Pirogov-Sinai Theory

As we have already discussed several times in previous chapters, a central task of
equilibrium statistical physics is to characterize all possible macroscopic behaviors
of the system under consideration, given the values of the relevant thermodynamic
parameters. This includes, in particular, the determination of the phase diagram of
the model. This can be tackled in at least two ways, as was already seen in Chap-
ter 3. In the first approach, one determines the set of all infinite-volume Gibbs
measures as a function of the parameters of the model. In the second approach,
one considers instead the associated pressure and studies its analytic properties as
a function of its parameters; of particular interest is the determination of the set of
values of the latter at which the pressure fails to be differentiable.

Our goal in the present chapter is to introduce the reader to the Pirogov-Sinai
theory, in which these two approaches can be implemented, at sufficiently low tem-
peratures (or in other perturbative regimes), for a rather general class of models.
This theory is one of the few frameworks in which first-order phase transitions can
be established and phase diagrams constructed, under general assumptions.

To make the most out of this chapter, the reader should preferably be familiar
with the results derived for the Ising model in Chapter 3, as those provide useful
intuition for the more complex problems addressed here. He should also be famil-
iar with the cluster expansion technique exposed in Chapter 5, the latter being the
basic tool we will use in our analysis. However, although it might help, a thorough
understanding of the theory of Gibbs Measures, as exposed in Chapter 6, is not re-
quired.

Conventions. We know from Corollary 6.41 that one-dimensional models with
finite-range interactions do not exhibit phase transitions and thus possess a trivial
phase diagram at all temperatures. We will therefore always assume, throughout
the chapter, that d = 2.

It will once more be convenient to adopt the physicists’ convention and let
the inverse temperature  appear as a multiplicative constant in the Boltzmann
weights and in the pressures. To lighten the notations, we will usually omit to men-
tion B and the external fields, especially for partition functions.
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Introduction

Most of Chapter 3 was devoted to the study of the phase diagram of the Ising model
as a function of the inverse temperature § and magnetic field k. In particular, it was
shown there that, at low temperature, the features that distinguish the regimes h <
0, h =0, h > 0 are closely related to the ground states of the Ising Hamiltonian, that
is, the configurations with lowest energy. These are given by~ if h <0, n* if h >0
and both n* and n~ if & = 0 (we remind the reader that n* and n~ are the constant
configurations n;—’ =+1forallie Zd). In dimension d = 2, the main features of the
behavior of the model at low temperature can then be summarized as follows:

* When h < 0, resp. h > 0, there is a unique infinite-volume Gibbs measure:
(B, h) = {up,n}. Moreover, the pressure h — yg(h) is differentiable (in fact:
analytic) on these regions.

* At h =0, a first-order phase transition occurs, characterized by the non-dif-
ferentiability of the pressure:

%‘ L]
oh~—lh=0" Oh*

h=0"

When h = 0, the system becomes sensitive to the choice of boundary condi-
tion, in the sense that imposing + or — boundary condition yields two distinct
Gibbs measures in the thermodynamic limit,

Hgo # Hpo-

As seen when implementing Peierls’ argument, at low temperature the typi-
cal configurations under each of these measures are described by small local
deviations away from the ground state corresponding to the chosen bound-
ary condition. Later, we will refer to this phenomenon as the stability of the
two ground states (or of the two + and — boundary conditions) at the transi-
tion point.

These features can thus be summarized by the following picture:

wp(h)
— phase + phase
h
/ \
9B, =1 19 (B, ] =1

19 (B, M| >1

Figure 7.1: The phase diagram and pressure of the Ising model on 79, d=2,
at low temperature.

We emphasize that the symmetry under the global spin flip enjoyed by the Ising
model when & = 0 was a crucial simplifying feature when proving these results, and
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especially when implementing Peierls’ argument (remember how spin flip symme-
try was used on page 113).

In view of the above results, it is natural to wonder whether phase diagrams can
be established rigorously for other models with more complicated interactions, in
particular for models which do not enjoy any particular symmetry.

This is precisely the purpose of the Pirogov-Sinai theory (abreviated PST be-
low). Even though the theory applies in more general frameworks, we will only dis-
cuss models with finite single-spin space and finite-range interactions. Let us just
mention two examples, the second of which will be the main subject of this chapter.
(Other fields of applications will be described in the bibliographical notes.)

A modified Ising model

Consider, for example, the following modification of the formal Hamiltonian of the
Ising model:

- Z Wiwj+e Z wiijk—th,-, (7.1)
{i,j}e&a {i,j,k} iezd

where the second sum is over all triples {i, j, k} having diameter bounded by 1, and
€ is a small, fixed parameter.

When € = 0, this model coincides with the Ising model. But, as soon as € # 0, the
Hamiltonian is no longer invariant under a global spin flip when & = 0, and there
is no reason anymore for i = 0 to be the point of coexistence. Nevertheless, when
lel is small, n~ and n* are the only possible ground states (see Exercise 7.6), and
one might expect this model and the Ising model to have similar phase diagrams,
except that the former’s might not be symmetric in & when € # 0.

The above modification of the Ising model can be studied rigorously using the
methods of PST. It can be proved that, once f is sufficiently large, there exists for all
€ (not too large) a unique transition point i, = h;(f,€) such that the pressure h —
u/gfed‘f(h) is differentiable when & < h; and when h > h;, but is not differentiable at
ht:

auq;fﬁ auﬂ;fﬂ
oh~ ln=h." 0h* ln=h;

In fact, the theory also provides detailed information on the behavior of k; as a
function of  and € and allows one to construct two distinct extremal Gibbs mea-
sures when h = h;.

We will not discuss the properties of this model in detail here '), but after hav-
ing read the chapter, the reader should be able to provide rigorous proofs of the
above claims.

Models with three or more phases

The PST is however not restricted to models with only two equilibrium phases. In
this chapter, in order to remain as concrete as possible, alarge part of the discussion
will be done for one particular model of interest: the Blume-Capel model ?'. In
the latter, spins take three values, w; € {+1,0,—1}, and the formal Hamiltonian is
defined by

Y i-wp)P-h)Y wi-1Y o (7.2)

{i,j}eéa iezd jezd
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324 Chapter 7. Pirogov-Sinai Theory

Depending on the values of A and h, this Hamiltonian has three possible ground
states, given by the constant configurations n*, n° and 1~ (ignoring, for the mo-
ment, possible boundary effects). The set of pairs (A, k) € R2 then splits into three
regions % *,%°,% ~ such that n* is the unique ground state when (A, h) belongs
to the interior of %/#. The picture represented on Figure 7.2a illustrates this, and is
called the zero-temperature phase diagram.

We will prove that, at low temperature, the phase diagram is a small deforma-
tion of the latter (in a sense which will be made precise later); see Figure 7.2b.

n
h g+ \ h %ﬁ
coexistence lines
w0 A U0 ( l A
b N
/ triple point
U~ %ﬁ‘
aT=0 b) T > 0 (small)

Figure 7.2: The Blume-Capel model at T =0 (8 = co) and small T > 0 (8 < oo,
large). a) At zero temperature, the phase diagram is just a partition of the
(A, h) plane into regions with different ground state(s): when (A, h) € Z*, n*
is a ground state. On the boundaries of these regions, several ground states
coexist. In particular, there are three ground states when (A, k) = (0,0). b)
At low temperature, the phase diagram is a small and smooth deformation
of the zero-temperature one. When (A, h) € %g , an extremal Gibbs measure
,u’;; A, CAN0 be constructed using the boundary condition #; typical configura-
tions under this measure are described by small deviations from the ground
state 7). There exists a triple point (1,0), at which these three distinct ex-
tremal Gibbs measures coexist. From the triple point emanate three coex-
istence lines. On each of the latter, exactly two of these measures coexist. .
The rest of the diagram consists of uniqueness regions. The symmetry by a
reflection across the A-axis is due to the invariance of the Hamiltonian un-
der the interchange of + and — spins. This phase diagram will be rigorously
established in Section 7.4.

We will see in Theorem 7.36 that the pressure (A, k) — wﬁ(/l, h) is differentiable
everywhere, except on the coexistence lines, across which its derivatives are dis-
continuous.

A qualitative plot of ¥4 can be found in Figure 7.3.

The analysis will also provide information on the structure of typical configura-
tions, in Corollary 7.44.

Remark 7.1. The principles underlying the Pirogov-Sinai theory are rather general,
robust and apply in many situations. Nevertheless, their current implementation
requires perturbative techniques. As a consequence, this theory can provide pre-
cise information regarding the dependence of a model on its parameters only for
regions of the parameters space which lie in a neighborhood of a regime that is
already well understood. In this chapter, the latter will be the zero-temperature
regime, and the results will thus only hold at sufficiently low temperatures (usually,
very low temperatures). o
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Figure 7.3: A qualitative plot of the pressure of the Blume—Capel at low tem-
perature.

Overview of the chapter

We will first introduce the general notion of ground statein Section 7.2 and describe
the basic structure that a model with finite-range interactions should have in order
to enter the framework of the Pirogov-Sinai theory. Ultimately, this will lead to a
representation of its partition function as a polymer model in Section 7.3.

In a second step, we will study those polymer models at low temperature and
construct the phase diagram in Section 7.4. For the sake of concreteness, as in the
rest of the book, we will avoid adopting too general a point of view and implement
this construction only for the Blume-Capel model. The reason for this choice is that
the latter is representative of the class of models to which this approach can be ap-
plied: Its analysis is sufficiently complicated to require the use of all the main ideas
of PST, but simple enough to keep the discussion (and the notations) as elemen-
tary as possible. On the one hand, the absence of symmetry between the 0 and +1
spins makes it impossible to implement a “naive” Peierls’ argument, as was done
for the Ising model (remember how the ratio of partition functions was bounded
on page 113). On the other hand, since this model includes two external fields (h
and A7), its phase diagram has already a nontrivial structure, containing coexistence
lines and a triple point, as shown on Figure 7.2.

We are confident that, once he has read carefully the construction of the phase
diagram of the Blume—-Capel model, the reader should be able to adapt the ideas to
new situations.

Models with finite-range translation invariant interactions

The models to which PST applies are essentially those introduced in Section 6.3.2,
with a potential ® satisfying a set of extra conditions that will be described in the
next section.
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326 Chapter 7. Pirogov-Sinai Theory

The distance on Z¢ used throughout this chapter is the one associated to the
norm |7 s & max<i<q lix|. The diameter of a set B 7% in particular, is defined
by

. def .. ..
diam(B) = sup{d.(i, ) : i,j € B},

where d.(i, j) &f lj—illo.. We will use two notions of boundary: for Ac z4,

def

AL
AL i€ A d(i, A% <1}. (7.4)

{ie A°:d,(i,A) <1}, (7.3)

As in Section 6.6, the translation by i € Z¢ will be denoted by 6; and can act on
configurations, events and measures.

We assume throughout that the single-spin space Qy is finite and set, as usual,
def def

0\ Y0l and ¥ 02"
All the potentials ® = {®p} Bezd considered in this chapter will be of finite
range,
(@) =inf{R >0 : ®5 =0 for all B with diam(B) > R} < co,

and invariant under translations, meaning that

®p,0;0) = Pp(w), ViezZ VweQ.

The notations concerning Gibbs distributions associated to a potential ® are
those used in Section 6.3.2. For instance, the Hamiltonian in a region A € 7% is
defined as usual by

Hp@E Y Opw), weQ. (7.5)

Bez4:
BNA#Q

The partition function (denoted previously by Z7\,®, see (6.31)) will be denoted
slightly differently, in order to emphasize its dependence on the set A, for reasons
that will become clear later:

def

ZLNZE Y exp(-PHpow)). (7.6)

n
we,

We remind the reader that Q7 = {w € Q : wpc = nac}.

The pressure is obtained by considering the thermodynamic limit along a se-
quence A f Z%:

def

1
Y(®) < lim ——logZ! (A). 7.7)

Anzd PIA

In Theorem 6.79, we showed the existence of this limit along the sequence of boxes
B(n), n — oo, for absolutely summable potentials. When the range is finite, exis-
tence can also be obtained by a simpler method.

Exercise 7.1. Adapting the proof of Theorem 3.6, show that y(®) exists, depends
neither onn nor on the sequence A f Z% and is convex.
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Ground states and Peierls’ Condition

Loosely speaking, the main outcome of the Pirogov-Sinai theory is the determi-
nation of sufficient conditions that guarantee that typical configurations at (suffi-
ciently low) positive temperatures are perturbations of those at zero temperature.
As we already saw in the discussion of Section 1.4.3, typical configurations at zero
temperature are those of minimal energy, that is, the ground states. Our first task is
to find a suitable extension of this notion to infinite systems.

Remark 7.2. Note that what we call ground states, below, are in fact configurations
(elements of Q). This use of the word state should thus not be confused with that
of earlier chapters, in which a state was a suitable linear functional acting on local
functions. o

Since 7). is usually not defined when A = 7%, defining ground states as the
configurations minimizing the total energy (on Z%) raises the same difficulty we al-
ready encountered in Section 6.1. The resolution of this problem is based on the
same observation we made there: the difference of energy between two configura-
tions coinciding everywhere outside a finite set is always well defined. This leads to
characterizing a ground state as a configuration whose energy cannot be lowered
by changing its value at finitely many vertices. To make this idea precise, we start by
introducing the following notion: two configurations w, ® € Q) are equal at infinity
if they differ only at finitely many points, that is, if there exists a finite region A € Z¢
such that

) AC = WAC.

(As in Chapter 6, we use w,c to denote the restriction of w to A°.) When & and w
are equal at infinity, we write @ = w; in such a case, @ can be considered as a local
perturbation of w (and vice versa). Then, the relative Hamiltonian is defined by

Ko@) E Y {0p(@) - Dp(w)}.

Bez¢

When @ = w, the sum on the right-hand side is well defined, since it contains only
finitely many non-zero terms (remember that r(®) < 00).

Definition 7.3. 1 € Q is called a ground state (for @) if
Hpw|n) =0  foreach w=n.

We denote the set of ground states for ® by g(®).

Note that physically equivalent potentials (see Remark 6.17) yield the same relative
Hamiltonian, and thus define the same set of ground states.

We will be mostly interested in periodic ground states. A configuration w € Q
is periodic if there exist positive integers Ij,...,l; such that 6., 0 = w for each
k=1,...,d (remember that {ey,...,e,} is the canonical basis of R%). The unique d-
tuple (Iy,...,13), in which each i is the smallest integer for which that property is

satisfied, is called the period of w. The set of periodic configurations is denoted by

QP c O and the set of periodic ground states for ® by g"* (®) « g(®) nQre.

We now provide a more global characterization of ground states. For w € QP
the limit

ep(w) ' im

0 By B )
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328 Chapter 7. Pirogov-Sinai Theory

clearly exists; it is called the energy density of w.

Lemma7.4. Letn € QP*. Thenn € g** (®) if and only if its energy density is minimal:

def .
e =ep = Inf eqp(w).
(1) = e e o (W)

Proof. Letus introduce gper((D) {w € QP : egp(w) = ecp}
We first assume that n € gP*(®). For all w € QP*", we write

1
ep(w) = IB( )|{f%pB(n)tD(w) A8y (M} +ea ).

For all large n, define ™ < wg(,yNgpe. Then ™ Z 1 and, since ® has finite
range,
B0 (@) — 0 M) = Ko™ |7) + 0(10™B(n))). (7.8)

[0°*B(n)|

Since (@™ 1) = 0 and lim, .o B

conclude that n € g**'(®).

Let us now assume that nj € g°'(®) and let w be such that w = 7. Since ® has
finite range, we can find k such that all the sets B that yield a non-zero contribution
to o (w|n) satisfy B < B(k), and such that wg)c = (k. Let ™ be the periodic
configuration obtained by tiling Z¢ with copies of wR(k) on all adjacent translates
of B(k). Proceeding as above, we write

= 0, this proves that eqp (w) = ep (). We

1
ea(©™) = lim e {8 o (@) ~ A} + €0 )

|B(k)| {%B(k) q)(wper) - %B(k) q)(n)} +eq>(n)

lB(k)l%(wln) +ep(m).

Since eq (1) < eqp(wP*), it follows that 7% (w | 1) = 0. We conclude thatn € gP*" (D). O

Let us apply the above criterion to some examples. For reasons that will become
clear later, we will temporarily denote the potential by ®° rather than ®.

Example 7.5. Let us consider the nearest-neighbor Ising model in the absence of
magnetic field. Remember that, in this case, Qg = {+1} and, for all B € Z¢,

(DOB((U) d:ef —wia)j lfB:{l,]},l"“], (79)
0 otherwise.

(We remind the reader that, in this chapter, the inverse temperature is kept outside
the Hamiltonian.) Consider the constant (and thus periodic) configurations n* and
n~. Then, for all w Z n*,

HpIn*)= Y (1-ww)=0, (7.10)
{i,j}e&,a

which shows that n*,n~ € g*(®°). The associated energy densities can be easily
computed explicitly: ego (n™) = ego (77) = —d. Moreover, any periodic configuration
w # n* satisfies ego (W) > eqo (NF). Therefore, n* are the only periodic ground states:

g™ (@ =n*n7}.
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There are, however, infinitely many other (nonperiodic) ground states (see Exer-
cise 7.2). o

Exercise 7.2. Consider the Ising model on Z? (still with no magnetic field). Fixn € R?
and definen € Q byn; =1 ifand only if n-i = 0. Show that n and all its translates
are ground states for the potential ®° defined in (7.9).

Example 7.6. Let us now consider the Blume-Capel model in the absence of ex-
ternal fields. Remember that, in this model, Q¢ = {-1,0,+1} and

o0 (o ] @im0p® HEB=1ijhi~ ],
B 0 otherwise.

Let us consider again the constant configurations n* = +1,n° =0 and = = —1. Let
#¢ {+,—,0}. Then, for all v = 1",

HpwIn)= Y (wi-0)*=0,
{l’,j}Egzd

so that each 7* is a ground state. Since eqgo (™) = ego(n”) = ego(°) = 0 and any

periodic, non-constant configuration w has ego (@) > 0, we conclude that g**(®°) =

" n®n7h o
Additional examples will be discussed in Section 7.2.2.

Exercise 7.3. Show that a model with a finite single-spin space and a finite-range
potential always has at least one ground state.

Boundaries of a configuration

From now on, we assume that the model under consideration has a finite number
of periodic ground states:
g (@ ={n'....n".

We use the symbol # € {1,2,...,m} to denote an arbitrary index associated to the
ground states of the model. Since our goal is to establish the existence of phase
transitions, we assume that ® has at least two periodic ground states: m = 2.

In view of what was proved for the Ising model, one might expect a typical con-
figuration of an infinite system (with potential @) at low temperature to consist of
large regions on each of which the configuration coincides with some ground state
n* € g*(®). Fix an integer r > r(®).

Definition 7.7. Let w € Q. A vertex i € Z% is #-correct (inw)if
wj=nj,  Vjei+B().
The boundary of w is defined by

B(w) d:Ef{i ez%:iis not #-correct in w for any # € {1,...,m}}.

Before pursuing, let us make a specific choice for r. Let (I, ..., ZZ) denote the period
of n#. Until the end of this section, we use r = r,, where

r. & least common multiple of {If :1=<k=d,1=<#< m}larger or equal to r(®).
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330 Chapter 7. Pirogov-Sinai Theory

This choice implies that Z(w) U Ux{#-correct vertices} forms a partition of z4:

Lemma 7.8. A vertex can be #-correct for at most one index #, and regions of #-
correct and # -correct vertices, # # #, are separated by % (w), in the sense that, if i
is #-correct and i’ is # -correct and if iy = i,ip,...,in-1,in = i’ is a path such that
Ao (i, ixs+1) < 1, then there exists some 1 < k < n such that iy € B(w).

Proof. Observe first that our choice of r, implies that any cube of sidelength r.
contains at least one period of each ground state. The first claim follows immedi-
ately, since i + B(r.) contains such a cube. For the second claim, note that if i, iz
are two vertices at distance 1, then {i; + B(r.)} N {i;+1 + B(r+)} also contains a cube
of sidelength r. and thus i} and iy can be #-correct only for the same label #. O

Since the boundary of a configuration contains all vertices at which the energy is
higher than in the ground states, it is natural to try to bound the relative Hamilto-
nian with respect to a ground state in terms of the size of the boundary:.

Lemma 7.9. Let n) € g**(®). Then there exists a constant C > 0 (depending on @)
such that, for any configuration o such that w =1,

Hp(w|n) < ClB(w)]. (7.11)
Observe that
1
Ho= ), ®s=) ) 5.
Bez®: ieABezd: IBN A
BNA#Q B3i
Introducing the functions
def 1 . _d
Ujp = Z FQB, ie”Z ’
Bez%: |BI
B>i
we have
|0 — ) wiw| < clO™Al (7.12)
ieA

for some constant c that depends on ®. We also have

def 1
lusolo<I®1= ) —lBlllq)Blloo.
Bez4:
B30

In the proof of the above lemma, but also in other arguments, it will be convenient
to use the partition & of 7% into adjacent cubic boxes of linear size r., of the form

by =kr,+{0,1,2,...,1, — 134, where k € Z%. Since each of these boxes contains an
integer number of periods of each n* € g***(®), one has in particular, for all k € 2%,

—— 3 uin0") =ea’) =eo. (7.13)

Proof of Lemma 7.9: Let w = 1, and let [%](w) be the set of boxes b € & whose
intersection with % (w) is non-empty. Boxes b which are not part of [%](w) contain
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only correct vertices, and these are all correct for the same index # by Lemma 7.8.
Then,

Howln) =) {uie) - uieo @)}

iezd
= Z Z{ui;cb(w)—ui;qa(n)H Z Z{Mi;qa(w)—ui;@(n)}.
be[B|(w) i€b b¢[B)(w) icb

The first double sum is upper-bounded by 2||®|| rfl%’(w)l. The second vanishes,
since to each b ¢ [#](w) corresponds some # such that w, = n*z, giving

Y {uio (@) - uiom} = bleon’) —epm) = 0. O
ieb

For physical reasons, it is natural to expect that the energy of a configuration is
proportional to the size of the boundary that separates regions with different peri-
odic ground states, as happens in the Ising model. It is therefore natural to require
that %3 (w|n) should also grow proportionally to |%(w)|. The notion that we will
actually need is that of thickened boundary, defined by

Tw) € J{i+B(r.) : i€ Bw)}. (7.14)
The upper bound (7.11) implies of course that /% (w|n) < C|T'(w)| when w =7,

but a corresponding lower bound does not hold in general. This turns out to be the
main assumption of the Pirogov-Sinai theory:

Definition 7.10. ® is said to satisfy Peierls’ condition if
1. g**" (D) is finite, and
2. there exists a constant p > 0 such that, for each n € g** (®),

HpwlmzpllT I,  forallo=n.

We call p Peierls’ constant.

Peierls’ condition can be violated even in simple models. An example will be
given in Exercise 7.8.

Example 7.11. In Chapter 3, the contours of the Ising model on Z? were defined as
connected components of line segments (actually, edges of the dual lattice) sepa-
rating + and — spins. Using the notations for contours adopted in Chapter 3, the
relative Hamiltonian (7.10) can be expressed as

n
Ay (wIn®) =2|{{i, j}e&p :wi# o} =2 Iyil. (7.15)
i=1

Since the ground states i are constant, we have r, = 1. The difference between the
corresponding set I'(w) and the contours y; is that I'(w) is a thick object, made of
vertices of Z2 rather than edges of the dual lattice; see Figure 7.4.

Note that, by construction, I'(w) is the union of translates of B(1) centered at
vertices i € Z? located at Euclidean distance at most v2/2 from a contour. Since
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o olo o olo-o0-o0-o0
I'(w) ‘
o © olo 6 06 0 0 0o
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Figure 7.4: A portion of a configuration of the Ising model on Z2. The thick
black line on the dual lattice, that separates + and — spins, is what was called
a contour in Chapter 3. The set #(w) of vertices which are neither +- nor
—-correct is delimited by the dotted line, and finally the shaded region repre-
sents the thickened boundary I'(w) > #(w).

the total number of such vertices is at most twice the total length of the contours,
we have

n
IT(@) <21B)| Y. lyil.
i=1

We therefore see that Peierls’ condition is satisfied, g0 (w | n?) = pIT ()|, with a
Peierls constant given by p = IB()|"!=1/9. S

Example 7.12. For the Blume-Capel model on 7%, we also have r, = 1. First, since
(w; —wj)* =1 when w; # wj, we get that

HowIn®) = |{li, jl €t wi 20}, (7.16)
for each ground state n* € {n*,n°% n~}. Then, since we clearly have

Fwe Y +BOU@G+BA)<c U (G+B@)

{i,j1€6a {i,j}e&a
a)i#wj w,-;éa)j

and thus
T()| < |{{i,j} € & wi # 0} IBQ,

it follows that Peierls’ condition also holds in this case, with p = |B(2)| ! =57%. o
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Exercise 7.4. 1. Show that
0= y(®) - (—ep) < ' log|Qy|.

In particular, limﬁﬁoou/(@) = —eq. Hint: Choosen € g** (®), and start by writ-
ing #j0w) = o) + {00 @) — e}

2. Assuming now that ® satisfies Peierls’ condition (with constant p), show that

0<y(®) - (~ep) < [Qlf e PP,

m-potentials

Determining the set of ground states associated to a general potential ®, as well
as checking the validity of Peierls’ condition, can be very difficult. ©® Ideally, one
would like to do that by checking a finite set of local conditions.

Let us define, for each B € Z¢,
def .
¢p = H}Ulﬂ‘fDB (w)
and set
def d
gn(@) = {weQ: dg(w) =g, VBEZ}.

If g,,(®) # @, that is, if there exists at least one configuration which minimizes lo-
per def

cally each @p, then @ is called an m-potential. We also let g;,, (®) = g, (D) N QP*'.

Lemma 7.13. 1. gnm(®) c g(®).
2. If ghy' (@) # @, then gh, (®) = gP*"(®).

3. If 0 < |gm(®D)| < oo, then gn,(®) = gh' (®) = gP*(®), and @ satisfies Peierls’
condition.

Proof. The first claim is immediate and the second one follows from Lemma 7.4.

For the third claim, observe that g, (®) is left invariant by any translation of the
lattice, in the sense that w € g,,,(®) implies 6;w € g, (P) for all i € 7. Therefore,
if g (P) is finite, all its elements must be periodic. Using the second claim yields
gm(®) = g, (@) = g7 ().

Let us now verify that Peierls’ condition is satisfied when 0 < |g;,;(®)| < co. We
first claim that there exists r € (0, 00) such that, for any configuration w for which the
vertex i € Z% is not correct, there exists B ¢ i +B(r) such that ®z(w) # ¢ . Accepting
this claim for the moment, the conclusion immediately follows: indeed, one can
then set e & min{®g(w) — ¢p : Pg(w) > ¢p,B < i+B(r),w € Qincorrect at i} > 0.
Observe that, by translation invariance of @, € does not depend on i. We can then
write, for any 1 € g°*"(®) and any w =1,

Hpwlm =Y [@p)-pplzer+1) B,
Bezd

which shows that Peierls’ condition is indeed satisfied.
We thus only need to establish the claim above. Let w be some configuration
such that i is incorrect. We claim that there exists r’ € (0,00) such that, for any
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334 Chapter 7. Pirogov-Sinai Theory

configuration w’ coinciding with w on i + B(r.), there exists B < i + B(r') such that
®p(w) # ¢p. (Note that this immediately implies the desired claim, since there are
only finitely many possible configurations on i +B(r.).) Let us assume the contrary:
there exists a sequence of configurations ", all coinciding with @ on i + B(ry),
such that ®g(w™) = ¢ for all B c i + B(n). By sequential compactness of the set
Q (see Proposition 6.20), we can extract a subsequence converging to some con-
figuration w. still coinciding with w on i + B(r,) and such that ®p(w.) = ¢p for all
B € 7%, But this would mean that w, € gm(®) = g (), which would contradict
the fact that i is incorrect. O

Example 7.14. For the Ising model, ®° (defined in (7.9)) is an m-potential, since
the only sets involved are the pairs of nearest-neighbors, B = {i, j} € 54, and the

associated ®%5(w) = —w;w; is minimized by taking either w; = w; = +1, or w; =
w; = —1. Lemma 7.13 thus guarantees, as we already knew, that gF*(®) = g, (®) =
"7} o

Exercise 7.5. Study the periodic ground states of the nearest-neighbor Ising anti-
ferromagnet, in which Qg = {+1} and, for heR,

—hw; ifB={i},
0pw) = wiw; ifB=1i,j}i~],
0 otherwise.

Exercise 7.6. Consider the modification of the Ising model in (7.1), withe sufficiently
small, fixed. Study the ground states of that model, as a function of h. In particular:
for which values of h are there two ground states?

The following exercise shows that it is sometimes possible to find an equivalent
potential which is an m-potential, when the original one is not. (However, this is
not always possible.)

Exercise 7.7. Let .7 denote the set of all nearest-neighbor edges of Z?, to which are
added all translates of the edge {0, i.}, where i. = (1,1). Let Qg & {£1} and consider
the potential ® = {®p} of the Ising antiferromagnet on the triangular lattice, de-
fined by

0 otherwise.

1. Check that ® is not an m-potential.

2. Construct an m-potential ®, physically equivalent to ®. Hint: you can
choose it such that ® > 0 if and only if T is a triangle, T = {i, j, k}, with
{iyj}y{jyk}r{kri} € y.

3. Deduce that ® (and thus ®) has an infinite number of periodic ground states.

Revised version, August 22 2017
To be published by Cambridge University Press (2017)
© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook




7.2.3

7.2. Ground states and Peierls’ Condition 335

Exercise 7.8. Consider the model on Z? with Qo < {1} and in which®° g # 0 only if
B =i, j, k, 1} is a square plaquette (see figure below). If w coincides, on the plaquette
B, with one of the following configurations,

@ ©® o0 0 © 0 00 o0 0 ©

®© ® 00 066 o0 06 0 o0 0

then ®°g(w) = a. Otherwise, ®g(w) = 8, with § > a. Find the periodic ground
states of ®°, and give some examples of non-periodic ground states. Then, show that
Peierls’ condition is not satisfied.

Lifting the degeneracy

Consider a system with interactions ®° and a finite set of periodic ground states
g (@Y%), at very low temperature. Using one of the ground states 1 as a boundary
condition, one might wonder whether 7 is stablein the thermodynamic limit, in the
sense that typical configurations under the corresponding infinite volume Gibbs
measure coincide with n with only sparse, local deviations.

In the Ising model on Z¢, d = 2, this was the case for both n* and ™. In more
general situations, in particular in the absence of a symmetry relating all the ele-
ments of g** (®?), this issue is much more subtle.

To analyze this problem, we will first introduce a family of external fields which
will be used to lift the degeneracy of the ground states, in the sense that, given any
subset g g((bo), we can tune these external fields to obtain a potential whose set
of periodic ground states is given by g. Eventually, these external fields will allow us
to prepare the system in the desired Gibbs state and to drive the system from one
phase to the other.

To lift the degeneracy, we perturb ®° by considering a new potential ® of the
form
=0+ W,
where W = {Wg}g7a is the perturbation potential. We first verify that the pertur-
bation, when small enough, does not lead to the appearance of new ground states.

Lemma 7.15. If ®° satisfies Peierls’ condition with Peierls’ constant p > 0 and if
W < pl4, then g**"(®° + W) c g (@P).

Proof. Assume that g**(®%) = {n!,...,n""}. Let r. and & be as before. Fix some
w € QP and let [I'](w) be the set of boxes b € & whose intersection with I'(w) is
non-empty. Again, by Lemma 7.8, boxes b not contained in [['](w) contain only
correct vertices, all of the same type. Let therefore [I14](w), # € {1,2,...,m}, be the
union of those boxes containing only #-correct vertices. Then, let
_— T, [[IT4] (w) N B(n)| @) @ 1im [[T](w) N B(n)|

PO Bml Y T s Bl
Observe that y(w) + Y7, m4(w) = 1 and that w € g (@) if and only if y(w) = 0. We
will show below that, when || W|| is sufficiently small,

m
eo(w) —ep) = Y my(w)lew®”) —ewm] + Sy(w), (7.17)
#=1
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336 Chapter 7. Pirogov-Sinai Theory

for all n € g* (®°). Assuming this is true, let us take some n € g** (®°) for which
ew (1) = ming ey (n%). If w € g*°(®), then in particular ep(w) < eq (1) by Lemma 7.4.
So (7.17) gives y(w) =0, that is, w € gper((bo).

To show (7.17), we start by writing

B (my;0 (W) = HB(my;0(M) =
{%B(n);@’ (@) = B ;00 m}+ {%B(n);w(w) - %B(n);W(n)} - (7.18)

On the one hand, proceeding as in (7.8),

I8 (my;00 (@) — A8 y.0 (M) = Hgpo (@™ 1) + O(10°B(n) )
> p|C(w"™)[+ 0(16B(n))
=pIT' (@) NnBn)|+ O0(0"B((n))).

On the other hand, we can decompose

m
HB(my;w (W) = > upw @)+ ) > uiw () + 0(10B(n))).
ieTl(@nB(m) #=1 e (@)nB(n)

The first sum can be bounded by

| Y umw@)|=|TlwnBm|IW].
ie[l(w)nB(n)

For the second one, using (7.13),

Y uw@= Y ww®h

i€[Mxl(w)nB(n) i€[lg](w)NB(n)
= | [yl (@) N B(m)|ew () + 0(16"B(n)).

The other Hamiltonian is decomposed as follows:
B m:w M) = |B(m)|ew (1) + O(10*B(n))

m
< [|WI|[T](w) nBm)|+ Y_ |4l (w) nB1n)|ew @) + O(0*Bn))).
#=1

Inserting these estimates in (7.18), dividing by |B(n)|, bounding |W| < p/4 and
taking the limit n — oo yields (7.17). O

The perturbation of ®° will contain a certain number of parameters (which
will play a role analogous to that of the magnetic field in the Ising model), which
will allow us to lift the degeneracy of the ground states of ®°. This means that, if
| gp”(d)o)l = m, we will need the perturbation W to contain m — 1 parameters and
it should be possible to tune the latter in order for g** (®° + W) to be an arbitrary
subset of gP*" (@9). This will be best understood with some examples.

Example 7.16. The degeneracy of the potential ®° of the Ising model can be lifted
by introducing a magnetic field h and by considering the perturbation W = {Wg}
defined by

—hw; if B={i},

0 otherwise.

Wg(w) = {
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Lemma 7.15 guarantees that g** (®) = g**(®° + W) c {n™,n~} when |W| = |h] is
sufficiently small. But, since the energy densities are given, for all &, by

eon*)=-dFh,

we get that ep (") < eqp(n™) when h >0, ep(n*) > eqp(n~) when h < 0. Therefore, we
can describe gpe‘((DO + W) for all & (not only when || is small):

n*} ifh>0,
g @ +w)={{n*,n7} ifh=0, o
n~} ifh<0.
Example 7.17. In the case of the Blume-Capel model, two parameters are neces-

sary to lift the degeneracy. We denote the latter by i and A, and consider the per-
turbation W = {Wg}p a4 defined by

—hw; - Aw? if B={i},

We(w) & {0 (7.19)

otherwise.

By Lemma (7.15), we know that g**"(®) c {77+»TIO»T)_} when |W| = | k| + |A| is suffi-
ciently small. The energy densities are given by

eom)=Fh-1, es(n®)=0, (7.20)

and the periodic ground states are obtained by studying miny e (%) as a function
of (A, h). Let us thus define the regions %, wS Y-, by

U ELA D) : epnt) = ngne@(n#')}. (7.21)

The interior of these regions determines the values of (A, k) for which there is a
unique ground state. Except at (0,0), at which the three ground states coexist, two
periodic ground states coexist on the boundaries of these regions, which are unions
of lines,

" E Yt au”

These are given explicitly by

LA h=0120},
PO h=A,1<0},
PO h=-AA<0}.

Altogether, we recover the zero-temperature phase diagram already depicted on
the left of Figure 7.2. o

In the following exercise, we see that it is always possible to lift the degeneracy.

Exercise 7.9. Suppose that g*(®°) = {n',...,n™}. Provide a collection of poten-
tials W',..., W™ such that, for all < {1,...,m}, there exist A',..., A" such that
g @+ Y AW =in',iel.
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A glimpse of the rest of this chapter

Let us consider a model with potential Pr L @O 4 Z?Sl )liWi, where the W' are

potentials lifting the degeneracy of the periodic ground states n',...,n" of ®°, as
explained in the previous section, and A & (Ai)1<i=m-1 € R™ 1. We can then con-
struct the zero-temperature phase diagram, by specifying g (®2) for each values
of the parameters A. This phase diagram thus consists of (m — 1)-dimensional re-
gions with a single periodic ground state, (m — 2)-dimensional regions in which
there are exactly two periodic ground states, etc.

Alternatively, notice that the energy density A — e4a of the ground state is a
piecewise linear function of A. The zero-temperature phase diagram characterizes
the points A at which e, fails to be differentiable.

Our goal in the rest of this chapter is to extend this construction to small positive
temperatures. More precisely, we will prove that, in the limit § — oo, the set of
values at which A — ¥5(A) is non-differentiable converges to the corresponding set
at which ey, fails to be differentiable.

This will be achieved by constructing C! functions, 1/72(&), .., Wg'(A), such that
the following holds:

L. yp(A) = max; P (A);
2. lim @;(&) = —eqﬁ(ni) forallie{l,..., m};
p—o0

3. lim 07D degatn’)
C oo OA; A

Jforalliefl,...,m}, jefl,...,m—1}.

In addition, we will see that the only periodic extremal Gibbs measures at A are pre-
cisely those obtained by taking the thermodynamic limit with boundary condition
n' for values of i such that y5(1) = @;3(&).

Each 1/7;3 is called a truncated pressure. It is obtained from the partition function

with boundary condition n’ by adding the constraint that only “small” (in a sense
to be made precise below) excitations are allowed. For certain values of the pa-
rameters A, the excitations turn out to be always small and the truncated pressure
coincides with the usual pressure; for others, however, the constraint artificially
stabilizes the boundary condition and yields a different, strictly smaller, truncated
pressure.

From finite-range interactions to interactions of range one

In Section 7.4, we will initiate the low-temperature analysis of systems with a finite
number of periodic ground states, which satisfy Peierls’ condition. This analysis
will rely on the contour description of these systems, which we expose in detail in
the next section.

It turns out that the contour description is considerably simplified if one as-
sumes that the potential ® under consideration has range 1. Fortunately, any
model with a single-spin space Qy and a potential ® of range r(®) > 1 can be
mapped onto another model with a potential ® of range 1, at the cost of introducing
a larger single-spin space €, such that the two models have the same pressure.

Earlier, the nuisance of having ground states with different periods was miti-
gated by considering the boxes by € & with sidelength r., and this can be used
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further as follows. Assume that ® = ®° + W has range r(®) and that ®° has a fi-

nite set of periodic ground states. There are N &f IQ(]I'B(’*)' possible configurations
inside each of the boxes by, and those configurations can be encoded into a new

spin variable & taking values in f)o ] {1,2,..., N}. Clearly, the set of configurations

w = (wj);ez4 € Q is in one-to-one correspondence with the set of configurations

PPN A def A7d
a)—(a)k)kezd EQ—QO .

By the choice of r, it is clear that a spin @ only interacts with spins @y at
distance d_. (k, k') < 1. Let us determine the corresponding potential. Denote by B a
generic union of boxes by, of diameter at most 2r.. For each set B € Z¢ contributing
to the original Hamiltonian, let

def

Np =

{B:B>B}|.

The terms of the formal Hamiltonian can be rearranged as follows:

Y op@=3{Y¥ NLB%(w)}.

B "BcB

We are led to defining the rescaled potential as

ONOEDY Niq)B(w).
BcB VB
Clearly, all the information about the original model can be recovered from the
rescaled model (with Q) and ®); in particular, they have the same pressure (up to
a multiplicative constant).

By construction, the rescaled measure ® has range r(®) = 1 (as measured on
the rescaled lattice r.Z%). Of course, analyzing the set of ground states and the
validity of Peierls’ condition for @ is equivalent to accomplishing these tasks for the
rescaled model. Besides having interactions of range 1, this reformulation of the
model presents the advantage that, now, the ground states correspond to constant
configurations on Q.

Exercise 7.10. Assume that the original potential ®° satisfies Peierls’ condition with
constant p > 0. Show that Peierls’ condition still holds for the rescaled model (v — &,
® — @) and estimate the corresponding constant.

Since the above construction can always be implemented, we assume, from
now on, that the model has been suitably formulated so as to have range 1 and
a finite set of constant ground states. In this way, the analysis will become substan-
tially simpler, without incurring any loss of generality.

Contours and their labels

Let us therefore consider a potential ® = ®° + W with r(®°) = 1 and r(W) < 1 and
such that the ground states of ®°,

g™ (@) =in',...,n™M,

are all constant. We also assume that the parameters contained in W completely lift
the degeneracy of the ground state. Since r(®) = 1, the set I'(w) in (7.14) is defined
using r, = 1.
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340 Chapter 7. Pirogov-Sinai Theory

Since W does not introduce any new ground states (Lemma 7.15), we may ex-
pect, roughly, a typical configuration w of the model associated to ® to display, at
low temperature, only small local deviations away from one of the ground states n*.
We thus start an analysis of the perturbed model in terms of the decomposition of
I'(w) into contours, which separate regions on which the ground states {n',...,n™}
are seen. This is very similar to what was done when studying the low-temperature
Ising model in Chapter 3.

Before pursuing, let us define the notion of connectedness used in the rest of
the chapter, based on the use of the distance d.(:,"): Ac 74 is connected if for all
pair j, j' € A there exists a sequence i1 = j, Io,...,in-1, i, = j' such that iy € A for all
k=1,...,n, and dy(iy, ir+1) = 1. A connected component A’ < A is maximal if any
set B # A’ such that A’ « B < A is necessarily disconnected.

When w 2 7n for some 7 € g**'(®), the set I'(w) is bounded and can be decom-
posed into maximal connected components:

r(w) = {?1)---y?n}'

For each component y € I'(w), let wy denote the restriction of w to y. The config-
uration wy should be considered as being part of the information contained in the
component:

Definition 7.18. Each pairy « (v, wy) is called a contour of w;y is the support of
Y.

The support of a contour ¥ splits Z4 into a finite number of maximal connected
components (see Figure 7.5):

Y =1{Ao, A1,..., Ai}. (7.22)

Exactly one of the components of ¥° is unbounded; with no loss of generality we
can assume it to be Ap. We call it the exterior of y and denote it by exty.
Let us say that a subset A< Z¢ is c-connected if A° is connected.

Exercise 7.11. Show that the subsets Ay, ..., Ay in the decomposition (7.22) are c-
connected.

Remember the boundaries ™ A and 0 A introduced in (7.3). Although the content
of the following lemma might seem intuitively obvious to the reader (at least in low
dimensions), we provide a proof in Appendix B.15.

Lemma 7.19. Consider the decomposition (7.22). For each j =0,1,...,k, 0%A; and
oA j are connected. Moreover, there exists# € {1,2,..., m}, depending on j, such that
w; = 17’? forallie d*Aj. We call # the label of Aj, and denote itlab(A;).

Consider the decomposition (7.22) of some contour y = (y,wy). If the exterior
has label lab(exty) = #, we say that y is of type #. The remaining components
in (7.22), Ay, ..., Ak, are all bounded and separated from exty by y. We group them
according to their type. The interior of type # of y is defined by

. def

inbys U A
i€(l,...k:
lab(A;)=#
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Ao

Figure 7.5: A contour y for which ¢ = {Ag, A1, A2, A3}. The labels, whose
existence is guaranteed by Lemma 7.19, have been pictured using different
patterns. The components A and Ay have the same label. The label of Ag =
exty represents the type of y. This picture shows how the labels induce a
corresponding boundary condition on the interior components of y (which
we use later when defining Z (A) in (7.24)).

We will also call inty &« U}, intyy the interior of y.

The collection of all possible contours of type # is denoted by €*. Observe
that, for each contour y = (y,wy) € %¢*, there exists a configuration that has y as
its unique contour. Namely, extend wy = (w;);e7 to a configuration on the whole
lattice by setting w; = nif for i e exty and w; = n?/ for each i € intwy. For notational
convenience, we also denote this new configuration by wy.

The type and labels associated to a contour will play an essential role in next
section.

Boundary conditions and contour models

Notice that if y,y’ are two contours in a same configuration, and if ¥ < inty’, then
do.(y, (inty')) > 1.

Let A € Z%. From now on, we always assume that A is c-connected. To de-
fine contour models in A, it will be convenient to slightly modify the way in which
boundary conditions are introduced: this will make it easier to consider the bound-
ary condition induced by a contour on its interior.

#
Let n# € gPer(qJO), andw € 97\ . Since it is not guaranteed that I'(w) < A, we define

#
Q& E{we] 1 doT(w),A9>1}.

The additional restrictions imposed on the configurations in Qf\ only affect vertices
located near the boundary of A:
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#
Lemma 7.20. Letw € 97\ . Then, w € Q’j\ ifand only if w; = 17*‘;’.é for every vertex i € A
satisfying d.(i, A°) < 3.

Proof. Letw e 97\# and assume that there exists i € A, d., (i, A®) < 3, such that w; #
7. This implies that there exists some j € i +B(1) with d,(j, A°) <2 which is not #-
correct, and so j € Z(w). Since d,,(j +B(1), A®) < 1, this implies that d, (T (w), A®) <
1 and, thus, w iﬂi.

Conversely, suppose that w; = Tﬁ as soon as d,, (i, A%) <3. Then, any vertex i € A
with d,, (i, A®) < 2 is #-correct. Therefore, vertices which are not correct must satisfy
dy (i, A®) =3 and, thus, d (i + B(1), A®) = 2. This implies that d,(I'(w), A®) >1. O

In order to use contours and their weights for the description of finite systems,
it will be convenient to introduce boundary conditions as above, using Qf\ instead

#
of Q']\ . We therefore consider the following Gibbs distributions: for all w € Q*,

# def € ﬁ'-%:g/\;d)(w)
@@= : (7.23)
Hpo Zg} )
where /
ZENE Y e Pl (7.24)
weQh

It follows from Lemma 7.20 that (remember Exercise 7.1)

1 1 #
lim —— logZ (A) = lim —— logZ! (A) = w(®).
Azd BIA] %o Anzd BIA 8% v

Let us say that A is thin if d,, (i, A®) < 3 forall i € A. It follows from Lemma 7.20 that,
whenever A is thin, Q% = {n*} and, thus,

Zh(A) = e PHho ) (7.25)

Extracting the contribution from the ground state

Let us fixa boundary condition # € {1,2,..., m} and relate the energy of each config-
uration w € Q% to the energy of n*:

Ho(0) = o) + {0 (0) — o™}

= o) + Hop(wIn™). (7.26)
One can thus write
Zh (A) = e P ") Y e Pt @ln”) &t —pAp0m") 2 (A). (7.27)
weQ’j\

Notice that, since each ground state n” is constant and ® has range 1,
S = o)Al

Our next goal is to express EE(A) as the partition function of a polymer model
having the same abstract structure as those of Section 5.2. To this end the contours
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7.3. Boundary conditions and contour models 343

introduced above will play the role of polymers. Remember, however, that the com-
patibility condition used in Section 5.2 was pairwise. Unfortunately, our contours
have labels, and this yields a more complex compatibility condition.

ANy
’@: To determine whether a given family of contours is compatible, that is, whether
there exists a configuration yielding precisely this family of contours, we need to ver-
ify two conditions. The first one is that their supports are disjoint and sufficiently
far apart, in a suitable sense; this can of course be expressed as a pairwise condition.
However, we must also check that their labels match, and this condition cannot be
verified by only looking at pairs of contours. We illustrate this on Figure 7.6. o

R

RRRRRKS
BB

S5

%%

a2 %05

e

=%

Figure 7.6: Two contours y; and y2 (left). y2 is of type 1 and satisfies y, <
intoy1. These two contours can only be part of a configuration if there are
other contours correcting the mismatch between the type of y2 and the label
of the component of y; it is located in. For example (right), there might be a
third contour y3 of type 2 such that y3 c intpy; and ¥, < int;y3. This shows
that the compatibility of a family of contours is a global property, which can-
not be expressed pairwise.

To deal with this problem, we need to proceed with more care than in (7.27)
and express E’é (A) as a polymer model in which the polymers are contours all of
the same type#, for which the compatibility condition becomes purely geometrical,
namely having supports which are far apart, in the following sense.

Definition 7.21. Two contours of the same type, y, and 'y, are said to be compatible
if do71, ) > 1.

By construction, all contours appearing in a same configuration w are compatible.
The important distinction that must be made among the contours of a configura-
tion is the following:

Definition 7.22. Letw € fo\. A contoury' € T'(w) is external if there exist no contour
y € T'(w) such thaty' cinty.

We will group the configurations that contribute to Zj; (A) into families of configu-
rations that have the same set of external contours. If I'(w) # &, there exists at least
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344 Chapter 7. Pirogov-Sinai Theory

one external contour, so let I’  T'(w) denote the collection of external contours of
w, which are pairwise compatible by construction. Let then

def def
ext= [) exty, A®'E Anext.
;yler’

The important property shared by the external contours of a configuration is that
they all have the same type:

Lemma 7.23. Forall w € Qf\, ext is connected and w; = n’jf foreach i € ext. Asa
consequence, all external contours of T'(w) are of type #.

Proof. Leti',i"” € ext and consider an arbitrary path i’ = iy,...,i, = i”, do (if, ixs1) =
1. If the path intersects the support of some external contour y’ € I'(w), we define
k- Emin{k: iy ey} -1and k; € max{k : ir € ¥} + 1. Clearly, {ix_, ir,} < d"exty’.
By Lemma 7.19, 8™exty’ is connected. One can therefore modify the path, between
ir_ and iy, , so that it is completely contained in 0™exty’. Since this can be done for
each 7/, we obtain in the end a path which is contained in each d™exty’, hence in
ext. This shows that ext is connected. The two other claims are immediate conse-
quences. O

Remark 7.24. In this chapter, we always assume that the dimension is at least 2.
Nevertheless, we invite the reader to stop and ponder over the peculiarities of the
above-defined contours when d = 1. o

Now, since A is assumed to be c-connected, it can be partitioned into

A=Ay Y ulUintyy'},
y'er’ #
and we can then rearrange the sum over the sets BN A # &, in the Hamiltonian, to
obtain:
Hpow) = Mexp@) + Y { Y Ppw) +Z<%’fnt#,y';<p(w)}. (7.28)
Yer' By #

We have used the fact that the contours are thick, which implies that the compo-
nents of their complement are at distance larger than the range of ® (remember
Lemma 7.8). Observe that for each Bcy', ®p(w) = ®p (@p).

Let us characterize all configurations w € Q’f\ that have the same set of external
contours I'":

1. Since A®* does not contain any contours and since w; = n’jf for all i € %A%,
we must have w; = 17*‘;é foreach i € A, In particular, Hpext.p (W) = %”Aext;@(n#).

2. Each component of each intgy’ has a boundary condition specified by the
label of that component, namely #, and the contours of the configuration on
that component must be at distance larger than 1 from y’. The restrictions for
the allowed configurations on intgy’ therefore coincide exactly with those of

#/

intyy'”
Using (7.28), we thus get, after resumming over the allowed configurations on each
component of intyy':

Zin = Y e P H{exp(—ﬁ Y d)B(w?,))]_[Zg(int#,y’)}. (7.29)
r y’eF’ BC?’ #
compatible
external
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7.3. Boundary conditions and contour models 345

Let us define, for each y € €, the surface energy

Iyl < Y {®s(0p - 25"}
Bcy

With this notation, (7.29) can be rewritten as

P # _ I, o .
P ho iz =Y 1 {e Ayl I1 P im0 )Zg (lnt#r)’,)}. (7.30)
' ylel’ #
compatible
external

Our aim is then to go one step further and consider the external contours contained
in each partition function Zg (1nt#//y’ ) appearing on the right-hand side. Unfortu-
nately, the external contours in Z’&‘) (intw7y’) are of type #, and one needs to remove
these from the analysis in order to avoid the global compatibility problem men-
tioned earlier.

In order to only deal with external contours of type #, we will use the follow-
ing trick *: we multiply and divide the product over #/, in (7.30), by the partition
functions that involve only the #-boundary condition. That is, we write

[1z4 intey = {[ H 2 ity (7.31)
#/

# Zg (int#l ’)/,) #

Z! (intyy)

This introduces a non-trivial quotient that will be taken care of later, but it has the
advantage of making the partition functions Zg(int#/y’ ) appear, which all share the
same boundary condition #. This means that if one starts again summing over the
external contours in Zﬁ) (intwy’), these will again be of type #, as in the first step.

Let us express (7.30) using only the partition functions Eﬁ)(.). Remembering

A, 1o 0" . e .
that " im0 )Zé (intyy") d=ng (intgy’), (7.30) becomes
== Y [ {wo)[1=hnty}, (7.32)
r/ ,ylel"l #I
compatible
external

where we introduced, for each y € 4, the weight

# s
why) 2 Pl Zo 1Y)

iy (7.33)
" Zg (intgy)

Looking at (7.32), it is clear that we can now repeat the procedure of fixing the
external contours for each factor Eg(int#/)/ ), these being all of type #. This process
can be iterated and will automatically stop when one reaches contours whose in-
terior is thin (remember the discussion on page 342), since the latter are too small
to contain other contours. In this way, we end up with the following contour repre-
sentation of the partition function:

=Y JIwm, (7.34)
Tr yel'
compatible

where the sum is over collections of contours of type #, in which the compatibility
(in the sense of Definition 7.21) is purely geometrical, and can be encoded into

o |1 ifdor,7)>1,
S,y &
07 0 otherwise.
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This pairwise hard-core interaction is similar to the one encountered in Sec-
tion 5.7.1 (with a different distance). Notice, however, that the polymers considered
here are more complex objects, which contain more information: their support but
also the partial configuration wy (and the labels it induces).

Remark 7.25. It is important to emphasize that a compatible collection of contours
contributing to (7.34) is an abstract collection, which does not correspond, in gen-
eral, to the contours of any configuration w € Q’f\. o

We have thus managed to express the partition function as a polymer model
with a purely geometrical, pairwise compatibility condition. The price we had to
pay for that was the introduction of the nontrivial weights w”(-). The very nature of
the latter suggests an inductive analysis. Namely, since w”(y) can be written

74 # .
,ﬁ(/gl?nt#/y;d)(n ) Eg (lnt#ly)

_ e
wh(y) = e P
# e

— (7.35)
—ﬁjﬁnt#; ¥;® (TI#) Eg) (lnt#, y)

we see that w”(y) depends on the weights of the smaller contours that appear in
each Eg (intw7y) (which are of type # # #) and in E’é(int#/y).

Representing probabilities involving external contours

Before going further, let us see how the contour models presented above can be
used to represent probabilities involving external contours. Remember the defini-
tion of p/f ,, in (7.23).

Lemma 7.26. Let A be c-connected and let {y’l,...,y’k} be a collection of pairwise
compatible contours of type # such that each y'; is contained in the exterior of the
others, and dy (Y}, A°) > 1. Then

k
o200 rid) < [Iw'or). (7.36)
i=1
Proof. Follows the same steps that started with (7.29). O

‘ Exercise 7.12. Complete the proof of Lemma 7.26.

Phase diagram of the Blume-Capel model

From now on, for the sake of concreteness, we will stick to the Blume—Capel model.
As before, the three constant ground states are denoted by n#, with # € {+,0,-}. We
lift the degeneracy using W defined in (7.19). We continue to omit the dependence
on 3 everywhere. We also drop @ from the notations and only indicate the depen-
dence on (A, h) when it is really needed, that is, we write Z* (A) rather than Z’; B (),
etc. We also write e (or e” (A, h) if necessary) instead of eq (n"). With these conven-
tions, (7.27) becomes
ZH(A) = e PN (0,

We denote the pressure of the model, defined as in (7.7), by ¢ = ¢ (A, h).
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Heuristics

We will construct the phase diagram by determining the stable phases of the system.
Loosely speaking, this will consist in the determination, for each choice of bound-
ary condition # € {+,0, -}, of the set of pairs (A, h) for which a Gibbs measure can
be constructed using the thermodynamic limit with boundary condition #, whose
typical configurations are small deviations from the ground state n*. Eventually,
this will be done in Theorem 7.41.

But we will first focus on the pressure, in particular the pressure in a finite vol-
ume with the boundary condition #:

1 1
—logZ¥(A) = - + ——log=*(A).
BIA 8 BIAl 8

In a regime where (A, h) is such that e* is minimal among all e#/, which happens
when (A, h) € *, we expect typical configurations to be described by sparse lo-
cal deviations away from n*; these configurations should also be the main contri-
butions to Z#(A), in the sense that —e” should be the leading contribution to the
pressure, the term [ﬁlogE#(A) representing only corrections (for large values of
p).

Making this argument rigorous requires having a control over logZ*(A); it will
involve a detailed analysis of the weights w”(-) and will eventually rely on a balance
between the fields and an isoperimetric ratio related to the volume and support of
the contours. Let us describe how the latter appear.

We know from Theorem 5.4 that log=*(A) admits a convergent cluster expan-
sion, in any finite region A, provided that one can find numbers a(y) = 0 such that
(the weights w? () being real and nonnegative, there is no need for absolute values
here and below)

vy. €%, Y wme Py, vl = aly., (7.37)
ye&*

where {(y,y ) défé(y,y*) — 1. As in Section 5.7.1, we observe that {(y,y.) # 0 if and

def

onlyifyn[y,l # @, where [y,] = {j € 7% :d (j,y,) < 1}. This gives

Y wWme P,y =i disup Y. whiyp)e.
yee* i€z ye €t y3i

This shows that a(y) = [[y]l is a natural candidate. Since |[y]| < 3dl?|, (7.37) is satis-
fied if B
Y wipe M=, (7.38)
YEE*¥30

Clearly, (7.38) can hold only if w”(y) decreases exponentially fast with the size of
the support of y. We are thus naturally led to the following notion.

Definition 7.27. The weight w” (y) is T -stable if

w(y) < e ™,

Below, in Lemma 7.30, we will show that (7.38) is indeed verified provided that all
the weights w”(y) are 7-stable (for a sufficiently large value of 7). Of course, this
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348 Chapter 7. Pirogov-Sinai Theory

will be true only for certain values of (A, h). For the moment, let us make a few
comments about the difficulties encountered when trying to show that a weight is
T-stable.

Consider w*(y), defined in (7.33). First, the surface term, e A7l can always be
bounded using Peierls’ condition:

Iyl = Hgo (wyIn®) + 3 {Wp(wy) - We@m)} = (o —2lW DIy
Bcy
Remember from Example 7.12 that, for this model, Peierls’ constant can be chosen
tobep = 574 Since Wl < |h|+|Al, from now on we will always assume that (1, h) €

U, where
UL {(A,h)eR?: Al <pl8, |hl<p/8}, (7.39)

which gives p - 2| W] = p/2 £ po, yielding
e~ BIvll < p=Boolyl (7.40)

Let us then turn to the ratio of partition functions in (7.33).

A

_’@‘ The first observation is that this ratio is always a boundary term: there exists a
constant ¢ >0 (depending on ®) such that

# s
o-chioint vl _ Z (}nt#/y) < oFeplOint, iyl
ZF (intyy)

(To check this, the reader can use the same type of arguments that were applied to
prove, in Chapter 3, that the pressure of the Ising model does not depend on the
boundary condition used.) Using (7.40), this gives w*(y) < e~ ®o=9PY! " Unfortu-
nately, one can certainly not guarantee that py > c. This naive argument shows that
a more careful analysis is necessary to study those ratios, in order for the surface term
to always be dominant. o

Let us then consider the weight w” (y), but this time expressed as in (7.35). Since
the ratios of polymer partition functions in that expression induce an intricate de-
pendence of w# (y) on (A, h), let us ignore this ratio for a while and assume that

=¥ (intyy) _

— = (7.41)
# L# (lnt#/ ')/)

Of course, this is a serious over-simplification, since this ratio involves in general
volume terms. (Note, however, that (7.41) indeed holds when each maximal com-
ponent of each inty is thin; remember (7.25).) Nevertheless, what remains of the
weight after this simplification still contains volume terms, and the discussion be-
low aims at showing how these will be handled.

Since Hni,y;0(M") = e lintyy|, assuming (7.41) leave us with

! . ! —~ .
wh(y) = e PINI T e +elinturl — o=BIYIT] B0 ~F))lintyy ! (7.42)
# #
where we have introduced, for later convenience,

hE et (7.43)
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7.4. Phase diagram of the Blume-Capel model 349

Therefore, to guarantee that (7.42) decays exponentially fast with |y|, the key issue

is to verify that the volume term, [, P @y~ PPty is not too large to destroy the
exponential decay due to the surface term.

Of course, the simplest way to guarantee this is to assume that the exponents
satisfy 1/7’3/ - 1/7’3 < 0 for each #/, which occurs exactly when (A, h) € U* (see (7.21)),
since we then have )

[Tl -7olimri <
#!

This implies that the weight of y € € is Bpo-stable uniformly on %/ *:

sup w¥(y) < e Prolvl
Aweu?*

This bound is very natural, since Peierls’ condition ensures that the creation of any
contour represents a cost proportional to its support whenever 1" is a ground state
for the pair (A, h).

However, the construction of the phase diagram will require controlling the
weights w” (y) in a neighborhood of the boundary of % *, that is, also for some val-
ues (A, h) ¢ %*, for which 127’5/ — 4 > 0. In such a case, the volume term can be
allowed to become large, but always less than the surface term. One can, for exam-
ple, impose that

[] P P6-7Dlinwm < g3Beolyt, (7.44)
#!

To guarantee this, one will impose restrictions on (A, i) that depend on the geomet-
rical properties of y, namely on the ratios \irmy\' To make this dependence more
explicit, we will use the following classical inequality, whose proof can be found in

Section B.14 (see Corollary B.80).

Lemma 7.28 (Isoperimetric inequality, d = 2). Forall S € Zd,

0S| = 15T . (7.45)

Although we will not use them later in this precise form, consider the sets
! ELA W eU : @ - hlintyy|'? < 1 py for each #}. (7.46)

Clearly, %, > %*. Taking (A, h) € %, we can use the isoperimetric inequality as
follows:

;@ﬁ’ —@h)lintyyl = ;@ﬁ’ — ) lintyy!"jint,y| @D (7.47)
< %po; 0™ inty y|
= 1pol0™inty]
< 1pol7l.
(We used the fact that the sets 0%intxy are pairwise disjoint subsets of y.) This

implies (7.44) and yields 3 fpo-stability uniformly on %:

—1 8007
sup w(y)<e 3 Bpolyl
A e}
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%+

U

Figure 7.7: The weight of a contour y € €' is %ﬁpo-stable in a region %f >
%, in particular in a neighborhood of the boundary of *. On the strip
%f \ % *, which is small when the components int_y and intgy are large,
(A, h) has “the wrong sign” although w? (y) remains stable.

Let’s be a little bit more explicit, for example in the case # = +. Since 1?6—’ =+h+1
and 9] = 0, the set %, is given by

wr=lawev:h=——2"" ol mev:hz-21-—L° 1
Y {( )€ 4|int_)f|”d}m{( )€ 2|int0}’|”d}

and is illustrated on Figure 7.7.

Ay

_’@‘_ At this stage, the reader might benefit from having a look at the discussion in
Section 3.10.10. o

The above discussion provides a sketch of the method that will be used later:
controlling the balance between volume and surface terms by combining the isoperi-
metric inequality with relevant thermodynamic quantities depending on (A, h). In
our simplified discussion, which occurred only at the level of ground states, the
thermodynamic quantities were represented by the differences @g’ - 1/7§. In the
construction of the phase diagram, the inclusion of the ratios of partition functions
neglected above will represent a technical nuisance and will be treated by a proof
by induction, in which 1/7’3’ - 1/73 will be replaced by 1/7?1’ —¢*. The induction index
n will represent the size of the largest contour present in the system (in a sense to
be made precise). Starting from the ground states (n = 0, no contours present in
the system), we will progressively add contours of increasing size. At each step n,
three pressures ¥ will be introduced, constructed using contours of size smaller
or equal to n. The weights of the newly added contours of volume 7 will be studied
in detail; one will in particular determine the regions of parameters (A, ) for which
these weights are stable.

Polymer models with 7-stable weights

During the induction argument below, we will use the cluster expansion to extract
the surface and volume contributions to the polymer partition functions due to the
quotients appearing in the weights w”(y). Before pursuing, let us thus determine
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7.4. Phase diagram of the Blume-Capel model 351

the conditions under which this procedure will be implemented and provide the
main estimates that will be used throughout. Since cluster expansions will also be
applied to auxiliary models that appear on the way, as well as to certain expressions
involving derivatives with respect to A and h, we first state a more general result,
which will be applied in various situations.

Let % be a collection of contours, which we assume to be a subcollection of any
of the families €*, # € {+,0,—}. For example, ¥ can be the set of all contours of
type + whose interior has a size bounded by a constant. Assume that to eachy € ¢
corresponds a weight w(y) = 0, possibly different from w” (y). We also assume that
% and the weights w(-) are translation invariant, in the sense that if y € ¢ and if y’
is any translate of y, then y' € ¥ and w(y’) = w(y). We will denote the size of the
support of the smallest contour of € by

0o d:efmin{h_/l 1YEE}.

Forall A € 79, define

ENE Y [wm, (7.48)
=74 vel
compatible

where the sum is over all families of pairwise compatible (in the sense of Defini-
tion 7.21) families T, such that’y < A and d,(y, A°) > 1 forall yeT.

Exercise 7.13. Show that the following limit exists:

< lim ;logE(B(k)). (7.49)

&= L BMI

Hint: use a subadditivity argument.

The cluster expansion for log=(A), when it converges, is given by

log=(A) =) Y(X), (7.50)
X

where the sum is over clusters X made of contours y € ¥ such that y ¢ A and
d,.(y,A%) > 1, and ¥ (X) is defined as in (5.20):

Y(X) E aX) [Twry). (7.51)
yeX

Remember that a contour can appear more than once in a cluster (in which case its
weight appears more than once in the previous product), and that a(X) is a purely
combinatorial factor.

Everywhere below, we will use the function

n(r,0) £ 2773,
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352 Chapter 7. Pirogov-Sinai Theory

Theorem 7.29. Assume that, for all y € €, the weight w(y) is C' in a parameter
s€ (a, b), and that, uniformly on (a, b),

wiy) <e ™M, |%| < DIy|4/@-D =TI (7.52)

where D = 1 is a constant. There exists T1 = 11(D, d) < oo such that the following
holds. If T > 11, then g defined in (7.49) is given by the following absolutely conver-
gent series,

1
g= Y —YW), (7.53)
x: x50 1 X1

where the sum is over clusters X made of contoursy € € and X « Uyex¥. Moreover,
lgl=n(r,ly) <1,
and, for all A € Z%, g provides the volume contribution tolog=(A), in the sense that
E(A) = exp(gIAl+4), (7.54)
where A is a boundary term:
IAl < n(T, €0)I0™ Al

Finally, g is also C' in s € (a, b), its derivative equals

d 1 dY(X
d_g= Y = d( ) (7.55)
S xixs0 X1 s
and g
g
’a|SDn(‘L’,[0).
V¥ Wecan express (7.54) in the following manner
1 [0™ Al
—log=E(A)=g+0 .
jlos= =g+ 0[5
o

We have already seen in (7.38) that, when w(y) < e ™M a sufficient condition
for the convergence of the cluster expansion is that

Y et Mar, (7.56)
YEE y30

We will actually choose 7 so large that a stronger condition is satisfied, which will
be needed in the proofs of Theorem 7.29 and Lemma 7.31.

Lemma 7.30. There exists T < oo such that, when t > 7,

— _ _ _1Ivl 39
Z h/ld/(d l)e (r/2 1)|Y\e3 [yl < n(.[,go) <1, (7.57)
YEE :¥20

uniformly in the collection € .
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Proof. First,

_ 1) —(/2-DF _3di7 1) —(g/2—1-3d _ _
Z |Y|d/(d D p=@/2=DIYl 3%l < Z ;d/d=1) ,~(x/2-1-3 )k#{},e% L1730, |Y|=k}-
YEE: k=¢o
730
Once the support ¥ is fixed, the number of possible configurations wy is bounded
above by Q|7 = 3. Therefore, proceeding as in Exercise 5.3, we can show that

there exists a constant ¢ > 0 (depending on the dimension, different from the one
of Exercise 5.3) such that

#{ye€ 730, [yl =k} <e*
We assume that 7 is so large that

/ def

L1/2-1-3"-d/d-1)-c=>1/3 (7.58)

and 7 < 1/2. Then, since k/(@=1 < gdk/(d-1),

—T/fo
— _ _ _ 17 d |~ . e ’
Y@ @IS < S et L <00 <y, ).
YEEC :¥30 k=2, I-e

For each # € {+,0, -}, let 7 be the smallest constant T satisfying the above require-
ments when using ¥ = ¢*. We can then take 7o & maxy 7 O

Everywhere below, 7 will refer to the number that appeared in Lemma 7.30.

Proof of Theorem 7.29: Denote by 7, the smallest T > 1y such that Dn(z, ) < 1.
Since (7.57) implies (7.56), Theorem 5.4 guarantees that the series on the right-
hand side of (7.50) converges absolutely. In fact, proceeding as in (5.29), using the

fact that a(y) £ |[7]| < 34/y],

.
Yoexlis Y wone Msna, ). (7.59)
X:X30 Y1€% 7120

This yields the convergence of the series for g, as well as the upper bound |g| <
n(t,¢p). The same computations as those preceding Remark 5.9 and translation
invariance give (7.54). The boundary term A is bounded in the same way. Since g is
defined by an absolutely convergent series, we can rearrange its terms as g =Y, fn,

where .
ef
LHEY Y —vX).
k>1X:{y1,...,yk}:| |
X30
Ylyil=n

Since only finitely many terms contribute to f;, and since each ¥ (X) is C', f;, is also
C!. Moreover, for a cluster X = Y1,---, Yk} (7.52) gives

d¥ (X w(
S22 = e )z D 1 wiro
o

k - —_—
<|a ()| [[{DIy; 14"V e Wil = [ @ (X)),
Jj=1
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where we used Z;?:l 1< Hle e'yfl; Y (X) is defined as W (X) in (7.51), but with w(y)
replaced by

— def — — —(t=-1D |7
W(,Y) =ED|Y|d/(d l)e (T 1)|Y|'

Again by Lemma 7.30, the analogue of (7.56) with w(y) replaced by w(y) is satisfied.
Therefore,

dfs 1 —
S L T T

n=lk=1X={y1,.., Y}k

X30
Ylyil=n
<Y wxi=s Y wopeM <Dna,ty).
X:X30 Y1€47:7,30

Theorem B.7 thus guarantees that g is also C', and that its derivative is given by
% =Y. %, which proves (7.55). O

We will also need bounds on the sums of the weights of clusters that contain at
least one contour with a large support.

Lemma 7.31. Assume that w(y) < e”™V! for eachy € € and some t > 1¢. Then, for
allL= Y, 1
Y wX)=se 2™t (7.60)

X:X30
|X|=L

Proof. Proceeding as we did at the end of Section 5.7.4,

1= e—T|X|/2eT|X|/2 < e—T|X|/2 l_[ eTI?I/Z’

YeX

which can be inserted into

T ,—
Y wx=e ™ Y 1wl [] e2
X:X30 X:X30 yeX
| X|=L

- e—TL/Z Z |W(X)| < e_TLIZTI(T, [O) < e—TL/Z .
X:X30
In the equality, we defined W (X) as W (X) in (7.51), but with w(y) replaced by w(y) «

T ,—,
e 2" We then used again Lemma 7.30. O

Truncated weights and pressures, upper bounds on partition functions

As explained above, we will construct the phase diagram by progressively adding
contours on top of the ground states n*. To this end, we need to order contours
according to their sizes.

Definition 7.32. A contoury € € is of class n if |inty| = n. The collection of con-
tours of type # and class n is denoted by €.
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7.4. Phase diagram of the Blume-Capel model 355

Clearly, a component of the interior of a contour y € € can contain only contours
of class strictly smaller than n.

We know that the weight of a contour with a large interior might not be stable
for all values of the fields (A, k). It will however turn out to be very useful to control
the weights on the whole region (A, h) € U. To deal with the problem of unstable
phases, we will truncate the weight of a contour as soon as its volume term becomes
too large.

Contours of class zero contain no volume term, so they need not to be trun-
cated. Contours of large class do however contain volume terms and we will sup-
press the latter as soon as they become too important. We therefore fix some choice
of cutoff function y : R — [0,1], satisfying the following properties: (i) y(s) = 1
if s < po/4, (i) x(s) = 0if s = po/2, (i) y is C'. Such a cutoff satisfies Ix' || =
sup; ' ()| < co.

x(s)

We start by defining the truncated quantities associated to n = 0. First, the trun-
cated pressures (which we already encountered before) are defined by

e
We define
vyecg(f’ (7’) ef v (Y)_e Bliyll

Everywhere below, we assume that (A, h) € U so that we can use the bound (7.40).

Assume now that the truncated weights #” () have been defined for all con-
tours of class < n. For a c-connected A € Z%, let :Z(A) denote the polymer model
defined as in (7.34), but where the collections contain only contours of class < n,
and with w” (y) replaced by W” (y). Then, set

Zhn Y e PN ER (0,

For each # € {+,0, -}, we use Exercise 7.13 to define the truncated pressure by

V=t E 1Ln;oﬁ|8(k)| logZ#(B(k))
=—e'+ Jim ,BIB(k)I ——log E* (B(k)).
Notice that, since =¥ (B(k)) = 1, we have
= —e. (7.61)
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356 Chapter 7. Pirogov-Sinai Theory

Definition 7.33. The truncated weight of y € € +1 is defined by

Z#/ (int#r Y) }

d_ef =Byl #’_ TV lint. vl 14

Ay
_’@: Intuitively, the goal of the previous definition is to eliminate all contours that
could lead to instability. The reason we do not simply use a hard constraint of the
form 1{(u?’ﬁ;'—@i)\im#m”dsm/zv rather than a soft cutoff, is that the smoothness of the
latter will allow us to obtain useful information on the regularity of the pressure and
of the phase diagram. o

Notice that since 0 < y < 1, we have

Wy =why), Vvyed'. (7.62)

Actually, unlike the true pressure ¥ of the model, the truncated pressures do in
fact depend very much on the choice of the boundary condition, that is, {7 # 1/7*,’;'
in general. Moreover, the truncated weights and pressures depend on the specific
choice of the cutoff function. Of course, as we will see later in Remark 7.37, this has
no impact on the final construction of the phase diagram (but has an influence on
what information on the latter can be extracted from our construction).

Other useful quantities will be important in the sequel. The first is

~  def

7, = max{y,.

Then, the following will be handy to relate the original weights to their truncated
versions:

#de

aj, < maxtiy, ~ 1) =, - V.

By definition, a” > 0 and, for all y € an+1’

1/d

allinty|"? < poia = @) =wiy). (7.63)

The following proposition is the main technical result of this chapter. Remem-
ber that 7, was defined in Theorem 7.29.
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7.4. Phase diagram of the Blume-Capel model 357

Proposition 7.34. Let
1= 18po—6. (7.64)

There exists 0 < By < oo such that the following holds. If p > By, then T > 1, and
there exists an increasing sequence ¢, | coo < 0o such that, for all# and all n = 0, the
following statements hold.

1. (Bounds on the truncated weights.) For all k < n, the weight of each y € ‘flf
is T-stable uniformly on U:

Wy e ™, (7.65)
and

1/d

a’linty|"'? < po/8 implies W' (y)=w"(y). (7.66)

Moreover, A — W (y) and h— W* (y) are C' and, uniformly on U,

‘ oW’ (y)

—d/(d-1) ,—1[7|
<D e
aa | yl

)

|M

— dl(d=1) —7[7l
— )st e (7.67)

where DE 4B+ x'1.

2. (Bounds on the partition functions.) Assume that A € Z% is c-connected and

|A| < n. Then
Z*(N) < PVnIAIHanlO=AL (7.68)
0Z" (N) B o
W | Al+cnl0FA|
) = |s/3|A|e : (7.69)
0Z" (N) B o
W | Al+cn|0%FA|
) -~ |sﬁ|A|e , (7.70)

uniformlyin (A, h) e U.

Notice that the way the proposition is formulated allows one to obtain asymptotic
bounds also in the limit n — co.

Fixing the constants. Before turning to the proof, we fix the relevant constants.
Theorem 7.29 will be used repeatedly. Remember that n(z, ) ' 2¢7 7073 where
¢y = |B(1)] is the size of the smallest support of a contour. We assume that f sat-
isfies Bp = 1 and that it is large enough to ensure that, for all § > y, we have both
T>71; and

D3%q(1,00) <1,

where D Gl:ef4(,6 +1x"1). This will, in particular, always allow us to control the bound-
ary terms that appear when using the cluster expansion in a region A:

IAl < (1, 00)10™ Al < (T, £6)3%10%A| < |0™A. (7.71)
We will also assume that S is large enough to guarantee that

Vk=1, 2p LkVde K22 608 (7.72)
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358 Chapter 7. Pirogov-Sinai Theory

def
Let ¢y = 2, and
def _rpld-1/d
Cn+l el cn+(n+1)”de ™ /2.

def _p(d-1)/d
We thenhave 2 < ¢, | Coo = 2+ Y o1 (n+ 1)1/ 47" /2 and we can thus assume

that By is so large that cs, < 3. Finally, we assume f is such that

Va>0, plexp(-max{(po/4a)?7!, lp}12) < g : (7.73)
Proof of Proposition 7.34: Let us first prove the proposition in the case n = 0. When
y € €Y, (7.66) is always true, W*(y) = e P71, and (see (7.40)) e A1Vl < g=FroiMl <
e "M when (4, h) € U. Since

olyl

—|= |C i} - @ph] <2, (7.74)
iey

we have

ow’ (y)
| oA
The bound on the derivative with respect to h is obtained in exactly the same
way. Finally, (7.68)—(7.70) are trivial when |A| = 0, since the corresponding partition
functions are all equal to 1.
We now assume that the claims of the proposition have been proved up to 7,
and prove that they also hold for n+ 1.

‘ < 2B[7le P < D@/ @D g7

» Controlling the truncated pressures {/*,. Since the contours appearing in Z* (B(k))
are all of class at most n and since their weights are 7-stable on U by the induction
hypothesis, we can use Theorem 7.29 to express ¢, = —e* + g%, with g/ given by the
absolutely convergent series (notice that now, there appears a division by )

1 -
gh=Yy =%, (7.75)
Xexfl:ﬁ|x|
X>30

where y* is the collection of all clusters made of contours of type # and class at
most n, and where P* are defined as in (7.51), but with the weights W*. Moreover,
g7isC'in Aand hon U and

98,

1= DB (1,00 <1. (7.76)

The same upper bound holds for the derivative with respect to h.

» Studying the truncated weights of contours of class n+ 1. We first prove that (7.65)

holds when y € ¢, ,. Observe that W*(y) = 0 whenever there exists # such that

@" - ") lintyy"'4 > 1 pg. So we can assume that

Vd<1py  forall#. (7.77)

~ ! ~ .
@ — ) lintyyl
Since [inty| = n+1, all contours contributing to the partition functions appearing in
W* (y) are of type at most n. We can thus apply the induction hypothesis to deduce
that, for any #/,

Z#’ (int#r)/) < eﬁﬂ/nIint#ry\+cnléexint#/y| < eﬁu?nIint#ry\+3laexint#ry\ )
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7.4. Phase diagram of the Blume-Capel model 359

(Remember that ¢, 1 ¢ = 3.) The truncated weight of each contour contributing
to 2’; (intw7y) is T-stable by the induction hypothesis. Therefore, after using (7.62),
(7.54) and (7.71),

Z#(int#ry) 227; (intyy) = e—ﬁe#\Al g#( A) = eﬁmum#mm > eﬁﬁ/fllint#/yl—\aexint#/yl‘
(7.78)
Combining these two bounds, using the isoperimetric inequality as in (7.47), we
obtain

#l i o~ o~ . . .
Z ('lnt#’Y) < eﬁ(u/n—1//‘,‘!)|1nt#ry|+4|63x1nt#ry| < e(%ﬁp0+4)laexmt#ry|. (7.79)
Z#(ll’lt#r}/)

Bounding the cutoff function by 1, using (7.40) and }_« |0%intwy| < |y|, we conclude
that (7.65) indeed holds for y:

W#(Y) < e*%ﬁpol7l+4\7| < e*Tl?l . (780)

Let us turn to (7.67). The derivative with respect to A equals

alyl P —Bliyl i ) Z#,(int#/)/) ) Z#” (intwry)
:B oA w (Y) +e ; oA {X( ) Z#(int#’}’) }#,1;[#1{)(() Z#(int#rry)-} .

(7.81)

ow'(y) _
oA

The only term appearing in (7.81) that we have not yet estimated is

vay Z¥ (intyy) H '

O ( oo oy
‘M{X((% Wn)lintyy| Z* (intyy)

Using the chain rule together with (7.76), we see that the latter is bounded above by

Z¥ (intyy) | 0 Z* (intyy)
AlinteyV Ny | o | =
lintgy x| Ziintyy) |91 Ziintyy)

(In the second term, the cutoff was bounded by 1.) (7.79) already leads to a bound
on the first term, so we only have to consider the second one. Of course,

0 7 (intyy) B 10Z" (intyy) /07| .\ Z¥ (intyy) 10Z* (intyy) /0|

< 7.82
0A Z#(intwy) Z* (intyy) Z*(intyy)  Z*(intyy) (7.82)
Observe that
‘ oz* (intgy) ‘ _ Z e‘ﬁjﬁm#/}’;d’ () a(-p %nt#/ y0 (@)
oA el y oA
< Blintyy| Z* (intyy). (7.83)

This bounds the last ratio in (7.82). The remaining ratios can be estimated using
the induction hypothesis (7.69), and (7.79), yielding
0 Z* (intyy) .
— 21 < 2Bintyy|ezPro+ V10T inty Yl 7.84
- Z#(imw| Blintyy] (7.84)

Using (7.40), (7.74), (7.79), (7.80) and (7.84) in (7.81) leads to

| oW (y)

2| = {2871+ 2B + 41y Dlineyl}e .
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360 Chapter 7. Pirogov-Sinai Theory

(7.67) then follows after an application of the isoperimetric inequality. Once again,
the derivative with respect to h is treated in the same way.

» Estimating the differences|§", |~/ |, k < n. Notice that |%7%  , —y/%| = 18" | - &7|.
By what was done above, all truncated weights of contours of class < n+1 are 7-
stable. We can therefore consider the expansions for each of the functions gﬁ, k<
n+1, as in (7.75). Then, observe that the clusters X € )(fl ) )(i that contribute to
gﬁ 1 gi contain at least one contour y. with |inty.| > k. By the isoperimetric
inequality, [y, | = k=14, By Lemma 7.31,

Z |(:[\J#(X)| Se_%rk(d—l)/d.

X:X30
|X|Zk(d_”/d
As a consequence,
P P 21 _lgpld-nrd —~ —~ 1 —1lgkld-nrd
e~V <pe? o W Wl = . (7.85)

» Showing that n, in (7.66), can be replaced byn+ 1. For y € %:H, (7.66) holds
by (7.63). Let us fix y € 6%, k < n, and write

|l/d —

#s #oos 1/d
a; linty =a, ., linty|

o # . 1/d
+ (ay. — ay, 1) linty]|

#os 1/d —-1,.1/d ~tk@D/d)p
=d, linty|"*+27 k%"

1/d+p0/8.

< afl +1/inty]
(We used (7.72) in the last inequality.) Therefore, aﬁ +1 Iintyll/ d< po/8 implies that
aflinty|'? < po/4. According to how the cutoffs were defined, this implies % (y) =

#
w”(y).
We now move on to the most delicate part of the proof:

» Showing that (7.68) holds if |A| = n+1. Let A € Z¢ be an arbitrary c-connected
set satisfying |A| = n+1, fix (,h) € U and consider Z*(A) = e P INZH (A, Let
y € € be any contour appearing in the contour representation of Z*(A) (therefore
necessarily of class at most n). If

aZIintyl”d

= p0/4,
we say that y is stable; otherwise, we say thaty is unstable. By definition, a stable
contour satisfies w* (y = i .

Whether a contour is stable or not depends on the point (A, h) € U we are con-
sidering. Note that when afl =0, all contours appearing in Z*(A) are stable; in such
a case, we can use Theorem 7.29 to conclude that

Z#(A) — 2#(/\) _ e—ﬁe#|A|E#(A) — eﬁﬂ;n‘/\H’A < eﬁ{/;n‘[\|+‘aex[\| < eﬁl’pnlA|+cn|aexA| )

We can thus assume that a’, > 0. Note that the possible presence of unstable con-
tours prevents us now from using the representation VAINE e‘ﬁe# =*(A) to analyze
ZF ().

Let us fix the set of external unstable contours. Once the latter are fixed, we can
resum over the configurations on their exterior A®*, with the restriction of allowing
only stable contours. Observe that being stable is hereditary: if y is stable, then any
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7.4. Phase diagram of the Blume-Capel model 361

contour contained in its interior is also stable, so that we are guaranteed that none
of these contours will surround one of the fixed unstable contours.
Proceeding similarly to what we did in (7.29), this first step gives

A ; Zgante A [1 {eXP(_ﬁ )» q’B(w?’))l;[Z#/(int#'Y’)}"

,)//EI‘/ BC*/
compatible Y
external
unstable
where Z’:table(AeXt) denotes the partition function restricted to configurations in

which all contours are stable. Since w”(y) = W”(y) when y is stable and since the
truncated weights are 7-stable, we can use a convergent cluster expansion to study

Z{ i (A7):
_Bet I ASXt| — _ #_ gt ext €x A ext
Zztable( A ext) —e ﬁe |A |:ztable( A ext) <e ﬁ(e gn,stable)lA |e‘6 A .

For the partition functions in the interior of unstable contours, we apply the induc-
tion hypothesis (7.68):

H 7 (intyy)) < H ePUnlintyy'I+enl0™inty Yl o BT ,linty’| 31Y'I
# #

Using |[0%A®X!| < |0%A| + Yyer I?’I and extracting ePPnlAl from the sum, we obtain
Z#(A) < eﬁ@n\l\\ el0™ Al

_ R #_o# ext _ R i
X Z e P, +e gn,slable)lA | l_[ exp(_ﬁ Z q)B(w?,))e(‘l ﬁWn)|Y|'

r Y’EF’ By
compatible v
external
unstable
Observe now that #,[yl = ¥,lyl =2 —e’lyl = —Xp5®p(n") (indeed, remem-

ber (7.61), and observe that all pairwise interactions, in a ground state, are zero).

R def  #  s#
Deﬁnlng 1//n,stable =-€ +gn,stable'
e ex — B —1 ext _ ! v
Z#(A)Seﬁwn|/\|e|6 Al Z e PYR— apie) A H e BVl Al (7.86)
r/ YIEFI

compatible
external
unstable

We will show that this last sum is bounded by e/, which will allow to conclude

that, indeed,

7! (A) < ePVnlA 2I07Al < BTl Al+enlO™AT (7.87)
In order to do that, we will prove that ¢, — 1/7’;2,5 table
to strongly penalize families I'” for which |A®X!| is large. First, let us write

is positive and sufficiently large

= S N
Y=Yy stable = 9n (&n gn,stable) :

The clusters that contribute to g7 — gi stable N€CEssarily contain atleast one unstable
contour. Therefore, since an unstable contour y satisfies

d-1
71 = linty|@-D/d > (ﬂ) ,

#
4adl,
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362 Chapter 7. Pirogov-Sinai Theory

we have
1gh gﬁlstabla < B L exp(—max{(po/4a’)?7L, bo}1/2) < idh,
where we used (7.73). We conclude that ¢/, — @fl,stable > a, /2. Then, let us define

new weights as follows: for each y € €, set

# )def{e‘(ﬁPO‘S)m if y is unstable,
W, 'Y =

0 otherwise.
We denote by =% (-) the associated polymer partition function, and let

A# def ..
7= lim
8 = i BB

log=*(B(n)).

Since Bpg —5 = 7, g¥ can be controlled by a convergent cluster expansion. Once
again, the clusters that contribute to §# contain only unstable contours, and there-
fore, using again (7.73),

8% < B~" exp(-max{(po/4al)? ™!, to}1/2) < L. (7.88)
One can thus guarantee that

1/711 - 1/lifi,stable = gi . (7.89)
We can now use this to show that the sum in (7.86) is bounded above by

Y e PEINTI [T o Pro- DY < g PEIAL S T g (PRo-d)IT| gPEINTY
r! '}’IEF’ l—*/ /},ler!

compatible compatible

external external

unstable unstable

_Bgt - —6) [V | —# /-
<e BELIAI Z H e (Bpo 6)|Y|:ﬁ(1nt)/')
F! Y’Er’
compatible
external
unstable

— e*ﬁg”flAIE#: N

= e|anA| .

In the first inequality, we used |g%| < 1, which follows from the first inequality
in (7.88); in the second, we used again Theorem 7.29: Z7 (inty) = eP8*ntr1=I71_ This
proves the earlier claim.

» Showing that (7.69) and (7.70) hold for |A| = n+1. Proceeding as in (7.83), we see
that

‘ 0Z*(A)
oA
and, therefore, (7.69) follows from (7.87). The same argument yields (7.70)

» Showing that n, in the right-hand side of (7.68)—(7.70), can be replaced by n + 1.
Using (7.85) and the isoperimetric inequality we get, for all [A| < n+1,

< BIAIZF(A), (7.90)

B | Al + cpl0%Al = BT 1 AL+ Cal0™Al+ B, =, )IA]
< BT pia AL+ (e + (4 D3 ey
= U 41 |Al+ €1 [0FAL. O
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Construction of the phase diagram

Let us now exploit the consequences of Proposition 7.34. We assume throughout
this section that § > . Since it appears at several places, we define

def

e=e(f) = D3%(1,0y).

When needed, 8 can be taken larger to make € smaller. We will assume, for instance,
that
€<pl/32.

Proposition 7.34 dealt with the truncated pressures i/, to which only contours
with an interior of size at most 7 contributed. Let us first see how the limit 7 — oo
restores the full model.

It follows from (7.85) that g is a Cauchy sequence, which guarantees the exis-
tence of
At def 1. AH#
g = lim g,.

Moreover, §* can be expressed as the convergent series

1 -
N #
g = —VY (X), (7.91)
Xg;#:ﬁlj(
X30

where y* is the collection of all clusters made of contours of type # using the weights
W, Namely, the difference between this series and the one in (7.75) is an infinite
sum over clusters X such that (i) their support contains 0 and (ii) they contain at

least one contour of class larger than n. By Lemma 7.31,
(d-1)/d

18" —ghl<p et (7.92)

We can thus also define
7" < lim ot
v Ay, .
The series in (7.91) can be bounded as usual: |§*| < . This shows that ¢ is a small

perturbation of minus the energy density of the ground state n*:
[§" - ("] <e,

In order to compare the original weights and their truncated versions, we define

# def . #_ o o
a = lim a, =y -y",
where
~ def ~#
V= m#axw .
Letting n — oo in (7.66) implies that
vye€*, a’linty|Y4 < po/8 implies  W*(y) =w*(y). (7.93)

Using this, we can define regions of parameters on which all contours of type # will
coincide with their truncated versions (we indicate the dependence on S, to distin-
guish these sets from those defined in (7.21), which were associated to the energy
densities of the ground states):

2} E{AweU:ad' A =0t ={AheU:§'}h :n}%allxﬁ/#’(}t, n}.
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364 Chapter 7. Pirogov-Sinai Theory

Observe that at a given point (A, h) € U, there is always at least one # for which
a’(A,h) = 0. This means that the regions %" cover U. By (7.93), we obtain the
following

Theorem 7.35. There exists 0 < By < co such that the following holds for all > Bo:
Vye€”, A h) e %[f implies W' (y) =w*(y).

In particular, when (A, h) € %, # thetrue pressure of the model equals

w(A, h) = lim ! logZ" (B(n))

n—oo fB|B(n)|
1

BIB(n)|

logZ"(B(n) =" (A, h).

= lim
n—o0

In other words,
gt b ifA W eX;,
Yy ) ={9°A,h) ifQAhe%), (7.94)
Ak QA ke .

In particular, we can extract properties of the (true) pressure by studying the trun-
cated pressures and determining the regions %, ﬁ#‘

Up to now, even though we restricted our discussion to the Blume—Capel model
for pedagogical reasons, the specific properties of this model were not used in any
important way. In order to obtain more precise information about this model how-
ever, it will be useful to exploit these properties from now on. For example, the
+ < — symmetry provides us immediately with useful information about the trun-
cated pressures.

Exercise 7.14. Check that the + — — symmetry impliesy* (A, —h) =¥~ (A, h).

Let us write the truncated pressures more explicitly, using the expressions for
the ground state energy densities e* given in (7.20):

~

TEA W) =xh+A+ g h), 7' h) =g, h).

Since the weights W" (y) are C!, Theorem 7.29 guarantees again that §” is C! on U
and that, uniformly on U,

At At
|0a% <e, (‘Zih <e. (7.95)
Therefore,
oy* _ oyt Y 0p°
|ﬁ 1| <e, |a;t ~1]=e, |W|S€' |ﬁ|5€

The regions 7/, g . Letus start with %, ﬁ+’ which can be written as

U ={AheU: g = i n{AWeU: §" =§°}.
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7.4. Phase diagram of the Blume-Capel model 365

Since the truncated pressures are continuous, the boundary of the set {y* =¥~} is
given by {{/* = ¥~}. By the + — — symmetry (Exercise 7.14),

A0 =9~ (4,00, VA.
Since % > %, uniformly on U, this shows that {{/* = ¥~} = {h = 0} and that
{y* =29~} = {h = 0}. In the same way, the boundary of {{/* = /°} equals {/* = §/°}.
Since there is no symmetry between + and 0, we will fix A, and search for the value
of h such that 7" (A, h) = #° (A, h), which can also be written as

def

GARWEh+A+g A h -8, h)=0. (7.96)

To guarantee that (7.96) has solutions in U, we restrict our attention to a slightly
smaller region. Remember that U is defined by |A|,|h| < p/8. Let 6 > 0 be any
number satisfying 2e < § < p/16. and set

> def

U={A,h):|1Al<p/8-6,|hl<p/8}.
Take then 1 € (—p/8+ 8, p/8 - 6) and define h. € _1+6. We have (A, h+) € U and
G(A,h_) <0< G(A, hy). Since g—g > 0 uniformly on U, this implies that there exists
a unique h = h(A) € (h_, hy), such that G(A, h) = 0. The implicit function theorem
guarantees that A — h(A) is actually C', and differentiating G(A, k(1)) = 0 with re-
spect to A leads to |/ (A) + 1| < 2e.

Figure 7.8: The construction of {{y* = %}, which can be parametrized by
a smooth map 1 — h(A), whose graph lies in the strip of width 26 around
h=-A.

One then has %ﬁ* ={(A, h) € U : h = max{h(1),0}}. By symmetry,
Us ={AmeU: A ~h)eu},

and {§~ = 1/70} can be parametrized by A — —h(A). Finally, @/ﬁo is the closure of
U\ (@/ﬁJr u %ﬁ‘). The regions %ﬁ# are separated by coexistence lines,

zg#’ def wjn %ﬁ#’ wtH.
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366 Chapter 7. Pirogov-Sinai Theory

Figure 7.9: The phase diagram of the Blume-Capel model, which lies in a
neighborhood of size § of the zero-temperature diagram (dashed lines). Ac-
tually, by the +/— symmetry of the model, we know that the line separating

%ﬁ+ and %ﬁ_ lies exactly on the line {h = 0}.

7.4.5 Results for the pressure

We summarize the results obtained so far about the pressure in the following theo-
rem (see also the qualitative picture on Figure 7.3).

Theorem 7.36 (The pressure of the Blume—Capel model at low temperature). Let
Bo be as in Proposition 7.34. For all 3 > o,

vt k) ifAheX],
WA, h) = mélxtﬁ# AR =0k ifAhew?, (7.97)
w4k if(Ah)E %ﬁ‘ :
As a consequence,

1. The pressurey (A, h) is C' in A and h, everywhere in the interior of each region

Uy, #e{+,0,-}.
2. First-order phase transitions occur across each of the coexistence lines, in the

sense that ; ;

v v +0

51:'> 5ijn ateach(l,h)e:ﬁ% .
and, for all# # #,

0 0 /

6;;: > # ateach (A, h) Efg# .

Remark 7.37. Remember that the construction of the truncated pressures depends
on the choice of the cutoff y(:) used in the definition of the truncated weights. The
latter choice of course only affects the truncated pressures. It has however an im-
pact on what we could extract from the analysis above. Namely, the assumption
that the cutoff was C! yields, ultimately, the corresponding regularity of the pres-
sure in the interior of the regions %/, as well as the regularity of the boundary of
these regions. Choosing a cutoff with higher regularity would yield a correspond-
ing enhancement of these properties (but would require a control of higher-order
derivatives of the truncated pressures in Proposition 7.34). o

Remark 7.38. The fact that the pressure coincides with the maximal truncated pres-
sure (see (7.97)) means that the truncated pressures provide natural continuations
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of the pressure through the coexistence lines. A similar conclusion had been drawn
for the Curie-Weiss model (see Figure 3.19 of page 158). Nevertheless, the contin-
uations of h — w%w(h) through the transition point were analytic, while those ob-

tained here are only C!. In particular, there are infinitely-many possibilities to make
such a continuation, in contrast with the analytic case. For example, each choice of
a cut-off function yields an a priori different C! continuation. Nevertheless, ana-
lytic continuations through the coexistence lines do not exist, in the general, in the
framework of PST. This will be discussed in Section 7.6.6, o

Remark 7.39. In this chapter, we started with the Blume—Capel model at param-
eters h = A = 0 and considered perturbations around this point, constructing the
phase diagram in its vicinity. In the same way, we could have started with 1 = Ay
and h = hy, and constructed the phase diagram around this point. This allows in
particular the description of coexistence lines outside the domain U. ©

The Gibbs measures at low temperature

So far, the phase diagram was constructed by studying partition functions and trun-
cated pressures. In this section, we consider the consequences of the previous
study at low temperature, from a probabilistic point of view.

Let us take S large, fix (A, h) € U, and denote by 4 (B, A, h) the set of infinite-
volume Gibbs measures associated to the Blume—Capel model. As in Chapter 6,
the latter are defined as the probability measures compatible with the specification
associated to the potential f® = ﬁ(@o + W) (remember (7.19)). Let

def

Y(B,A R = {#e+,0,-) : % > (A, b}
denote the set of stable periodic ground-states at 8, A, h. We will show that, for each
#€Y(B,A, h) a Gibbs measure p’; 1n €9 (B, A, h) can be prepared using the bound-

ary condition n*, under which typical configurations are described by small local

perturbations away from n*. Moreover, these measures are extremal and ergodic.

As will be explained in Section 7.6.1, this construction yields the complete phase

diagram: any other translation-invariant Gibbs measure can be written as a convex
. . + 0 —

combination of the measures p s Hpan and BAR

Remark 7.40. Notice that, using the boundary condition # and proceeding as we
did in the proof of Theorem 6.26, we can extract from any sequence A, 1 Z% a sub-
sequence (Ay,) k=1 such that the limit

. n*
Jm gy s ()

exists for every local function f, thus defining a Gibbs measure. A priori, this mea-
sure depends on the subsequence (A, ) k1. o

Below, we show that, when the temperature is sufficiently low and # € Y(6, A, h),
the thermodynamic limit used to construct this measure does not depend on the
sequence (A,) =1 and can be controlled in a much more precise way.

In order to use the earlier results that rely on the contour representations of con-
figurations, we will use the Gibbs distributions yi, BAR for the Blume-Capel model,
defined as u"}*\,q) in Section 7.3, rather than those of Chapter 6.
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368 Chapter 7. Pirogov-Sinai Theory

Theorem 7.41. There exists By such that, for all f = By and all (A, h) € U, the follow-
ing holds.

1. Let#€ Y(B,A, h). For all sequence of c-connected sets A, | Z% and every local
function f, the following limit exists

# def .. #
Hﬁ,/l,h(f) = ,}EIC}O:“A,,;ﬁ,A,h(f)' (7.98)
and defines a Gibbs measure p;’;'/l,h €Y (B, A, h).

2. The measures u‘é A 1€ Y(B,A h), are translation invariant, extremal and
ergodic. Moreover, they are distinct, since

B an(@0=#H21-8(B), (7.99)

where 6 (f) > 0 tends to zero as 3 — oo.

In particular, two (resp. three) distinct Gibbs measures can be constructed for each
pair (A, h) living on a coexistence line (resp. at the triple point). (Note that a similar
statement could also be derived from Theorem 6.91 and the non-differentiability
of the pressure.) Geometric properties of the typical configurations under these
measures will be described in Theorem 7.44.

Proof of Theorem 7.41: Fix (B, A, h) and let # € Y(B, A, h). To lighten the notations,
we omit 8, A and h everywhere in the indices.
» Proof of (7.98): Let us fix some local function f. We will first show that, for all
n=1,
[k (D) - kA (P = cll fllonde™ ™, (7.100)

whenever A,A € Z¢ are c-connected and both contain B(2n). This implies that
(pf\n () n=1 is a Cauchy sequence, which proves the existence of the limit in (7.98).
We have already seen that this is sufficient to define the measure y*; we leave it
as an exercise to verify that u* € 4(B, A, h) (adapt the proof of Theorem 6.26). Ob-
serve also that (7.100) shows that the limit does not depend on the chosen sequence
(A n=1.

We prove (7.100) using a coupling of pf, and pfy. Let

Qp x Qp déf{(w,w’) twe Q0 €Qpt.

Let n be large enough to ensure that B(n) contains the support of f and assume A
and A are both c-connected and large enough to contain B(27n). On Q) xQa, define

#eoodef # oot
Pan = Ha®Hy-

We call D c 74 #-surrounding if (i) D is connected, (ii) B(n) € D < B(2n), (iii) w; =
w); =#forall i € 0D.

Let us consider the event Cy, 44 < Qp x Qa defined as follows: (w, ') € Cy, 44 if
and only if there exists at least one #-surrounding set. Observe that if D; and D,
are #-surrounding, then D U Dy, is also #-surrounding. When C,, 4 4 occurs, we will
therefore denote the largest (with respect to inclusion) #-surrounding set by Dy. We
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7.4. Phase diagram of the Blume-Capel model 369

denote by [Dy] the event that C,,.4 4 occurs and Dy is the largest #-surrounding set.
def

Letting F(w,0") € f(w) - f(w"),

[ () =k ()| = [EA ALF]| < |ER A[F1c,,, 0] + 21 fllooP A (Cre ).

For the first term in the right-hand side, we can sum over the possible Dy (for
simplicity, we denote the realization of each such set also by Dy). Note that, by
construction, it is sufficient to look at the configuration outside Dy to determine
whether the event [Dy] occurs; in other words, [Dy] € %, DE- Therefore,

[Ef\,A[Fl[D#I] = [Ef\,A [[Ei\,A[FLgID;]l[D#]] =0,
since Pi,A((wD#,a)’D#) | ﬁ‘bg) = ,Lﬁ;)# (a)D#)y*E# (wb#) on [Dy]. This implies that

[EXA[FIC,L#_#] = Z[Ef\’A[Fl[D#]] =0.
Dy

We now show that, at low temperature, #-surrounding sets exist with probability
closeto 1.

Lemma 7.42. When f is sufficiently large, there exists t' = T’ (8) > 0 such that

PA A(Cns%) < 2B(m)le™ . (7.101)

Proof. Let &, denote the family of all self-avoiding paths (i, i1,...,i;) inside
B(2n) \ B(n), with iy € 3B(n), iy € d"B(2n), ij ~ij+1. We say that i is (#,#)-correct
if it is #-correct both in w and in w’. We claim that

Chp4° < {3io, ..., ix) € P, such that each i is not (#,#)-correct} . (7.102)

Indeed, assume that each 7 = (iy,...,ix) € &, is such that i; is (#,#)-correct for at
least one index j € {0,1,...,k}, and let j(;r) denote the smallest such index. Con-
sider the truncated path 7 aef (ig, i1,...,ijom). Then, clearly, D %ef B(m)UUpeap, 7 is
#-surrounding.

Now, if each vertex of a path 7 € &7, is not (#,#)-correct, then there must exist
two collections I = {y},...,y)} c Aand T = {y{,...,y},} < A of external contours of
type # such that

l m
: ! 3 I
mc kU1 inty} U kU1 inty}/,

where we introduced the notation inty d=ef7 uinty.

* From the collection I" UT”, we can always extract an ordered subcollection
Y = (y1,...,yx) € I UT” enjoying the following properties: (i) mm B(n) #
@; (ii) either all contours y; € Y whose index i is odd belong to I'" and those
whose index i is even belong to I'”, or vice versa; (iii) Y is a chain in the sense
that each y; € Y is compatible neither with y;_; nor with y;;, but is compat-
ible with all other y ;s; (iv) if Y d:erf:l Y; then |Y| = n (since 7 has diameter at
least n).
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370 Chapter 7. Pirogov-Sinai Theory

* By construction, Y is made of contours belonging to subcollections I'y = T’
and I', < T”. Using Lemma 7.26 and the fact that all contours of type # are
7-stable when (A, h) € ¥, we get

ph (each y € T is external) < J] w'(y) < ] e 7.
y'el v'el
A similar bound holds for p4 (each y” €T, is external).
We can gather these informations into the following bound:

k _
PAACrps)<2) 3 e
k=1 Y=(y1,~,yr): i=1

inty;nB(n)#2
[Y|zn

k
! N~
<27y Y JlemM, (7.103)
k=1 Y=(y1,,yx): i=1
inty1nB(n)#2

where 7' £ 7/2. We sum over Y = (Y1,.--,Yk), starting with y:

_ _ die _
Y M3l | Y e < Tl Y T,
YEY k7 Y k-1 ViV 20 VY20
Then, for j=k-1,k-2,...,2,
3 o~ @307, < 37l y e~ -30;1
YitYi#Yj-1 Y30
In the end, we are left with j =1:

Y N v (7! —2d\+ .
Z e ('3 )W]\ < |B(n)| Z e (r'-3 )|Y]|_
yrinty;nB(n)#£2 y1:inty130

This last sum can be bounded as in Lemma 7.30 and shown to be smaller than
some 11 = 11 (1,€g) < 1/2 if 7 is large enough. In particular, } ;> n’f < 1 and the
conclusion follows. O

We have proved (7.100).

» Proof of translation invariance: That y is translation invariant can be shown
exactly as in the proof of Theorem 3.17 (p. 102): for any translation 6; and any local
function f (remember Figure 3.8),

W, () =k, (Fe0D I =1, () =, (DI,

and by (7.100), the right-hand side converges to zero.

» Proof of extremality: We will use the characterization of extremality given in
item 4 of Theorem 6.58. Let A € € be any cylinder, and 7 be so large that A€ Zp .
Let also B € .% ¢, where A is large enough to contain B(4n). Consider the event
Con# < Q that there exists a largest connected set Dy such that B(2n) c Dy c B(4n)
and w; = # for each i € 0** Dy. Using a decomposition similar to the one used eatlier,

p(ANB) =Y " (AN BN Dy + 1 (ANBN Copps).
Dy
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7.4. Phase diagram of the Blume-Capel model 371

Since Cay 4 is local, p*(Cops%) = limy—oo uf\N(Cz,l,#C). Using Lemma 7.42, for all
N =4n,

A (Cong®) SPh L\ (Conps) <2IB2M)|e ™", (7.104)

Therefore, u* (AN BN Cons%) <2|B(2 n)le‘ZT’”. Now, for a fixed Dy, Fpc < ﬁDg, and
)

p" (AN BN Dy = u' (1" (ANBIFpo) L) = 1 (1 (A1 Fp)1Bany) -

Since u* € 4(B, A, h), we have, on [Dy], u* (Al Fpe) = p"D##(A) almost surely. Adapt-
ing (7.106) below gives

u’gj# (A) = 1 (A +0(nte ™).

Altogether, we get
y'(AnB) =y (A" (B)+O0(nte ™ ™). (7.105)

This implies that y* is extremal.

» Proof of ergodicity: Ergodicity follows from extremality and translation invari-
ance, exactly as in the proof of Lemma 6.66.

» Proof of (7.99): We reformulate Peierls’ argument. We fix some A € Z¢ and
observe that, in any configuration w € Qf\ such that wg # #, there exists an external
contour Y’ < A such that inty’ 3 0. We can then use again Lemma 7.26 and the
stability of the weight of contours of type # when (A, h) € 02/[;‘*f to obtain, uniformly
in A, a bound involving the same sum as before:

Whloo##)= 3 el
y':inty’30

This sum can be made arbitrarily small when f (and hence 7) is large enough. This
concludes the proof of Theorem 7.41. O

In the above proof, we have actually established more, namely exponential re-
laxation and exponential mixing at low temperature.

Corollary 7.43. Under the same hypotheses as Theorem 7.41, if # € Y(B, A, h), there
exists ¢ < oo such that, for any function f having its support inside B(n) and for all
c-connected A > B(2n),

|t pan (D) = 1 2 n (D] < Cllfloon?e™ ™. (7.106)
Moreover, for any Fg 4. -measurable function g,

-1'n

|1y 10 (F &) = s 2 (DB @ a0] = clflcllglloone

Proof. The first claim follows by taking A { Z¢ in (7.100). The second follows from
the same argument that led to (7.105). O
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372 Chapter 7. Pirogov-Sinai Theory

A characterization of “the sea of # with small islands”. The bound (7.99) suggests
that a typical configuration under y’; 1.5, displays only small local deviations from

the ground state n*. Here, we will provide a more global characterization, by giving
a description of configurations on the whole lattice, that holds almost surely.

For instance, (7.104) implies that, for all # € Y (8,1, h),

Y pj; an(Cn®) <oo.
n

Therefore, the Borel-Cantelli Lemma implies that, [f;] A p-almost surely, all but a
finite number of the events C;, 4 occur simultaneously. This means that the origin is
always surrounded by an infinite number of #-surrounding sets, of arbitrarily large
sizes. But it does not yet rule out the presence of # -surrounding sets, for other
labels #.

To remedy this problem, let N > n and consider En,,# & Fn n# N Cyy, where
C,,4 was defined earlier and Fy ,, 4 is the event that there exists a self-avoiding path
m = (ig, i1,...,ix) < BIN) \ B(n), with iy € *B(n), ix € 0"B(N), ij ~ ij41, such that
w;i; =#forall j. On the event

def
En,# = ﬂ EN,n,#,
N>n

there exists a #-surrounding B(n) ¢ Dy < B(2n), and there exists an infinite self-
avoiding path 7 (connecting Dy to +o00) of vertices i with w; = # (see Figure 7.10).

B(2n)

Figure 7.10: Almost surely under ”2 1. the origin (as well as every other
vertex of the lattice) is surrounded by a circuit (in d = 2; otherwise, a closed
surface) of #-spins, and this circuit is itself connected to +oo by a path of #-
spins.

Theorem 7.44. Let#¢€ Y (B, A, h). Then,

#’Z,A,hGM < oo such that Ep 4 occurs) =1.

Proof. Let us study Fy,, 4 under uf\, BAR Observe that

Fp,n# < {there exists an external contour y’ c A such that inty’ > B(n)}.
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Now, if inty’ > B(n), then |7'| > |0*B(n)| = n%"!. Therefore, we can proceed as
earlier to obtain, for all c-connected A > B(XN),

# _ =/
FpspanFNng) < > e !
Y'inty' nB(n)#2
Iy 1znd"!
1 M d-1
<Bml Y e™M<Bmle ™™,
y':inty’30#£ &
B

uniformly in N and A, for some 7" > 0 depending on 8. Since Ey,, # is decreasing
in N,
# o #
#,3'/1,11 (En,#) = ]\lllirgoﬂﬁ,A’h(EN,n,#) =1- €n,
where €, =3 IB(n)| (2e"'” + e"””dﬁl). Since €, is summable, we can again apply the

Borel-Cantelli lemma to conclude that all but a finite number of events E,, # occur
,u’; 1 ,-almost surely. O

Combining the previous result with translation invariance, we summarize the
almost-sure properties of typical configurations in a theorem:

Theorem 7.45. Let 8 be large enough and (A, h) € %g . Forall#€ Y(B,A,h), un-
der ,u’;, A @ typical configuration consists in a sea of # (the ground state 17" ) with

local bounded deformations, in the following sense: every vertex i € Z% is either
connected to +oo by a self-avoiding path along which all spins are #, or there exists a
finite external contour y such that inty 3 i.

The study of the largest contours in a box can be done as for the Ising model:

Exercise 7.15. Let f be large, as above. Fix # € Y (B, A, h), and consider the Blume-
Capel in B(n). Adapting the method of Exercise 3.18, show that under p’g pAR the

largest contours in B(n) have a support of size of order log n.

Bibliographical references

Although it is sometimes unfairly referred to as a “generalization of Peierls’ argu-
ment”, the Pirogov-Sinai theory (PST) actually uses several important concepts of
equilibrium statistical mechanics and introduces important new ideas. The origi-
nal method introduced by Pirogov and Sinai (English translations of their original
papers can be found in [313]) was based on the use of contours and of a Hamil-
tonian satisfying Peierls’ condition, but the phase diagram was constructed by us-
ing an abstract approach involving a fixed-point argument. Later, Zahradnik [354]
contributed substantially to the theory by introducing fundamental new ideas. In
particular, he introduced the notion of truncated pressure, which eventually su-
perseded the original fixed-point argument and became the core of the current un-
derstanding of the theory. For that reason, it would be more correct to call it the
Pirogov-Sinai-Zahradnik theory.

Pedagogical texts on PST include the paper [34] by Borgs and Imbrie, and the
lecture notes by Ferndndez [104]. The review paper of Slawny [316], although based
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on the fixed-point method of Pirogov and Sinai, is clear and applies the theory to
various models.

Our Section 7.2, devoted to ground states, is inspired by the presentation in
Chapter 2 of Sinai’s book [312]. Other notions of ground states exist in the literature
(see [85]). The method to determine the set of periodic ground states based on m-
potentials, as presented in Section 7.2.2, is due to [164]. An interesting account of
the main ideas of PST as well as a description of more general notions of ground
state can be found in [343].

The model considered in Example 7.8 is due to Pechersky in [265]. Prior to that
counter-example, it had been conjectured [312] that a finite-range potential with a
finite number of periodic ground states would always satisfy Peierls’ condition.

Our analysis of the phase diagram is based on the ideas introduced by Zahrad-
nik and followers. In particular, the C!-truncation used when defining the trun-
cated weights is a simpler version of the C¥-truncations used by Borgs and Kotecky
in [35].

Although the details were only implemented for the Blume-Capel model, the
methods used are general and can be applied in many other situations. As an ex-
ercise, the interested reader can use them to provide a full description of the low-
temperature phase diagram of the modified Ising model described early in Sec-
tion7.1.1.

Complements and further reading

Completeness of the phase diagram

One of the main results in this chapter was the construction of low-temperature
translation-invariant extremal Gibbs measures for the Blume-Capel model using
stable periodic (actually constant) ground states as boundary conditions: u; AR
#eY(B, A, h).

At this stage, it is very natural to wonder whether there are other Gibbs mea-
sures, in addition to those constructed here. By the general theory of Chapter 6, the
set of infinite-volume Gibbs measures is a simplex, so we can restrict our discus-
sion to extremal measures. The following remarkable result shows that the Gibbs
measure we constructed exhaust the set of translation-invariant Gibbs measures:
at sufficiently low temperature, any translation-invariant measure in % (f, A, h) can
be represented as a convex combination of u;’;,l’h, #eY(B,A,h).

Theorem 7.46. There exists ¢ such that, for all = By, the following holds. For
all (A, h) € U and all pe 9y (B, A, h), there exist coefficients (@) ey pam < [0,1] such
that

#
N:: 2: a#“ﬁﬂhh'
#€Y (B,A,h)

In particular, in the regions where only one of the boundary conditions +,—,0 is
stable (the interior of the regions %ﬁ# on Figure 7.2), there is a unique translation-
invariant Gibbs measure.

The same statement holds for the general class of models to which the theory
applies; see the original paper of Zahradnik [354], where a proof can be found. This
kind of statement is usually referred to as the completeness of the phase diagram.
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We therefore see that, while the Pirogov-Sinai Theory is limited to perturba-
tive regimes (here, very low temperature), it provides in such regimes a complete
description of the set of all translation-invariant Gibbs measures. Of course, there
are, in general, other non-translation-invariant Gibbs measures, such as Dobrushin
states in the Ising model in dimensions d = 3 (see the discussion in Section 3.10.7).
Extensions of PST dealing with such states have been developed; the reader can
consult, for instance, [162].

Generalizations

PST has been extended in various directions, for instance to systems with continu-
ous spins [87, 48], quasiperiodic interactions [199], or long-range interactions [262,
263].

One important application of PST was in the seminal work of Lebowitz, Mazel
and Presutti [214], in which a first-order phase transition is proved for a model of
particles in the continuum with Kac interactions (of finite range), similar to those
we considered in Section 4.10. At the core of their technique lies a non-trivial defi-
nition of contour associated to configurations of point particles in the continuum,
and the use of the main ideas of PST.

Large- 3 asymptotics of the phase diagram

The analysis of this chapter showed that the low-temperature phase diagram of the
Blume-Capel model is a small perturbation of the corresponding one at zero tem-
perature. A more delicate analysis is required if one wants to derive more quantita-
tive information on this diagram as a function of .

For instance, (A, h) = (0,0) is the triple point of the phase diagram at zero tem-
perature, at which n™,7° and n~ are ground states. The following question is natu-
ral: in which direction does the triple point move when the inverse temperature is
finite? In other words: which are the stable phases at (0,0) when 8 < co?

In principle, this question can be answered by determining which truncated
pressure §*(0,0) = §%(0,0) (remember that ”(0,0) = 0), # € {+,0,—}, is maximal.
But, each g#(0,0) is a series made of products of 7-stable weights, where 7 can be
made large when S is large. Computing the first terms of these expansions should
allow to determine which one dominates. Unfortunately, the structure of the trun-
cated weights makes extracting such information difficult. We briefly describe an
alternative approach, informally, providing references for the interested reader.

Let us describe the contributions from the smallest perturbations of the ground
state n*, which provide the main contribution to §*. We do this at a heuristic level.

Consider first the case # = +. Among the configurations that coincide with n*
everywhere except on a finite set, the configurations with lowest energy are those
which have a single 0 spin. The energy associated to such an excitation is 2d. It
therefore seems plausible that the leading term in the expansion of g*(0,0) is due
to the cluster made of exactly one such excitation, that is

BT 0,00=e2P 1 .,

where the dots stand for higher order terms in e 7.
Now, among the configurations that coincide with n° everywhere except on a
finite set, the configurations with lowest energy are those which have either a single
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+ spin or a single — spin. Both these excitations have an energy equal to 2d, as
before, which leads to
B5°0,0)=2¢72% 1 ..

Provided the higher order terms yield significantly smaller contributions, this gives,
at large S,

#7°(0,00 - (0,0) = %e‘z‘iﬁ S %e‘z‘iﬁ >0,

implying that only the 0 phase is stable at (0,0). In other words: the triple point
shifts to the right at positive temperatures, as depicted in Figure 7.9.

In fact, this argument can be repeated when (A, h) lies in a neighborhood of
(0,0), allowing to construct the coexistence line .i”lgi. Namely, fix § large and take
A, h such that BA < 1 and Bh < 1. Arguing as above, considering the excitations of
smallest energy, we get (remember thate* (A, h) = A+ h)

ﬁa%ajn:eﬁdMﬁMﬁh+eﬂdmﬁkﬁh+””
BUT (A, h) = A+ Bh+ e 2P-PA=PR

Therefore, for very large 3, the smooth map describing gé” (see Figure 7.8) can be
obtained, in first approximation, by equating these two expressions, yielding

A—hA) = e 2P — A (1-4e72P) + O(1%).
In particular, the position of the triple point (1. (8), 0), is obtaining by solving k(1) =

0, which yields
—2dp

Au(p) = S— (1 + O(e72%y).

These computations are purely formal, but their conclusions can be made rigorous.
The idea is to replace the notion of ground state by the notion of restricted ensem-
ble. In the context described above, the restricted ensemble Z° is defined as the
set of all configurations w such that w; # 0 = w; = 0 for all j ~ i. That is, they
correspond to the ground state n° on top of which only the smallest possible exci-
tations are allowed. Starting from a general configuration, one then erases all such
smallest energy excitations and construct contours for the resulting configuration.
Of course, this is more delicate than before, since, in contrast to the ground state
n°, the restricted phase %° has a nontrivial pressure that, in particular, depends on
the volume. Nevertheless, the analysis can be done along similar lines. We refer
to the lecture notes [50] by Bricmont and Slawny for a pedagogical introduction to
this problem (and a proof that the triple point of the Blume-Capel model is indeed
shifted to the right) and to their paper [51] for a more detailed account.

Other regimes.

Generically, the methods of PST can be used to study models whose partition func-
tion can be written as a system of contours, with some equivalent of Peierls’ condi-
tion. The perturbation parameter need not be the temperature, and the param-
eter driving the transition need not be related to some external field as we saw
in the Blume-Capel model. Consider, for example, the Potts model with spins
w; €1{0,1,2,...,4 -1}, at inverse temperature 3, and denote its pressure by v ,(f).
It turns out that, when ¢ is large, g~ can be used as a perturbation parameter
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to study § — v 4(B). Using the methods of PST, it was shown in [48, 233, 203]
that a first-order phase transition in  occurs when g is large enough: there exists
B. = B.(q) such that the pressure is differentiable when 8 < . and § > ., and that
it is non-differentiable at B.. (This result was first proved, using reflection positiv-
ity, in [197]. In two dimensions, the simplest proof, relying on a variation of Peierls’
argument, can be found in [93].)

In addition to perturbations of a finite collection of ground states, PST can also
be applied successfully to analyze perturbations of other well-understood regimes,
usually involving constraints of a certain type. This appears for instance in the
study of Kac potentials in the neighborhood of mean-field [214], or the use of re-
stricted phases as in [48, 50, 113].

Finite-size scaling.

In [35], Borgs and Kotecky used the ideas of PST to initiate a theory of finite-size
scaling, that is, a thorough analysis of the rafte at which certain thermodynamic
quantities (the magnetization, for example) converge to their asymptotic values in
the thermodynamic limit. In addition to its obvious theoretical interest, such an
analysis also plays an essential role when extrapolating to infinite systems the in-
formation obtained from the observation of the relatively small systems that can be
analyzed using numerical simulations.

Complex parameters, Lee-Yang zeroes and singularities.

With minor changes, most of the material presented in this chapter can be ex-
tended to include complex fields; see [34], for example.

As an interesting application, it has been shown in [20] and [21] that the Lee-
Yang theory, exposed for the Ising model in Section 3.7.3, can be extended to other
models, allowing to determine the locus of the zeros of their partition function.
Of course, since they rely on the main results of PST, these results hold only in a
perturbative regime.

Furthermore, the techniques of PST can be used to obtain finer analytic prop-
erties of the pressure. Consider for instance the Ising model in a complex magnetic
field h € C. For simplicity, let us consider the contours defined in Section 5.7.4. The
magnetic field leads one to introduce contours of two types: + and —. Then, using
the trick (7.31), one is led to two types of weights: w* (y) and w™(y). When h = 0,
these coincide with those defined in (5.41), but otherwise they contain ratios of
partition functions. The weight of a contour of type +, for example, takes the form

—2pp Z_(Nty) _ oppy e PHInt-YI==(int_y) '
Z*(int_y) etBhlint-yI =+ (int_y)

wry)=e

The analysis can then be done following the main induction used earlier for the
Blume-Capel model. When the field is real, the symmetry between + and — implies
that all weights are stable at i = 0. For general complex values of i, the symmetry
implies that all weights are stable on the imaginary axis {{ie i = 0}. The weights are
then shown to be well defined and analytic in regions of the complex plane anal-
ogous to the stability regions defined earlier; if y is of type +, its weight is analytic
in P
+ def
@6, = {9%8}l>'—ﬁ;ﬁj;JTz;}y
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for a suitable constant 8. Implementing this analysis allows one to obtain a more
quantitative version of the Lee-Yang Theorem (restricted to low temperature).

Then, in a second step, Isakov’s analysis [174] provides estimate of high-order
derivatives of the pressure (see Sections 3.10.9 and 4.12.3), showing that the func-
tion h — y g(h) cannot be analytically continued through & = 0, along either of the
real paths h | 0, h 1 0. This analysis was generalized by Friedli and Pfister [114]
to all two-phase models to which PST applies, which implies in particular that the
pressure of the Blume—Capel model has no analytic continuation accross the lines
of coexistence of its phase diagram, at least for low temperatures, away from the
triple point.
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