on functions and probability measures:

r f (ω)
def= f (r−1ω) , r(µ)(A)

def= µ(r−1 A) .

We shall often write r ∈ SO(N ), meaning that r is a global rotation associated to
some element of SO(N ).

By construction, the Hamiltonian (9.1) is invariant under global rotations of the
spins: for all r ∈ SO(N ),

HΛ;β(rω) =HΛ;β(ω) ∀ω ∈Ω . (9.3)

Therefore, as a consequence of Theorem 6.45, G (N ) is invariant under r: if µ ∈
G (N ), then r(µ) ∈G (N ). What Theorem 6.45 does not say is whether r(µ) coincides
with µ. A remarkable fact is that this is necessarily the case when d = 1,2.

Theorem 9.2 (Mermin–Wagner Theorem). Assume that N ≥ 2, and that W is twice
continuously differentiable. Then, when d = 1 or 2, all infinite-volume Gibbs mea-
sures are invariant under the action of SO(N ): for all µ ∈G (N ),

r(µ) =µ, ∀r ∈ SO(N ) .

Of course, the claim is wrong when N = 1, since in this case the global spin flip
symmetry can be broken at low temperature in d = 2. Let us make a few important
comments.

Theorem 9.2 implies that, in an infinite system whose equilibrium properties
are described by a Gibbs measureµ ∈G (N ), the distribution of each individual spin
Si is uniform on SN−1. Namely, let I ⊂SN−1; for any r ∈ SO(N ),

µ(Si ∈ I ) = r(µ)(Si ∈ I ) =µ(Si ∈ r−1(I )) .

As a consequence, spontaneous magnetization (that is, some global orientation ob-
served at the macroscopic level) cannot be observed in low-dimensional systems
with continuous symmetries, even at very low temperature:

〈S0〉µ = 0 , (d = 1,2) . (9.4)

The above is in sharp contrast with the symmetry breaking observed in the two-
dimensional Ising model at low temperature. There, when h = 0, the Hamiltonian
was invariant under the discrete global spin flip, τg.s.f., but τg.s.f.(µ+

β,0) = µ−
β,0 ̸= µ+

β,0
when β>βc(d).

Although this was not stated explicitly above, the SO(N )-invariance of the infin-
ite-volume Gibbs measures also implies absence of orientational long-range order.
Namely, let k ∈Zd be fixed, far from the origin. Let n be large, but small enough to
have k ∈B(n)c (for example: n = ∥k∥∞−1). If µ ∈G (N ), then the DLR compatibility
conditions µ=µπΛ, ∀Λ⋐Zd , imply that

〈S0 ·Sk〉µ =
∫
〈S0 ·Sk〉ηB(n);β

µ(dη) =
∫
〈S0〉ηB(n);β

·Sk (η)µ(dη) . (9.5)

We shall actually obtain a quantitative version of (9.4) in Proposition 9.7, a con-
sequence of which will be that limn→∞〈S0〉ηB(n);β

= 0, uniformly in the boundary

condition η (see Exercise 9.5). Therefore, by dominated convergence,

〈S0 ·Sk〉µ→ 0 when ∥k∥∞ →∞ .
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Exercise 9.1. Prove that this also implies that

lim
n→∞〈∥mB(n)∥2

2 〉µ = 0,

where mB(n)
def= |B(n)|−1 ∑

i∈B(n) Si is the magnetization density in B(n).

Remark 9.3. As explained above, Theorem 9.2 implies the absence of spontaneous
magnetization and long-range order. Nevertheless, this theorem does not imply
that there is a unique infinite-volume Gibbs measure [1]. ⋄
Remark 9.4. It is interesting to see what happens if one considers perturbations
of the above models in which the continuous symmetry is explicitly broken. As
an example, consider the anisotropic X Y model, which has the same single-spin
space as the X Y model, but a more general Hamiltonian

HΛ;β,α =−β
∑

{i , j }∈E b
Λ

{
S1

i S1
j +αS2

i S2
j

}

depending on an anisotropy parameterα ∈ [0,1]. Observe that this Hamiltonian is
SO(2)-invariant only when α= 1, in which case one recovers the usual X Y model.

It turns out that there is always orientational long-range order at sufficiently low
temperatures when α ∈ [0,1) and d ≥ 2 (in d = 1, uniqueness always holds thanks
to a suitable generalization of Theorem 6.40). Indeed, using reflection positivity, we
will prove in Theorem 10.18 that, for any α ∈ [0,1) and all β sufficiently large, there
exist at least two infinite-volume Gibbs measures µ+ and µ− such that

〈S0 ·e1〉µ+ > 0 > 〈S0 ·e1〉µ− .

This shows that having continuous spins is not sufficient to prevent orientational
long-range order in low dimensions: the presence of a continuous symmetry is es-
sential. ⋄
Remark 9.5. Theorem 9.2 is restricted to dimensions 1 and 2. Let us briefly mention
what happens in higher dimensions, restricting the discussion to the X Y model: as
soon as d ≥ 3, for all β sufficiently large, there exist a number m(β) > 0 and a family
of extremal infinite-volume Gibbs measures (µψ

β
)−π<ψ≤π such that

〈S0〉ψβ = m(β) (cosψ, sinψ) .

The proof of this claim (actually, for all values of N ) will be given in Chapter 10.
Additional information on the role of the dimension, as well as on the cor-

responding results for O(N ) models with more general (not necessarily nearest-
neighbor) interactions will be provided in Section 9.6.2. ⋄
Remark 9.6. Both the proof of Theorem 9.2 and the heuristic argument below rely
in a seemingly crucial way on the smoothness of the interaction W . The reader
might thus wonder whether the latter is a necessary condition. It turns out that
Theorem 9.2 can be extended to all piecewise continuous interactions W ; see Sec-
tion 9.6.2. ⋄

9.2.1 Heuristic argument

Before turning to the proof of Theorem 9.2, let us emphasize a crucial difference
between continuous and discrete spin systems. For this heuristic discussion, W
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9.2. Absence of continuous symmetry breaking 417

Figure 9.3: The spin wave ωSW (see (9.6)), which flips the spin at the center of
B(n), at a cost that can be made arbitrarily small by taking n large enough.

can be any twice continuously differentiable function, but we only consider the
case N = 2 and, mostly, d = 2.

Let us therefore consider a two-dimensional O(2)-symmetric model in the box
B(n), with boundary condition ηi = e1 = (1,0) for all i ∈B(n)c. If we assume that W
is decreasing on [−1,1], then the ground state (that is, the configuration with the
lowest energy) is the one that agrees everywhere with the boundary condition. We
denote it by ωe1 : ωe1

i = e1 for all i . We would like to determine the energetic cost of
flipping the spin in the middle of the box. More precisely: among all configurations
ω that agree with the boundary condition outside B(n) but in which the spin at the
origin is flipped, ω0 =−e1, which one minimizes the Hamiltonian, and what is the
corresponding value of the energy?

Remember that for the two-dimensional Ising model (O(N ) with N = 1), the en-
ergetic cost required to flip the spin at the center of the box, with + boundary con-
dition, is at least 8β (since the shortest Peierls contour surrounding the origin has
length 4), uniformly in the size of the box. Due to the presence of a continuous sym-
metry, the situation is radically different for the two-dimensional O(2)-symmetric
model: by slowly rotating the spins between the boundary and the center of the
box, the spin at the origin can be flipped at an arbitrarily low cost (see Figure 9.3).

To understand this quantitatively, let us describe each configuration by the fam-
ily (ϑi )i∈Z2 , where ϑi ∈ (−π,π] is the angle such that Si = (cosϑi , sinϑi ). Let us also



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

418 Chapter 9. Models with Continuous Symmetry

write V (θ) =W (cos(θ)), so that

HB(n);β =β
∑

{i , j }∈E b
B(n)

W (Si ·S j ) =β
∑

{i , j }∈E b
B(n)

V (ϑ j −ϑi ) .

Let us consider the configuration ωSW
i = (cosθSW

i , sinθSW
i ), where

θSW
i

def=
(
1− log(1+∥i∥∞)

log(1+n)

)
π, i ∈B(n) , (9.6)

and θSW
i = 0 for i ̸∈ B(n) (see Figure 9.3). Clearly, the only nonzero contributions

to HB(n);β(ωSW) are those due to pairs of neighboring vertices i and j such that
∥i∥∞ = ∥ j∥∞−1. For each such pair,

θSW
i −θSW

j =π
log(1+ 1

∥ j∥∞ )

log(1+n)
≤ π

log(1+n)

1

∥ j∥∞
.

Therefore, if n is large, each term V (θSW
i −θSW

j ) can be estimated using a Taylor ex-

pansion of V at θ = 0. Moreover, since V is twice continuously differentiable, there
exists a constant C such that

sup
θ∈(−π,π]

V ′′(θ) ≤C , (9.7)

and we have, since V ′(0) = 0,

V (θSW
i −θSW

j ) ≤V (0)+ 1
2C (θSW

i −θSW
j )2 ≤V (0)+ Cπ2

2
(
log(1+n)

)2

1

∥ j∥2
∞

.

Summing over the contributing pairs of neighboring vertices i and j ,

0 ≤HB(n)(ω
SW)−HB(n)(ω

e1 ) ≤ Cβπ2

2
(
log(1+n)

)2

n+1∑
r=1

4(2r −1)
1

r 2 ≤ 8Cβπ2

log(1+n)
,

which indeed tends to 0 when n →∞.

It is the existence of configurations like ωSW, representing collective excitations
of arbitrarily low energy, called spin waves, which renders impossible the appli-
cation of a naive Peierls-type argument. We shall see that spin waves are the key
ingredient in the proof of the Mermin–Wagner Theorem, given in Section 9.2.2.

In the above argument, we only flipped the spin located at the center of the box.
It is easy to check that similar spin waves can also be constructed if one wants to
flip all the spins in an extended region.

Exercise 9.2. (d = 2) Adapt the previous computation to show that the lowest energy
required to flip all the spins in a smaller box B(ℓ) ⊂B(n) goes to zero when n →∞.

Let us now briefly discuss what happens in dimensions d ̸= 2. First, in the next
exercise, the reader is encouraged to check that one can also construct a spin wave
as above in dimension 1 (actually, one can take a much simpler one in that case).

Exercise 9.3. Construct a suitable spin wave for the one-dimensional O(2)-
symmetric model.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

9.2. Absence of continuous symmetry breaking 419

In higher dimensions, d ≥ 3, it is not possible anymore to repeat the argument given
above. In the following exercise (see also Lemma 9.8), the reader is asked to show
that the second-order term in the Taylor expansion remains bounded away from
zero as n →∞.

Exercise 9.4. Let f :Z≥0 →R be such that f (r ) = 1 if 0 ≤ r ≤ ℓ and f (r ) = 0 if r ≥ n.
Show that ∑

{i , j }∈E b
B(n)

(
f (∥i∥∞)− f (∥ j∥∞)

)2 ≥
{ ∑

k≥ℓ
k−(d−1)

}−1
.

Conclude that, in contrast to the case d = 2 (Exercise 9.2), the minimal energy re-
quired to flip all spins in the box B(ℓ) does not tend to zero when n →∞ when d ≥ 3
(it is not even bounded in ℓ). Hint: To derive the inequality, use the Cauchy–Schwarz
inequality for functions g : {0, . . . ,n} →R.

9.2.2 Proof of the Mermin–Wagner Theorem for N = 2

We first give a proof of the result in the case N = 2, and then use it to address the

general case in Section 9.2.3. We write Si = (cosϑi , sinϑi ) and set V (θ)
def= W (cos(θ)),

as in the heuristic argument above.

Let µ ∈G (2) and let rψ ∈ SO(2) denote the rotation of angleψ ∈ (−π,π]. To show
that rψ(µ) =µ, we shall show that 〈 f 〉µ = 〈rψ f 〉µ for each local bounded measurable
function f . But, by the DLR compatibility conditions, we can write, for anyΛ⋐Zd ,

|〈 f 〉µ−〈rψ f 〉µ| =
∣∣∣
∫ {〈 f 〉η

Λ;β−〈rψ f 〉η
Λ;β

}
µ(dη)

∣∣∣≤
∫ ∣∣〈 f 〉η

Λ;β−〈rψ f 〉η
Λ;β

∣∣µ(dη) . (9.8)

We study the differences |〈 f 〉η
Λ;β−〈rψ f 〉η

Λ;β| quantitatively in the following proposi-

tion. In view of (9.8), Theorem 9.2 is a direct consequence of the following proposi-
tion:

Proposition 9.7. Assume that d = 1 or d = 2 and fix N = 2. Under the hypotheses of
Theorem 9.2, there exist constants c1,c2 such that, for any boundary condition η ∈Ω,
any inverse temperature β<∞, any angle ψ ∈ (−π,π] and any ℓ ∈Z≥0,

∣∣〈 f 〉η
B(n);β

−〈rψ f 〉η
B(n);β

∣∣≤β1/2|ψ|∥ f ∥∞×




c1p
n−ℓ if d = 1,

c2
p
ℓp

log(n−ℓ)
if d = 2,

(9.9)

for all n > ℓ and all bounded functions f such that supp( f ) ⊂B(ℓ).

In the sequel, we will use the notation Tn(1)
def= p

n, Tn(2)
def=

√
logn when we want

to treat the cases d = 1 and d = 2 simultaneously.

Exercise 9.5. Deduce from (9.9) that, under µη
B(n);β

, the distribution of ϑ0 converges

to the uniform distribution on (−π,π]. In particular, for any η,

lim
n→∞

∥∥〈S0〉ηB(n);β

∥∥
2 = 0.

Most of the proof of the bounds (9.9) does not depend on the shape of the sys-
tem considered. So, let us first consider an arbitrary connected Λ, which will later
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be taken to be the box B(n). Our starting point is to express

〈rψ f 〉η
Λ;β = (Zη

Λ;β)−1
∫

f (r−ψω)e−HΛ;β(ωΛηΛc )
∏
i∈Λ

dωi

as the expectation of f under a modified distribution.
We letΛ and ℓ be large enough so thatΛ⊃B(ℓ) ⊃ supp( f ):

Λ

B(ℓ)

f

Let Ψ : Zd → (−π,π] satisfy Ψi =ψ for all i ∈ B(ℓ), and Ψi = 0 for all i ̸∈ Λ. An
explicit choice for Ψ will be made later. Let tΨ :Ω→Ω denote the transformation
under which

ϑi (tΨω) =ϑi (ω)+Ψi , ∀ω ∈Ω .

That is, tΨ acts as the identity on spins located outside Λ and as the rotation rψ
on spins located inside B(ℓ). Observe that t−Ψ = t−1

Ψ . Now, since t−Ψω and r−ψω
coincide on supp( f ) ⊂B(ℓ),

∫
f (r−ψω)e−HΛ;β(ωΛηΛc )

∏
i∈Λ

dωi =
∫

f (t−Ψω)e−HΛ;β(ωΛηΛc )
∏
i∈Λ

dωi

=
∫

f (ω)e−HΛ;β(tΨ(ωΛηΛc ))
∏
i∈Λ

dωi .

In the second equality, we used the fact that the mapping ωΛ 7→ (t−Ψω)Λ has a Ja-

cobian equal to 1. Let 〈·〉η,Ψ
Λ;β denote the expectation under the probability measure

µ
η;Ψ
Λ;β(A)

def= (Zη;Ψ
Λ;β)−1

∫

ΩΛ

e−HΛ;β(tΨ(ωΛηΛc )) 1A(ωΛηΛc )
∏
i∈Λ

dωi , A ∈F .

Observe that, for the same reasons as above (the Jacobian being equal to 1 and the
boundary condition being preserved by tΨ), the partition function is actually left
unchanged:

Zη;Ψ
Λ;β = Zη

Λ;β . (9.10)

We can then write 〈rψ f 〉η
Λ;β = 〈 f 〉η,Ψ

Λ;β , and therefore

∣∣〈 f 〉η
Λ;β−〈rψ f 〉η

Λ;β

∣∣=
∣∣〈 f 〉η

Λ;β−〈 f 〉η;Ψ
Λ;β

∣∣ ,

which reduces the problem to comparing the expectation of f under the measures

µ
η

Λ;β and µη;Ψ
Λ;β .
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The measures µη
Λ;β and µ

η;Ψ
Λ;β only differ by the “addition” of the spin wave Ψ.

However, we saw in the Section 9.2.1 that the latter can be chosen such that its ener-
getic cost is arbitrarily small. One would thus expect such excitations to proliferate
in the system, and thus the two Gibbs distributions to be “very close” to each other. ⋄

One convenient way of measuring the “closeness” of two measures µ,ν is the
relative entropy

h(µ |ν)
def=

{
〈dµ

dν log dµ
dν 〉ν, if µ≪ ν,

∞ otherwise,

where dµ
dν is the Radon–Nikodym derivative of µ with respect to ν. The relevant

properties of the relative entropy can be found in Appendix B.12. Particularly well-
suited to our needs, Pinsker’s inequality, see Lemma B.67, states that, for any mea-
surable function f with ∥ f ∥∞ ≤ 1,

|〈 f 〉µ−〈 f 〉ν| ≤
√

2h(µ |ν) .

In our case, thanks to (9.10),

dµη
Λ;β

dµη,Ψ
Λ;β

(ω) = eHΛ;β(tΨω)−HΛ;β(ω) .

Using Pinsker’s inequality,

|〈 f 〉η
Λ;β−〈 f 〉η,Ψ

Λ;β| ≤ ∥ f ∥∞

√
2h(µη

Λ;β |µ
η;Ψ
Λ;β) (9.11)

= ∥ f ∥∞

√
2
〈
HΛ;β ◦ tΨ−HΛ;β

〉η
Λ;β .

A second-order Taylor expansion yields, using again (9.7),

〈
HΛ;β ◦ tΨ−HΛ;β

〉η
Λ;β =β

∑

{i , j }∈E b
Λ

〈
V

(
ϑ j −ϑi +Ψ j −Ψi

)−V
(
ϑ j −ϑi

)〉η
Λ;β

≤β
∑

{i , j }∈E b
Λ

{〈
V ′(ϑ j −ϑi

)〉η
Λ;β(Ψ j −Ψi )+ C

2 (Ψ j −Ψi )2
}

.

Note the parallel with the heuristic discussion of Section 9.2.1. There, however, the
first-order terms trivially vanished. We need an alternative way to see that the same
occurs here, since the contribution of these terms would be too large to prove our
claim. In order to get rid of them, we use the following trick: since the relative
entropy is always nonnegative (Lemma B.65), we can write

h(µη
Λ;β |µ

η;Ψ
Λ;β) ≤ h(µη

Λ;β |µ
η;Ψ
Λ;β)+h(µη

Λ;β |µ
η;−Ψ
Λ;β ). (9.12)

The second term in the right-hand side of the latter expression can be treated as
above, and gives rise to the same first-order terms but with the opposite sign. These

thus cancel, and we are left with (remember the notation (∇Ψ)i j
def=Ψ j −Ψi )

h(µη
Λ;β |µ

η;Ψ
Λ;β) ≤Cβ

∑

{i , j }∈E b
Λ

(∇Ψ)2
i j . (9.13)
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Figure 9.4: The minimizer of the Dirichlet energy given by (9.14). In this pic-
ture,Λ=B(30) and ℓ= 3.

We will now choose the values Ψi , i ∈ Λ \ B(ℓ). One possible choice is to take
Λ=B(n), n > ℓ, and to take for Ψ the spin wave introduced in Exercise 9.2. Never-
theless, since it is instructive, we shall provide a more detailed study of the problem
of minimizing the above sum under constraints. This will also shed some light on
the role played by the dimension d .

Define the Dirichlet energy (inΛ\B(ℓ)) of a functionΨ :Zd →R by

E (Ψ)
def= 1

2

∑

{i , j }∈E b
Λ\B(ℓ)

(∇Ψ)2
i j .

We will determine the minimizer of E (Ψ) among all functions Ψ such that Ψ ≡ ψ

on B(ℓ) and Ψ ≡ 0 on Λc. As we shall see, in dimensions 1 and 2, the minimum
value of that minimizer tends to zero whenΛ ↑Zd .

Lemma 9.8. The Dirichlet energy possesses a unique minimizer among all functions
u : Zd → R satisfying ui = 0 for all i ̸∈Λ, and ui = 1 for all i ∈B(ℓ). This minimizer
is given by (see Figure 9.4)

u∗
i

def= Pi
(
X enters B(ℓ) before exitingΛ

)
, (9.14)

where X = (Xk )k≥0 is the symmetric simple random walk on Zd and Pi (X0 = i ) = 1.
Moreover,

E (u∗) = d
∑

j∈∂intB(ℓ)

P j
(
X exitsΛ before returning to B(ℓ)

)
. (9.15)

Proof of Lemma 9.8: Let us first characterize the critical points of E . Namely, as-
sume u is a critical point of E , satisfying the constraints. Then we must have

d

ds
E (u + sδ)

∣∣∣
s=0

= 0, (9.16)

for all perturbations δ :Zd →R such that δi = 0 for all i ̸∈Λ\B(ℓ). However, a simple
computation yields

d

ds
E (u + sδ)

∣∣∣
s=0

=
∑

{i , j }∈E b
Λ\B(ℓ)

(∇u)i j (∇δ)i j ,
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and, by the Discrete Green Identity (8.14),
∑

{i , j }∈E b
Λ\B(ℓ)

(∇u)i j (∇δ)i j =−
∑

i∈Λ\B(ℓ)

δi (∆u)i +
∑

i∈Λ\B(ℓ)
j ̸∈Λ\B(ℓ), j∼i

δ j (∇u)i j . (9.17)

The second sum in the right-hand side vanishes since δ j = 0 outside Λ \B(ℓ). In
order for the first sum to be equal to zero for all δ, ∆u must vanish everywhere on
Λ \B(ℓ). This shows that the minimizer we are after is harmonic on Λ \B(ℓ). We
know from Lemma 8.15 that the solution to the Dirichlet problem on Λ \B(ℓ) with
boundary condition η is unique and given by

u∗
i

def= Ei [ηXτ(Λ\B(ℓ))c
] , (9.18)

where Pi is the law of the simple random walk on Zd with initial condition X0 = i .
Using our boundary condition (ηi = 1 on B(ℓ), ηi = 0 on Λc), we easily write u∗

i as
in (9.14).

We still have to check that u∗ is actually a minimizer of the Dirichlet energy. But
this follows from (9.17), since, for all δ as above, the latter implies that E (u∗+δ) =
E (u∗)+E (δ) ≥ E (u∗).

Finally, using now (9.17) with u = δ= u∗,

E (u∗) = 1
2

∑
i∈Λ\B(ℓ)

∑
j∈B(ℓ), j∼i

(u∗
j −u∗

i )

= 1
2

∑
j∈B(ℓ)

∑
i∈∂extB(ℓ)

i∼ j

Pi
(
X exitsΛ before hitting B(ℓ)

)

= 1
2

∑
j∈B(ℓ)

∑
i∼ j

Pi
(
X exitsΛ before hitting B(ℓ)

)

= d
∑

j∈∂intB(ℓ)

P j
(
X exitsΛ before returning to B(ℓ)

)
,

where we used the Markov property for the fourth equality.

We can now complete the proof of the Mermin–Wagner Theorem for N = 2:

Proof of Proposition 9.7: TakeΛ=B(n). Let u∗ be the minimizer (9.18) and setΨ=
ψu∗. Observe that this choice of Ψ has all the required properties and that E (Ψ) =
ψ2E (u∗). Using (9.11) and (9.13), we thus have

∣∣〈 f 〉η
B(n);β

−〈rψ f 〉η
B(n);β

∣∣≤ ∥ f ∥∞

√
4Cβψ2E (u∗) .

Since

P j
(
X exits B(n) before returning to B(ℓ)

)

≤P j
(
X exits B(n −ℓ)+ j before returning to j

)

=P0
(
X exits B(n −ℓ) before returning to 0

)
,

we finally get

∣∣〈 f 〉η
B(n);β

−〈rψ f 〉η
B(n);β

∣∣≤ ∥ f ∥∞
√

4C dβψ2 |∂intB(ℓ)|

×P0
(
X exits B(n −ℓ) before returning to 0

)1/2 .

In dimensions d = 1 and d = 2, recurrence of the symmetric simple random walk
implies that the latter probability goes to zero as n → ∞. The rate at which this
occurs is given in Theorem B.74.
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9.2.3 Proof of the Mermin–Wagner theorem for N ≥ 3

To prove Theorem 9.2 when N ≥ 3, we essentially reduce the problem to the case
N = 2. The main observation is that, given an arbitrary rotation R ∈ SO(N ), there
exists an orthonormal basis, an integer n ≤ N /2 and n numbers ψi ∈ (−π,π], such
that R can be represented as a block diagonal matrix of the following form [2]:




M(ψ1)
M(ψ2)

. . .
M(ψn)

I N−2n




,

where I N−2n is the identity matrix of dimension N − 2n, and the matrix M(ψ) is
given by

M(ψ) =
(

cosψ −sinψ
sinψ cosψ

)
.

In particular, R is the composition of n two-dimensional rotations. Therefore, it
suffices to prove that any infinite-volume Gibbs measure µ is invariant under such
a rotation. This can be achieved almost exactly as was done in the case N = 2, as
we briefly explain now.

In view of the above, we can assume without loss of generality that R has the
following block diagonal matrix representation

(
M(ψ) 0

0 I N−2

)
,

for some−π<ψ≤π. Let r be the global rotation associated to R. Since r only affects
non-trivially the first two components S1

i and S2
i of the spins Si , we introduce the

random variables ri and ϑi , i ∈Zd , such that

S1
i = ri cosϑi , S2

i = ri sinϑi .

(Notice that ri > 0 almost surely, so that ϑi is almost surely well defined.)
As in the case N = 2, we consider an applicationΨ :Zd → (−π,π] such thatΨi =

ψ for all i ∈B(ℓ), andΨi = 0 for all i ̸∈B(n), and let tΨ :Ω→Ωbe the transformation
such that ϑi (tΨω) =ϑi (ω)+Ψi for all configurations ω ∈Ω.

From this point on, the proof is identical to the one given in Section 9.2.2. The
only thing to check is that the relative entropy estimate still works in the same way.
But W (Si · S j ) is actually a function of ϑ j −ϑi , ri , r j , and the components Sl

i ,Sl
j

with l ≥ 3. Since all these quantities except the first one remain constant under
the action of tΨ, and since the first one becomes ϑ j −ϑi +Ψ j −Ψi , the conclusion
follows exactly as before.

9.3 Digression on gradient models

Before turning to the study of correlations in O(N )-symmetric models, we take ad-
vantage of the technique developed in the previous section, to take a new look at
the gradient models of Chapter 8.

We proved in Theorem 8.19 that the massless GFF possesses no infinite-volume
Gibbs measures in dimensions 1 and 2, a consequence of the divergence of the



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

9.3. Digression on gradient models 425

variance of the field in the thermodynamic limit. Our aim here is to explain how
this divergence can actually be seen as resulting from the presence of a continuous
symmetry at the level of the Hamiltonian. As a by-product, this will allow us to ex-
tend the proof of non-existence of infinite-volume Gibbs measures in dimensions
1 and 2 to a rather large class of models. So, only for this section, we switch to the
models and notations of Chapter 8. In particular, spins take their values in R, and

Ω now represents RZ
d

.

Remember that gradient models have Hamiltonians of the form

HΛ =
∑

{i , j }∈E b
Λ

V (ϕ j −ϕi ),

where the inverse temperature has been included in V :R→R≥0. One must assume
that V increases fast enough at infinity to make the finite-volume Gibbs measure
well defined (that is, to make the partition function finite). The massless GFF cor-
responds to taking V (x) = 1

4d x2.
Let t ∈R, and consider the transformation vt :Ω→Ω defined by

(vtω)i
def= ωi − t .

Since the interaction, by definition, depends only on the gradients ω j −ωi ,

HΛ(vtω) =HΛ(ω), ∀t ∈R.

Of course, the setting here differs from the one we studied earlier in this chap-
ter, in particular because the transformation group now is non-compact (it is ac-
tually isomorphic to (R,+)). Let us assume for a moment that an analogue of the
Mermin–Wagner theorem still applies in the present setting. Suppose also that µ is
an infinite-volume Gibbs measure. We would then conclude that the distribution of
ϕ0 under µ should be uniform over R, but then it would not be a probability distri-
bution. This contradiction would show that such an infinite-volume Gibbs measure
µ cannot exist! ⋄

We will now show how the above can be turned into a rigorous argument. In
fact, we will obtain (rather good) lower bounds on fluctuations for finite-volume
Gibbs distributions:

Theorem 9.9. (d = 1,2) Consider the gradient model introduced above, with V :
R→ R≥0 even, twice differentiable, satisfying V (0) = 0 and supx∈RV ′′(x) < C < ∞.
Then there exists a constant c > 0 such that, for any boundary condition η, the fol-
lowing holds: for all K > 0, when n is large enough,

µ
η

B(n)

(|ϕ0| > K
)≥

{
1
c exp{−c C K 2/n} if d = 1,
1
c exp{−c C K 2/logn} if d = 2.

Exercise 9.6. Using Theorem 9.9, show that there exist no Gibbs measures for such
gradient models in d = 1,2. Hint: Argue as in the proof of Theorem 8.19.

Proof of Theorem 9.9: We assume that µη
B(n)

(ϕ0 > 0) ≥ 1
2 (if this fails, then consider

the boundary condition −η). Let Tn(d) be defined as in Exercise 9.5. To study
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µ
η

B(n)
(|ϕ0| > K ), we changeµη

B(n)
into a new measure under which the event is likely

to occur. Namely, let Ψ : Zd → R be such that Ψ0 = K , and Ψi = 0 when i ̸∈ B(n).

Let then vΨ :Ω→Ω be defined by (vΨω)i
def= ωi −Ψi . Let us consider the following

deformed probability measure:

µ
η;Ψ
B(n)

(A)
def= µ

η

B(n)
(vΨA), ∀A ∈F .

Under this new measure, the event we are considering has probability

µ
η;Ψ
B(n)

(|ϕ0| > K
)≥µη;Ψ

B(n)

(
ϕ0 > K

)=µη
B(n)

(
ϕ0 > 0

)≥ 1
2 . (9.19)

Then, the probability of the same event under the original measure can be esti-
mated by using the relative entropy inequality of Lemma B.68. The latter allows to
compare the probability of an event A under two different (non-singular) probabil-
ity measures µ,ν:

µ(A) ≥ ν(A)exp

(
−h(ν |µ)+e−1

ν(A)

)
.

Together with (9.19), this gives in our case:

µ
η

B(n)

(|ϕ0| > K
)≥ 1

2 exp
{−2

(
h(µη;Ψ

B(n)
|µη

B(n)
)+e−1)} .

To conclude, we must now choose Ψ so as to bound h(µη;Ψ
B(n)

|µη
B(n)

) uniformly in n.
Proceeding as in the proof of Theorem 9.7, we obtain

h(µη;Ψ
B(n)

|µη
B(n)

) ≤C
∑

{i , j }∈E b
B(n)

(∇Ψ)2
i j = 2CE (Ψ) .

Lemma 9.8 thus implies that the choice ofΨ that minimizes E is

Ψi = K Pi (X hits 0 before exiting B(n)) .

Moreover, for this choice ofΨ, it follows from (9.15) that

E (Ψ) = 1
2 K 2

∑
i∼0
Pi (X exits B(n) before hitting 0)

= dK 2P0(X exits B(n) before returning to 0) .

Since the latter probability is of order Tn(d)−2 (Theorem B.74), this concludes the
proof.

9.4 Decay of correlations

We have already seen the following consequence of Theorem 9.2: for any µ ∈ G (2),
there is no orientational long-range order in dimensions 1 and 2:

〈Si ·S j 〉µ→ 0, ∥ j − i∥2 →∞ .

The estimates in the proof of Proposition 9.7 can be used to provide some informa-
tion on the speed at which these correlations decay to zero. Namely, using (9.5) and
Exercise 9.5 with n = ∥ j − i∥∞−1, one obtains the upper bound

∣∣〈Si ·S j 〉µ
∣∣≤





Cp
∥ j−i∥∞

in d = 1,

Cp
log∥ j−i∥∞

in d = 2.

Unfortunately, these bounds are far from being optimal. In the next sections, we
discuss various improvements.
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9.4.1 One-dimensional models

For one-dimensional models, it can actually be proved that the 2-point function
decays exponentially fast in ∥ j − i∥∞ for all β<∞. In this section, we will prove this
result for O(N ) models.

There are several ways of obtaining this result; we will proceed by comparison
with the Ising model, for which this issue has already been considered in Chapter 3.
The main result we will use is the following simple inequality between 2-point func-
tions in the O(N ) and the Ising models.

Theorem 9.10. For any d ≥ 1, any N ≥ 1, any β ≥ 0, any Gibbs measure µ of the
O(N ) model at inverse temperature β on Zd ,

|〈S0 ·Si 〉µ| ≤ N 〈σ0σi 〉+,Ising
β,0 ,

where the expectation in the right-hand side is with respect to the Gibbs measure µ+
β,0

of the Ising model on Zd at inverse temperature β and h = 0.

Proof. Let n be such that {0, i } ⊂B(n). By the DLR compatibility conditions,

〈S0 ·Si 〉µ =
〈〈S0 ·Si 〉·B(n)

〉
µ =

N∑
ℓ=1

〈〈Sℓ0Sℓi 〉·B(n)

〉
µ .

It is thus sufficient to prove that

|〈S1
0S1

i 〉
η

B(n)
| ≤ 〈σ0σi 〉+,Ising

β,0 ,

for any boundary condition η.

Let σ j
def= S1

j /|S1
j | ∈ {±1} (of course, S1

j ̸= 0, for all j ∈B(n), almost surely). Since

S1
j = |S1

j |σ j =
{

1−
N∑
ℓ=2

(Sℓj )2
}1/2

σ j ,

conditionally on the values of S2
j , . . . ,SN

j , all the randomness in S1
j is contained in

the sign σ j . Introducing the σ-algebra F ̸=1
B(n)

def= σ
{
Sℓj : j ∈B(n),ℓ ̸= 1

}
, we can thus

write

〈S1
0S1

i 〉
η

B(n)
= 〈〈

S1
0S1

i

∣∣ F ̸=1
B(n)

〉η
B(n)

〉η
B(n)

= 〈|S1
0| |S1

i |
〈
σ0σi

∣∣ F ̸=1
B(n)

〉η
B(n)

〉η
B(n)

.

Observe now that the joint distribution of the random variables (σ j ) j∈B(n) is given
by an inhomogeneous Ising model in B(n), with Hamiltonian

HB(n);J
def= −

∑

{u,v}∈E b
B(n)

Juvσuσv ,

where the coupling constants are given by Juv
def= β|S1

u | |S1
v | and the boundary con-

dition by η̂ = (η1
j /|η1

j |) j∈Zd . Since 0 ≤ Juv ≤ β, it follows from Exercise 3.31 that,

almost surely,
〈
σ0σi

∣∣F ̸=1
B(n)

〉η
B(n)

= 〈σ0σi 〉η̂,Ising
B(n);J

≤ 〈σ0σi 〉+,Ising
B(n);β,0

.

For the lower bound, set J̃0 j =−J0 j for all j ∼ 0 and J̃uv = Juv for all other pairs and

use 〈σ0σi 〉η̂,Ising
B(n);J

=−〈σ0σi 〉η̂,Ising
B(n);J̃

,≥−〈σ0σi 〉+,Ising
B(n);β,0

as before.
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Applying this lemma in dimension 1, we immediately deduce the desired estimate
from Exercise 3.25.

Corollary 9.11. Let µ be the unique Gibbs measure of the O(N ) model on Z. Then,
for any 0 ≤β<∞,

|〈S0 ·Si 〉µ| ≤ N (tanhβ)|i | .

Alternatively, one can compute explicitly the 2-point function, by integrating
one spin at a time.

Exercise 9.7. Consider the one-dimensional X Y model at inverse temperatureβ. Let
µ be its unique Gibbs measure. Compute the pressure and the correlation function
〈S0 ·Si 〉µ in terms of the modified Bessel functions of the first kind:

In(x)
def= 1

π

∫ π

0
ex cos t cos(nt )dt .

Hint: Use free boundary conditions.

9.4.2 Two-dimensional models

We investigate now whether it is also possible to improve the estimate in dimen-
sion 2. To keep the matter as simple as possible, we only consider the X Y model,
although similar arguments apply for a much larger class of two-dimensional mod-
els, as described in Section 9.6.2.

Heuristic argument

Let us start with some heuristic considerations, which lead to a conjecture on the
rate at which 〈Si ·S j 〉µ should decrease to 0 at low temperature.

As before, we write the spin at i as Si = (cosϑi , sinϑi ). We are interested in the
asymptotic behavior of

〈Si ·S j 〉e1
Λ;β = 〈cos(ϑ j −ϑi )〉e1

Λ;β = 〈e i(ϑ j −ϑi )〉e1
Λ;β ,

where the expectation is taken with boundary condition η ≡ e1; the last identity
relies on the symmetry, which makes the imaginary part vanish.

At very low temperatures, most neighboring spins are typically nearly aligned,
|ϑi −ϑ j |≪ 1. In this regime, it makes sense to approximate the interaction term in
the Hamiltonian using a Taylor expansion to second order:

−β
∑

{i , j }∈E b
Λ

Si ·S j =−β
∑

{i , j }∈E b
Λ

cos(ϑ j −ϑi ) ∼=−β|E b
Λ |+ 1

2β
∑

{i , j }∈E b
Λ

(ϑ j −ϑi )2 .

We may also assume that, when β is very large, the behavior of the field is not much
affected by replacing the angles ϑi , which take their values in (−π,π], by variables
ϕi taking values in R, especially since we are interested in the expectation value
of the 2π-periodic function e i(ϕ j −ϕi ). This discussion leads us to conclude that the
very-low temperature properties of the X Y model should be closely approximated
by those of the GFF at inverse temperature 4β.
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In particular, if we temporarily denote the expectations of the X Y model with
boundary condition ηi ≡ e1 by 〈·〉X Y

Λ;β, and the expectation of the corresponding GFF

with boundary condition ηi ≡ 0 by 〈·〉GF F
Λ,4β, we conclude that

〈Si ·S j 〉X Y
Λ;β = 〈e i(ϑ j −ϑi )〉X Y

Λ;β
∼= 〈e i(ϕ j −ϕi )〉GF F

Λ;4β .

Now, since (ϕi )i∈Λ is Gaussian, (8.8) gives

〈e i(ϕ j −ϕi )〉GF F
Λ;4β = e−

1
8β (GΛ(i ,i )+GΛ( j , j )−2GΛ(i , j )) , (9.20)

where GΛ(i , j ) is the Green function of the simple random walk in Λ (see Sec-
tion 8.4.1). We will see at the end of the section that, as ∥ j − i∥2 →∞,

1
2 lim
Λ↑Z2

(GΛ(i , i )+GΛ( j , j )−2GΛ(i , j )) ≃ 2

π
log∥ j − i∥2 ,

which leads to the following conjectural behavior for correlations at low tempera-
tures:

〈Si ·S j 〉X Y
Λ;β

∼= e−
1

2πβ log∥ j−i∥2 = ∥ j − i∥−1/(2πβ)
2 . (9.21)

Algebraic decay at low temperature

The following theorem provides, for large β, an essentially optimal upper bound of
the type (9.21). The lower bound will be discussed (but not proved) in Section 9.6.1.

Theorem 9.12. Let µ be an infinite-volume Gibbs measure associated to the two-
dimensional X Y model at inverse temperature β. For all ϵ> 0, there exists β0(ϵ) <∞
such that, for all β>β0(ϵ) and all i ̸= j ∈Z2,

|〈Si ·S j 〉µ| ≤ ∥ j − i∥−(1−ϵ)/(2πβ)
2 .

Before turning to the proof, let us try to motivate the approach that will be used,
which might otherwise seem rather uncanny. To do this, let us return to (9.20). To
actually compute the expectation 〈e i(ϕ j −ϕi )〉GF F

Λ;4β, one should remember thatϕ j −ϕi

has a normal distribution N (0,σ2), with (see (8.6))

σ2 = 1

4β
(GΛ(i , i )+GΛ( j , j )−2GΛ(i , j )) .

Its characteristic function can be computed by first completing the square:

〈e i(ϕ j −ϕi )〉GF F
Λ;4β =

1p
2πσ2

∫

R
e

ix− 1
2σ2 x2

dx = 1p
2πσ2

e−
σ2

2

∫

R
e
− 1

2σ2 (x−iσ2)2

dx .

Once the leading term e−
σ2

2 is extracted, the remaining integral can be computed
by translating the path of integration from R to R+ iσ2, an operation vindicated,
through Cauchy’s integral theorem, by the analyticity and rapid decay at infinity of
the integrand:

∫

R
e
− 1

2σ2 (x−iσ2)2

dx =
∫

R+iσ2
e
− 1

2σ2 (z−iσ2)2

dz =
∫

R
e
− 1

2σ2 x2

dx =
√

2πσ2 .

The proof below follows a similar scheme, but applied directly to the X Y spins in-
stead of the GFF approximation.
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Proof of Theorem 9.12: Without loss of generality, we consider i = 0, j = k. Similarly
to what was done in (9.5), we first rely on the DLR property: for all n such that
B(n) ∋ k,

〈
S0 ·Sk

〉
µ =

∫ 〈
S0 ·Sk

〉η
B(n);β

µ(dη) . (9.22)

We will estimate the expectation in the right-hand side, uniformly in the boundary
condition η. Observe first that

∣∣〈S0 ·Sk〉ηB(n);β

∣∣=
∣∣〈cos(ϑk −ϑ0)〉η

B(n);β

∣∣≤
∣∣〈e i(ϑk−ϑ0)〉η

B(n);β

∣∣ ,

since |Rez| ≤ |z| for all z ∈ C. We will write the expectation 〈·〉η
B(n);β

using explicit

integrals over the angle variables ϑi ∈ (−π,π], i ∈B(n). As a shorthand, we use the
notation

∫ π

−π
· · ·

∫ π

−π

∏
i∈B(n)

dθi ≡
∫

dθB(n) .

Therefore,

〈
e i(ϑk−ϑ0)〉η

B(n);β
= 1

Zη
B(n);β

∫
dθB(n) exp

{
i(θk −θ0)+β

∑

{i , j }∈E b
B(n)

cos(θi −θ j )
}

,

where we have set θi = ϑi (η) for each i ̸∈ B(n). Following the approach sketched
before the proof, we add an imaginary part to the variables θ j , j ∈ B(n). Since the
integrand is clearly analytic, we can easily deform the integration path associated
to the variable θ j away from the real axis: we shift the integration interval from
[−π,π] to [−π,π]+ ir j , where r j will be chosen later (also as a function of β and n):

π−π

π+ ir j−π+ ir j

R

Figure 9.5: Shifting the integration path of θ j . The shift depends on the vertex
j , on n and on β.

Notice that the periodicity of the integrand guarantees that the contributions
coming from the two segments connecting these two intervals cancel each other.
We extend the ri s to a function r :Z2 → R, with ri = 0 for all i ̸∈B(n). Observe now
that

|e i(θk+irk−θ0−ir0)| = e−(rk−r0),

|ecos(θi+iri−θ j −ir j )| = ecosh(ri−r j )cos(θi−θ j ).
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We thus have, letting ωθ denote the spin configuration associated to the angles θi ,

∣∣〈S0 ·Sk〉ηB(n);β

∣∣≤ e−(rk−r0)

Zη
B(n);β

∫
dθB(n) exp

{
β

∑

{i , j }∈E b
B(n)

cosh(ri − r j )cos(θi −θ j )
}

= e−(rk−r0)
∫

dθB(n) exp
{
β

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)
cos(θi −θ j )

}e−HB(n);β(ωθ)

Zη
B(n);β

= e−(rk−r0)
〈

exp
{
β

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)
cos(ϑi −ϑ j )

}〉η
B(n);β

≤ e−(rk−r0) exp
{
β

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)}
. (9.23)

In the last inequality, we used the fact that cosh(ri − r j ) ≥ 1 and cos(ϑi −ϑ j ) ≤ 1.
Assume that r can be chosen in such a way that

|ri − r j | ≤C /β , ∀{i , j } ∈ E b
B(n) , (9.24)

for some constant C . This allows us to replace the cosh term by a simpler quadratic
term: given ϵ > 0, we can assume that β0 is large enough to ensure that β ≥ β0

implies cosh(ri − r j )−1 ≤ 1
2 (1+ϵ)(ri − r j )2 for all {i , j } ∈ E b

B(n)
. In particular, we can

write

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)≤ 1
2 (1+ϵ)

∑

{i , j }∈E b
B(n)

(ri − r j )2 = (1+ϵ)E (r ) , (9.25)

where E (·) is the Dirichlet energy functional defined on maps r :Z2 →R that vanish
outside B(n). We thus have

∣∣〈S0 ·Sk〉ηB(n);β

∣∣≤ exp{−D(r )} , (9.26)

with D(·) the functional defined by

D(r )
def= rk − r0 −β′E (r ) ,

where we have set β′ def= (1+ϵ)β. We now search for a maximizer of D .

Lemma 9.13. For a fixed 0 ̸= k ∈ B(n), the functional D possesses a unique maxi-
mizer r∗ among the functions r that satisfy ri = 0 for all i ̸∈B(n). That maximizer is
the unique such function that satisfies

(∆r )i = (1{i=0} −1{i=k})/β′, i ∈B(n) . (9.27)

It can be expressed explicitly as (see Figure 9.6)

r∗
i = (

GB(n)(i ,k)−GB(n)(i ,0)
)
/(4β′), i ∈B(n) , (9.28)

where GB(n)(·, ·) is the Green function of the symmetric simple random walk in B(n).



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

432 Chapter 9. Models with Continuous Symmetry

Figure 9.6: The maximizer (9.28) of the functional D . In this picture, Λ =
B(30) and k = (12,12).

Proof. As in the proof of Lemma 9.8, we start by observing that a critical point r

of D must be such that d
ds D(r + sδ)

∣∣∣
s=0

= 0 for all perturbations δ : Zd → R which

vanish outside B(n). But, as a straightforward computation shows,

d

ds
D(r + sδ)

∣∣∣
s=0

= δk −δ0 +β′∑
i∈B(n)

δi (∆r )i

= δk
(
1+β′(∆r )k

)−δ0
(
1−β′(∆r )0

)+β′∑
i∈B(n)\{0,k}

δi (∆r )i .

Since this sum of three terms must vanish for all δ, we see that r must satisfy (9.27).
Since ri = 0 outside B(n), we have (∆r )i = (∆B(n)r )i (remember Remark 8.9), so
that (9.27) can be written

(∆B(n)r )i = (1{i=0} −1{i=k})/β′ .

In Lemma 8.13, we saw that GB(n) is precisely the inverse of − 1
4∆B(n). Therefore,

multiplying by GB(n)( j , i ) on both sides of the previous display and summing over
i gives (9.28). To prove that r∗ actually maximizes D(·), let δ be such that δi = 0
outside B(n). Proceeding as we have already done several times before,

D(r∗+δ) =D(r∗)−β′E (δ)+δk −δ0 −β′ ∑

{i , j }∈E b
B(n)

(∇δ)i j (∇r∗)i j

=D(r∗)−β′E (δ)+δk −δ0 +β′ ∑
i∈B(n)

δi (∆r∗)i︸ ︷︷ ︸
use (9.27)

=D(r∗)−β′E (δ) .

Since E (δ) ≥ 0, we conclude that D(r∗+δ) ≤D(r∗).

It follows from Theorem B.77 that there exists a constant C such that |GB(n)(i , v)−
GB(n)( j , v)| ≤ 2C , uniformly in n, in v ∈ B(n) and in {i , j } ∈ E b

B(n)
. In particular,

|r∗
i − r∗

j | ≤ C /β, meaning that (9.24) is satisfied. We now use (9.26) with r∗. First,

one easily verifies that

D(r∗) = 1
2 (r∗

k − r∗
0 ) = 1

8β′
{
(GB(n)(k,k)−GB(n)(k,0))+ (GB(n)(0,0)−GB(n)(0,k))

}
.

We then let n →∞; using Exercise B.24,

lim
n→∞(GB(n)(k,k)−GB(n)(k,0)) = lim

n→∞(GB(n)(0,0)−GB(n)(0,k)) = a(k) , (9.29)
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where a(k) is called the potential kernel of the symmetric simple random walk on
Z2, defined by

a(k)
def=

∑
m≥0

{
P0(Xm = 0)−Pk (Xm = 0)

}
.

Therefore, ∣∣〈S0 ·Sk〉µ
∣∣≤ e−a(k)/4β′

.

The conclusion now follows since, by Theorem B.76,

a(k) = 2

π
log∥k∥2 +O(1) as ∥k∥2 →∞ .

9.5 Bibliographical references

The problems treated in this chapter find their origin in a celebrated work by Mer-
min and Wagner [242, 241]. The latter triggered a long series of subsequent inves-
tigations, leading to stronger claims under weaker assumptions: [83, 237, 317, 179,
273, 193, 32, 243, 240, 252, 169, 126] to mention just a few.

Mermin–Wagner theorem. The proof of Theorem 9.2 follows the approach of
Pfister [273], with some improvements from [169]. Being really classical mate-
rial, alternative presentations of this material can be found in many books, such
as [312, 282, 134, 308].

Effective interface models in d = 1 and 2. That the same type of arguments can
be used to prove the absence of any Gibbs state in models with unbounded spins, as
in our Theorem 9.9, was first realized by Dobrushin and Shlosman [84] and by Fröh-
lich and Pfister [119], although they did not derive quantitative lower bounds. Gen-
eralizations of Theorem 9.9 to more general potentials can be found in [169, 246].
Let us also mention that results of this type can also be derived by a very different
method. Namely, relying on an inequality derived by Brascamp and Lieb in [42],
it is possible to compare, under suitable assumptions, the variance of an effective
interface models with that of the GFF; this alternative approach is described in [41].

Comparison with the Ising model. Our proof of Theorem 9.10 is original, as far as
we know. However, a similar claim can be found in [250], with a proof based on cor-
relation inequalities. Arguments similar to those used in the proof of Theorem 9.10
have already been used, for example, in [69].

Algebraic decay of correlation in two dimensions. The proof of Theorem 9.12 is
originally due to McBryan and Spencer [237]; the argument presented in the chap-
ter is directly based on their work. Again, alternative presentations can be found in
many places, such as [140, 308].

9.6 Complements and further reading

9.6.1 The Berezinskĭı–Kosterlitz–Thouless phase transition

Theorem 9.12 provides an algebraically decaying upper bound on the 2-point func-
tion of the two-dimensional X Y model at low temperatures, which improves sub-
stantially on the bound that can be extracted from Proposition 9.7. Nevertheless,
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one might wonder whether this bound could be further improved, an issue which
we briefly discuss now.

Consider again the two-dimensional X Y model. Theorem 9.2 shows that all
Gibbs measures are SO(2)-invariant, but, as already mentioned, it does not imply
uniqueness [1]. It is however possible to prove, using suitable correlation inequali-
ties, that absence of spontaneous magnetization for the X Y model entails the exis-
tence of a unique translation-invariant infinite-volume Gibbs measure [47]. Con-
sequently, the Mermin–Wagner theorem implies that there is a unique translation-
invariant infinite-volume Gibbs measure, at all β ≥ 0, for the X Y model on Z2.
Moreover, this Gibbs measure is extremal. It is in fact expected that uniqueness
holds for this model, but this has not yet been proved.

The following remarkable result proves that a phase transition of a more subtle
kind nevertheless occurs in this model.

Theorem 9.14. Consider the unique translation-invariant Gibbs measure of the
two-dimensional X Y model. There exist 0 <β1 <β2 <∞ such that

• for all β<β1, there exist C (β) and m(β) > 0 such that

|〈S0 ·Sk〉β| ≤C (β) exp(−m(β)∥k∥2),

for all k ∈Z2;

• for all β>β2, there exist c(β) > 0 and D > 0 such that

〈S0 ·Sk〉β ≥ c(β)∥k∥−D/β
2 ,

for all k ∈Z2.

Proof. The first claim follows immediately from Theorem 9.10 and Exercise 3.24.
The proof of the second part, which is due to Fröhlich and Spencer [122], is however
quite involved and goes beyond the scope of this book.

Note that, combined with the upper bound of Theorem 9.12, this shows that the 2-
point function of the two-dimensional X Y model really decays algebraically at low
temperature.

It is expected that there is a sharp transition between the two regimes (exponen-
tial vs. algebraic decay) described in Theorem 9.14, at a value βBKT of the inverse
temperature. This so-called Berezinskĭı–Kosterlitz–Thouless phase transition,
named after the physicists who studied this problem in the early 1970s [19, 195],
exhibits several remarkable properties, among which the fact that the pressure re-
mains infinitely differentiable (but not analytic) at the transition. One should point
out, however, that the analytic properties at this phase transition are not universal,
and other O(2)-symmetric models display very different behavior, such as a first-
order phase transition [344].

To conclude this discussion, let us mention an outstanding open problem in
this area. As explained in Section 9.6.2, the proof of Theorem 9.12 can be adapted
to obtain similar upper bounds for a general class of O(N )-symmetric models, and
in particular for all O(N ) models with N > 2. However, it is conjectured that this
upper bound is very poor when N > 2. Namely, it is expected that the 2-point func-
tion then decays exponentially at all temperatures. Interestingly, it is the fact that
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SO(2) is abelian while the groups SO(N ), N ≥ 3, are not, which is deemed to be
responsible for the difference of behavior [307].

9.6.2 Generalizations.

For pedagogical reasons, we have restricted our discussion to the simplest setup.
The results presented here can however be extended in various directions. We
briefly describe one possible such framework and provide some relevant refer-
ences.

We assume that the spins Si take values in some topological space S , on which
a compact, connected Lie group G acts continuously (we simply denote the action
of g ∈G on x ∈S by gx). We replace the Hamiltonian in (9.1) by

∑

{i , j }⊂Zd :
{i , j }∩Λ̸=∅

J j−i W̃ (Si ,S j ) ,

where (Ji )i∈Zd is a collection of real numbers such that
∑

i∈Zd |Ji | = 1 and W̃ : S ×
S → R is continuous and G-invariant, in the sense that W̃ (gx,gy) = W̃ (x, y) for all
x, y ∈S and all g ∈G.

Theorem 9.2 (and the more quantitative Proposition 9.7) can then be extended
to this more general setup, under the assumption that the random walk on Zd ,
which jumps from i to j with probability |J j−i |, is recurrent. This result was proved
by Ioffe, Shlosman and Velenik [169], building on earlier works by Dobrushin and
Shlosman [83] and Pfister [273]. We emphasize that the recurrence assumption
cannot be improved in general, as there are examples of models for which sponta-
neous symmetry breaking at low temperatures occurs as soon as the corresponding
random walk is transient [201, 32], see also [134, Theorem 20.15].

Using a similar approach and building on the earlier works of McBryan and
Spencer [237] and of Messager, Miracle-Solé and Ruiz [243], Theorem 9.12 has been
extended by Gagnebin and Velenik [126] to O(N )-symmetric models with a Hamil-
tonian as above, provided that |Ji | ≤ J∥i∥−α1 for some J <∞ and α> 4.
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