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A Notes

Chapter 1

[1] (p. 3) The property described in (1.1) is usually referred to as additivity rather
than extensivity. Extensivity of the energy is usually valid and equivalent to ad-
ditivity in the thermodynamic limit, at least for systems with finite-range interac-
tions, as usually considered in this book. For systems with long-range interactions,
extensivity does not always hold.
[2] (p. 19) This terminology was introduced by Gibbs [137], but the statistical en-
sembles were first introduced by Boltzmann under a different name (ergode for the
microcanonical ensemble and holode for the canonical).
[3] (p. 19) We adopt here the following point of view explained by Jaynes in [181]:

This problem of specification of probabilities in cases where little or no
information is available, is as old as the theory of probability. Laplace’s
“Principle of Insufficient Reason” was an attempt to supply a criterion
of choice, in which one said that two events are to be assigned equal
probabilities if there is no reason to think otherwise.

Of course, some readers might not consider such a point of view to be fully satisfac-
tory. In particular, one might dislike the interpretation of a probability distribution
as a description of a state of knowledge, rather than as a quantity intrinsic to the
system. After all, there is a more fundamental theory and it would be satisfactory to
derive this probability distribution from the latter. Many attempts have been done,
but no fully satisfactory derivation has been obtained. We will not discuss such is-
sues further here, but refer the interested reader to the extensive literature on this
topic; see for example [130].
[4] (p. 21) Historically, the entropy of a probability density had already been intro-
duced by Gibbs in [137].
[5] (p. 35) In our brief description of a ferromagnet and its basic properties, we are
neglecting many physically important aspects of the corresponding phenomena.
Our goal is not to provide a faithful account, but rather to provide the uninitiated
reader with an idea of what ferromagnetic and paramagnetic behaviors correspond
to. We refer readers who would prefer a more thorough description to any of the
many books on condensed matter physics, such as [356, 14, 1, 65].
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[6] (p. 37). Let us briefly recall a famous anecdote originally reported by Uhlenbeck
(see [260]). In November 1937, during the Van der Waals Centenary Conference, a
morning-long debate took place about the following question: does the partition
function contain the information necessary to describe a sharp phase transition?
As the debate turned out to be inconclusive, Kramers, who was the chairman, put
the question to a vote, the result of which was nearly a tie (the “yes” winning by a
small margin).
[7] (p. 37) The importance of Peierls’ contribution was not immediately recognized.
Rather, it was the groundbreaking mathematical analysis by Lars Onsager in 1944
that convinced the physics community. In particular, Onsager’s formula for the
pressure of the two-dimensional Ising model in the thermodynamic limit showed
explicitly the existence of a singularity of this function. Moreover, and perhaps even
more importantly, it showed that the behavior at the transition was completely dif-
ferent from what all of the former approximation schemes were predicting. The
ensuing necessity of developing more refined approximation methods triggered
the development of the modern theory of critical phenomena, in which the Ising
model played a central role.
[8] (p. 37). In this book, we only provide brief and very qualitative physical motiva-
tions and background information for the Ising model. Much more can be found
in many statistical physics textbooks aimed at physicists, such as [298, 264, 165,
299, 331]; see also the (old) review by Fisher [105]. An interesting and detailed de-
scription of the major role played by this model in the development of statistical
mechanics in the 20th century is given in the series of papers [255, 256, 257], while
a shorter one can be found in [55].
[9] (p. 45). The determination of the explicit expression for the spontaneous mag-
netization of the two-dimensional Ising model given in (1.51) is due to Onsager and
Kaufman and was announced by Onsager in 1949. However, they did not publish
their result since they still had to work out “how to fill out the holes in the math-
ematics and show the epsilons and the deltas and all of that” [159]. The first pub-
lished proof appeared in 1952 and is due to Yang [352]. See [15, 16] for more infor-
mation.
[10] (p. 48) As an example, let us cite this passage from Peierls’ famous paper [266]:

In the meantime it was shown by Heisenberg that the forces leading
to ferromagnetism are due to electron exchange. Therefore the energy
function is of a more complicated nature than was assumed by Ising;
it depends not only on the arrangement of the elementary magnets,
but also on the speed with which they exchange their places. The Ising
model is therefore now only of mathematical interest [emphasis added].

[11] (p. 48) In the words of Fisher [105]:

[I]t is appropriate to ask what the main aim of theory should be.
This is sometimes held (implicitly or explicitly) to be the calculation
of the observable properties of a system from first principles using the
full microscopic quantum-mechanical description of the constituent
electrons, protons and neutrons. Such a calculation, however, even if
feasible for a many-particle system which undergoes a phase transition
need not and, in all probability, would not increase one’s understand-
ing of the observed behaviour of the system. Rather, the aim of the
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theory of a complex phenomenon should be to elucidate which gen-
eral features of the Hamiltonian of the system lead to the most charac-
teristic and typical observed properties. Initially one should aim at a
broad qualitative understanding, successively refining one’s quantita-
tive grasp of the problem when it becomes clear that the main features
have been found.

Chapter 3

[1] (p. 87). It is known that subadditivity is not sufficient to prove convergence along
arbitrary sequencesΛn ⇑Zd and that it has to be replaced by strong subbadditivity,
see [148]. Subadditivity is however sufficient to prove convergence in the sense of
Fisher, that is, for sequences Λn ↑Zd such that, for all n ≥ 1, there exists a cube Kn

such thatΛn ⊂ Kn and supn |Kn |/|Λn | <∞.
[2] (p. 104). The statement of Theorem 3.25 does not indicate what happens at the
critical point (β,h) = (βc(d),0). In that case, one can prove that, in all dimensions
d ≥ 2, uniqueness holds. In dimension 2, this can be proved in many ways; see, for
example, [350]. In dimension d ≥ 4, the proof is due to Aizenman and Fernández
[7]. The case of dimension 3 was treated recently by Aizenman, Duminil-Copin and
Sidoravicius [8]. Both are based on the random-current representation, a geometric
representation of the Ising model which we briefly present in Section 3.10.6.
[3] (p. 108). Much is known about the decay of correlations in the Ising model. In
two dimensions, explicit computations show that 〈σ0σx〉β,0 decays exponentially
in ∥x∥2 for all β ̸=βc(2) (with a rate that can be determined) and that 〈σ0σx〉βc(2),0 ≈
∥x∥−1/4

2 ; see, for instance, [239, 261].
In any dimension, Aizenman, Barsky and Fernández have proved that there is

exponential decay of the 2-point function 〈σ0σx〉β,0 for allβ<βc(d) [5]. In the same
regime, it is actually possible to prove [60] that the 2-point function has Ornstein–
Zernike behavior: 〈σ0σx〉β,0 ≃Ψβ(x/∥x∥2)∥x∥−(d−1)/2

2 e−ξβ(x/∥x∥2)∥x∥2 , as ∥x∥2 →∞,
whereΨβ and ξβ are positive, analytic functions.

Sakai proved [292] that 〈σ0σx〉βc(d),0 ∼ cd∥x∥2−d
2 , for some constant cd , in large

enough dimensions d .
In the remaining cases, the 2-point function remains uniformly bounded away

from 0 (by the FKG inequality), and the relevant quantity is the truncated 2-point

function 〈σi ;σ j 〉+β,h
def= 〈σiσ j 〉+β,h −〈σi 〉+β,h〈σ j 〉+β,h .

It is known that 〈σi ;σ j 〉+β,0 decays exponentially for all β > βc(d) in dimen-

sion 2 [67]. A proof for sufficiently low temperatures is given in Section 5.7.4.
Finally, 〈σi ;σ j 〉+β,h decays exponentially for all h ̸= 0 [95]; a simple geometric

proof relying on the random-current representation can be found in [172].
[4] (p. 121). Even this statement should be qualified, since procedures allowing an
experimental observation of the effect of complex values of physical parameters
have recently been proposed and implemented. We refer the interested readers
to [268] for more information.
[5] (p. 151). These two conjectures are supported by proofs of a similar behavior for
a simplified model of the interface, known as the SOS (or Solid-On-Solid) model.
For the latter, the analogue of the first claim above is already highly nontrivial, and
was proved in [122], while the second claim was proved in [52].
[6] (p. 151). In sufficiently large dimensions (conjecturally: for all dimensions d ≥
3), there exists βp(d) > βc(d) such that the − spins percolate under µ+

β,0 for all
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β ∈ (βc(d),βp(d)) [6]. As a consequence, Peierls contours, and in particular the in-
terface as defined in Section 3.10.7, are not very relevant anymore. One should then
consider analogous objects defined on a coarser scale. For example, one might par-
tition Zd into blocks of R ×R spins, with R ↑∞ as β ↓ βc(d). A block would then be
said to be of type + if the corresponding portion of configuration is “typical of the
+ phase”, of type − if it is “typical of the − phase”, and of type 0 otherwise. Provided
one defines these notions in a suitable way, then + and − blocks are necessarily
separated by 0 blocks, and one can define contours as connected components of 0
blocks. If R diverges fast enough as β ↓ βc(d), then this notion of contours makes
sense for all β>βc(d). We refer to [276] for an explicit example of such a construc-
tion.
[7] (p. 159) It can be shown, nevertheless, that the series (3.98) provides an asymp-
totic expansion for ψβ at h = 0:

∣∣ψβ(h)−
n∑

k=0
ak hk ∣∣= o(hn) , ∀n ≥ 1.

Chapter 4

[1] (p. 168) These were made in Van der Waals’ thesis [339].
[2] (p. 184) In Section 6.14.1, we give a sketch of one way by which equivalence
can be approached for systems with interactions. We refer to the papers of Lan-
ford [205] and of Lewis, Pfister and Sullivan [222, 223] for a much more complete
and general treatment.

Chapter 6

[1] (p. 252). This statement should be qualified. Indeed, there are very specific
cases in which such an approach allows one to construct infinite-volume Gibbs
measures. The main example concerns models on trees (instead of lattices such as
Zd , d ≥ 2). In such a case, the absence of loops in the graph makes it possible to
compute explicitly the marginal of the field in a finite subset. Roughly speaking,
it yields explicit (finite) sets of equations, each of whose solutions correspond to
one possible compatible family of marginals. In this way, it is possible to have mul-
tiple infinite-volume measures, even though one is still relying on Kolmogorov’s
extension theorem. A general reference for Gibbs measures on trees is [288]; see
also [134, Chapter 12].
[2] (p. 263). The equivalence in Lemma 6.21 does not always hold if the single-
spin space is not finite. When working on more general spaces, it turns out that
quasilocal, rather than continuous, functions are the natural objects to consider.
Note that the equivalences stated in Exercise 6.12 also fail to hold in general.
[3] (p. 266). In fact, the class of specifications that can constructed in this way is very
general. A specification π is non-null if, for all Λ⋐ Zd and ω ∈Ω, π(ηΛ |ω) > 0 for
all ηΛ ∈ ΩΛ. (An alternative terminology, often used in the context of percolation
models, is that the specification π has finite energy.) It can then be shown [134,
Section 2.3] that, if π is quasilocal and non-null, then there exists an absolutely
summable potentialΦ such thatπΦ =π. This result is known as the Kozlov–Sullivan
theorem.
[4] (p. 266) This counter-example was taken from [134].
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[5] (p. 275) The fact that a phase transition occurs in this model was proved by
Dyson [99] when −1 < ϵ< 0 and by Fröhlich and Spencer [123] when ϵ= 0.
[6] (p. 279). A proof can be found, for example, in [134, Section 14.A].
[7] (p. 283) The use of the operations rΛ and tπΛ is taken from [278].
[8] (p. 286). The argument in Example 6.64 is due to Miyamoto and first appeared
in his book [249] (in Japanese). The argument was rediscovered independently by
Coquille [72].
[9] (p. 290). This statement should be slightly nuanced. For concreteness, let us
consider the two-dimensional Ising model with β > βc(2) and h = 0. On the one
hand, when the free boundary condition is chosen, typical configurations show the
box B(n) to be entirely filled with either the + phase or the − phase, both occurring
with equal probability:

On the other hand, when Dobrushin boundary condition is applied (see the
discussion in Section 3.10.7), typical configurations display coexistence of both +
and − phases, separated by an interface:

Nevertheless, letting n →∞, both these sequences of finite-volume Gibbs dis-
tributions converge to the same Gibbs measure 1

2µ
+
β,0 + 1

2µ
−
β,0. So, even though

all the physics in the latter measure is already present in the two extremal mea-
suresµ+

β,0 andµ−
β,0, the physical mechanism leading to this particular non-extremal

Gibbs state are very different. In this sense, there can be hidden physics behind the
coefficients of the extremal decomposition.
[10] (p. 308) The non-uniqueness criterion presented in Section 6.11 was inspired
by [22].
[11] (p. 311) In dimension 2, this follows, for example, from the explicit expres-
sion (3.14) for the pressure at h = 0. For general dimensions, the claim follows
from the fact that continuity of the magnetization implies differentiability of the
pressure with respect to β [218] and the results on continuity of the magnetiza-
tion [352, 7, 27, 8].
[12] (p. 311) This result can be found in [289, Theorem 5.6.2].

Chapter 7

[1] (p. 323) A detailed analysis of this model can be found in [35].
[2] (p. 323) This model was first studied by Blume [25] and Capel [61].
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[3] (p. 333) More specifically, the problem of determining the ground states of a
lattice model can be shown to fall, in general, in the class of NP-hard problems. For
a discussion of this notion in the context of statistical mechanics, we recommend
the book [245].
[4] (p. 345) This trick is known as the “Minlos–Sinai trick”, and seems to have ap-
peared first in [248].

Chapter 9

[1] (p. 416). The first example of a two-dimensional O(N )-symmetric model with
several infinite-volume Gibbs measures at low temperature was provided by Shlos-
man [304]. His model has N = 2 and formal Hamiltonian

−β
∑

i , j∈Z2

∥ j−i∥2=
p

2

cos(ϑi −ϑ j )+βJ
∑

i , j∈Z2

∥ j−i∥2=1

cos(2(ϑi −ϑ j )) ,

where J is nonnegative, and we have written Si = (cosϑi , sinϑi ) for the spin at
i ∈Z2. The crucial feature of this model is that, in addition to the SO(2)-invariance
of the Hamiltonian, the latter is also preserved under the simultaneous transfor-
mation

ϑi 7→ϑi , ϑ j 7→ϑ j +π ,

for all i ∈ Z2
even

def= {
i = (i1, i2) ∈Z2 : i1 + i2 is even

}
and j ∈ Z2

odd

def= Z2 \Z2
even. It is

this discrete symmetry that is spontaneously broken at low temperatures, yielding
two Gibbs measures under which, in typical configurations, either most nearest-
neighbor spins differ by approximately π/2, or most differ by approximately −π/2;
see Figure A.1.
[2] (p. 424), A proof can be found, for example, in [111].

Chapter 10

[1] (p. 438) Extensions of Pirogov–Sinai theory covering some models with contin-
uous spins can be found, for example, in [168], [87] and [355].
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Figure A.1: A typical low-temperature configuration of the model in Note 1 of
Chapter 9.
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