
Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

10 Reflection Positivity

In this chapter, we study models whose Gibbs distribution possesses a remarkable
property: reflection positivity. Two consequences of this property, the chessboard
estimate and the infrared bound, will be described in a general setting.

Before that, in order to motivate this approach, we describe the two main appli-
cations that will be discussed in this chapter. Of course, there are many other such
applications, reflection positivity playing a crucial role in a large numbers of proofs
in this field.

10.1 Motivation: some new results for O(N )-type models

We remind the reader that in O(N ) models, which were already discussed in Sec-
tion 9.1, the spins take their values in the N -dimensional sphere (N ≥ 2),

Ω0
def= SN−1 ⊂RN ,

and have the formal Hamiltonian

−β
∑

{i , j }∈E
Zd

Si ·S j ,

where Si (ω)
def= ωi denotes the spin at i ∈ Zd and the symbol · denotes the scalar

product in RN . We denote by G (β) the set of Gibbs measures for this model at
inverse temperature β. In Chapter 9, we proved that, on Z2, the invariance of Φ
under a global rotation of the spins leads to the absence of orientational long-range
order at any positive temperature. In particular, we showed that the distribution of
the spin at the origin is uniform on SN−1: for all µ ∈G (β), 〈S0〉µ = 0.

In contrast, in Section 10.5.2, we will prove that, in larger dimensions, the global
symmetry under rotations is spontaneously broken at low temperature.

Theorem 10.1. Assume that N ≥ 2 and d ≥ 3. There exists 0 < β0 < ∞ and m∗ =
m∗(β) > 0 such that, whenever β> β0, for each direction e ∈SN−1, there exists µe ∈
G (β) such that

〈S0〉µe = m∗e .
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438 Chapter 10. Reflection Positivity

In our second application, in Section 10.4.3, we will consider the anisotropic
X Y model on Z2 (although the argument applies as well to higher values of d and
N ). This model was introduced in Remark 9.4; its spins take values in S1 and the
formal Hamiltonian is given by

−β
∑

{i , j }∈E
Zd

{
S1

i S1
j +αS2

i S2
j

}
,

where 0 ≤α≤ 1 is the anisotropy parameter and we have written Si = (S1
i ,S2

i ). We
denote the set of Gibbs measures at inverse temperature β and anisotropy α by
G (β,α).

When α = 1, this model reduces to the X Y model and we have seen in Sec-
tion 9.2 that there is no spontaneous magnetization in this case. The next theorem
shows that, in the presence of an arbitrary weak anisotropy, there are Gibbs mea-
sures displaying spontaneous magnetization at low temperature.

Theorem 10.2. Assume that N = 2 and d = 2. For any 0 ≤ α < 1, there exists β0 =
β0(α) such that, for all β>β0, there exist µ+,µ− ∈G (β,α) such that

〈S0 ·e1〉µ+ > 0 > 〈S0 ·e1〉µ− .

Remark 10.3. Whenever α ∈ [0,1), the system possesses exactly two configurations
with minimal energy: those in which the spins are either all equal to +e1 or all equal
to −e1 (see Exercise 10.5). This makes it reasonable to implement a suitable version
of the Peierls argument. Note, however, that the continuous nature of the spins
does not allow us to apply directly the results of Pirogov–Sinai theory developed in
Chapter 7, although extensions covering such situations exist [1]. ⋄

10.2 Models defined on the torus.

Positivity under reflections is naturally formulated for measures which are invari-
ant under reflections through planes perpendicular to some coordinate axis of Zd .
Since most of the finite systems considered previously in the book are only left in-
variant by a few, if any, such reflections, it turns out to be much more convenient,
in this chapter, to consider finite-volume Gibbs measures with periodic boundary
conditions.

Let us therefore denote by TL the d -dimensional torus of linear size L > 0,
which is obtained by identifying the opposite sides of the box {0,1, . . . ,L}d (remem-
ber the one- and two-dimensional tori depicted on Figure 3.1). Equivalently, we

can set TL
def= (Z/LZ)d . Note that, to lighten the notation, we will only indicate ex-

plicitly the dimensionality of the torus when the latter might not be clear from the
context.

We will transfer various notions from Zd to the torus. For example, we will con-
tinue using the translation by i , denoted θi . We denote by EL the set of all edges
between nearest-neighbor vertices of TL . (The models that fit in the framework of
this chapter are not restricted to nearest-neighbor interactions, but we introduce
this set for later convenience.)

As always, the single-spin space is denotedΩ0 and the set of spin configurations
on the torus is

ΩL
def= Ω

TL
0 = {

ω= (ωi )i∈TL : ωi ∈Ω0
}

.
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Figure 10.1: The one-dimensional torus T12, with a reflection through ver-
tices (on the left) and through edges (on the right).

Even though the models to which we later apply the theory will have either Ω0 =
SN−1 or Ω0 =RN , the theory has no such limitations. In fact, one of the arguments
used below will require allowingΩ0 to be far more general. Let us thus assume that
Ω0 is some topological space, on which one can define the usual Borel σ-algebra
B0, generated by the open sets. (These notions are introduced in Section 6.10.1
and Appendix B.5.) The product σ-algebra of events onΩL is denoted simply FL =⊗

i∈TL B0. The set of measures on (ΩL ,FL) is denoted M (ΩL ,FL).

Remark 10.4. In the sequel, we will always assume L to be even. Moreover, since all
the models considered in this chapter will be defined on TL , we will substantially
lighten the notations by using everywhere a subscript L instead ofTL . For example,
a Gibbs distribution onΩL will be denoted µL instead of µTL . ⋄

10.3 Reflections

We shall consider transformations on the torus,

Θ :TL →TL ,

associated to reflections through planes that split the torus in two. (This Θ is not to
be mistaken with the translation θi .) Before moving on to the precise definitions,
the reader is invited to take a look at Figures 10.1 and 10.2, where the meaning of
these reflections is made transparent.

▶ Reflection through vertices : Let k ∈ {1, . . . ,d} denote one among the d possible
directions parallel to the coordinate axes and n ∈ {0, . . . , 1

2 L − 1}. The reflection
through vertices Θ : TL → TL (associated to k and n), which maps i = (i1, . . . , id )
toΘ(i ) = (Θ(i )1, . . . ,Θ(i )d ), is defined by

Θ(i )ℓ
def=

{
(2n − ik ) mod L if ℓ= k,

iℓ if ℓ ̸= k.
(10.1)

Θ is a reflection of the torus through a planeΠwhich is orthogonal to the direction
ek . The intersection between the plane and the torus is given by

Π∩TL = {i ∈TL : ik = n or ik = n +L/2} .
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Figure 10.2: In d = 2, a reflection through the vertices of T32. The sets T32,+
and T32,− are drawn in white and gray, respectively, and the intersection of
the reflection plane and the torus is represented by the two thick lines. Left:
planar representation. Right: Spatial representation.

This also leads to a natural decomposition of the torus into two overlapping halves:
TL =TL,+∪TL,−, where

TL,+ =TL,+(Θ)
def= {

i ∈TL : n ≤ ik ≤ n +L/2
}
,

TL,− =TL,−(Θ)
def= {

i ∈TL : 0 ≤ ik ≤ n or n +L/2 ≤ ik ≤ L−1
}

.

▶ Reflection through edges : The reflection through edges Θ :TL →TL (associated
to k and n) is defined exactly as in (10.1), but with n ∈ { 1

2 , 3
2 , . . . , L−1

2 }. Now,Θ should
be seen as a reflection of the torus through a plane Π with Π∩TL =∅, so that the
corresponding decomposition of the torus, TL = TL,+ ∪TL,−, is into two disjoint
halves.

By definition, each transformation Θ is an involution: Θ−1 = Θ. Below, it will
always be clear from the context whether the Θ under consideration is a reflection
through vertices or edges.

10.3.1 Reflection positive measures

A reflectionΘ can be made to act on spin configurations,Θ :ΩL →ΩL , by setting

(Θ(ω))i
def= ωΘ(i ) , ∀i ∈TL .

Similarly, its action on functions f :ΩL →R is defined by

Θ( f )(ω)
def= f (Θ−1(ω)) .

We denote by A+(Θ), respectively A−(Θ), the algebra of all bounded measurable
functions f onΩL with support inside TL,+(Θ), respectively TL,−(Θ). The following
properties will be used constantly in the sequel.
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Exercise 10.1. Check that, for any f , g ∈A+(Θ) and λ ∈R,

Θ2( f ) = f , Θ(λ f ) =λΘ( f ), Θ( f + g ) =Θ( f )+Θ(g ),

Θ( f g ) =Θ( f )Θ(g ), Θ(e f ) = eΘ( f ) .

Note that, in particular, the transformation Θ can be seen as an isomorphism be-
tween the algebras A+(Θ) and A−(Θ).

Since Θ :ΩL →ΩL is clearly measurable, one can also define the action of Θ on
a measure µ ∈M (ΩL ,FL) by

Θ(µ)(A)
def= µ(Θ−1 A) , A ∈FL .

Of course, this implies that, for every bounded measurable function f (remember

that 〈 f 〉µ def= ∫
f dµ),

〈 f 〉Θ(µ) = 〈Θ( f )〉µ .

Definition 10.5. Let Θ be a reflection. A measure µ ∈M (ΩL ,FL) is reflection posi-
tive with respect toΘ if

1. 〈 f Θ(g )〉µ = 〈g Θ( f )〉µ, for all f , g ∈A+(Θ);

2. 〈 f Θ( f )〉µ ≥ 0, for all f ∈A+(Θ).

The set of measures which are reflection positive with respect to Θ is denoted by
MRP(Θ).

In other words, µ is reflection positive if and only if the bilinear form ( f , g ) 7→
〈 f Θ(g )〉µ on A+(Θ) is symmetric and positive semi-definite. This immediately im-
plies the validity of a Cauchy–Schwarz-type inequality, which will be the basis of
the properties to be derived later:

Lemma 10.6. Let µ ∈MRP(Θ). Then, for all f , g ∈A+(Θ),

〈 f Θ(g )〉2
µ ≤ 〈 f Θ( f )〉µ〈gΘ(g )〉µ .

Proof. Let µ ∈MRP(Θ). We have, for all λ ∈R,

0 ≤ 〈(λ f + g )Θ(λ f + g )〉µ = 〈 f Θ( f )〉µλ2 +2〈 f Θ(g )〉µλ+〈g Θ(g )〉µ .

This implies that the latter quadratic polynomial in λ has at most one root and,
therefore, the associated discriminant cannot be positive. The claim follows.

As seen in the following exercise, the first condition in Definition 10.5 is equivalent
to saying that µ is invariant under Θ; it is thus both natural and rather mild. It will
always be trivially satisfied in the cases considered later.

Exercise 10.2. Show that the first condition in Definition 10.5 holds if and only if

Θ(µ) =µ . (10.2)
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10.3.2 Examples of reflection positive measures

As a starting point, we consider product measures. Let ρ be a measure on (Ω0,F0),
which we will refer to as the reference measure, and let

µ0
def=

⊗
i∈TL

ρ . (10.3)

Lemma 10.7. µ0 is reflection positive with respect to all reflections Θ.

Proof. Notice that
Θ(µ0) =µ0 (10.4)

for each reflectionΘ. Indeed, the measure of any rectangle×|TL |
k=1 Bk (Bk ∈F0) is the

same under µ0 or Θ(µ0), since µ0 is invariant under any relabeling of the vertices
of TL . By Exercise 10.2, this implies that µ0 satisfies the first condition of Defini-
tion 10.5; let us check the second one.

We first consider a reflection Θ through edges. Let f ∈A+(Θ). Since TL,+(Θ)∩
TL,−(Θ) =∅, f andΘ( f ) have disjoint supports and (10.4) yields

〈 f Θ( f )〉µ0 = 〈 f 〉µ0〈Θ( f )〉µ0 = (〈 f 〉µ0 )2 ≥ 0,

thus showing that µ0 ∈MRP(Θ).
Let us now assume that Θ is a reflection through vertices and, again, let us take

f ∈A+(Θ). In this case, the supports of f and Θ( f ) may intersect. Let therefore P
be the set of all vertices of TL belonging to the reflection plane and remember that
FP denotes the sigma-algebra generated by the spins attached to vertices in P . We
then have

〈 f Θ( f )〉µ0 =
〈
µ0( f Θ( f ) |FP )

〉
µ0

= 〈
µ0( f |FP )µ0(Θ( f ) |FP )

〉
µ0

= 〈
µ0( f |FP )2〉

µ0
≥ 0,

and reflection positivity follows again. (In the second equality, we used the fact that
µ0(·|FP ) is again a product measure.)

From now on, we let ρ denote some reference measure on (Ω0,F0), which we as-
sume to be compactly supported, with ρ(Ω0) < ∞. We define µ0 as in (10.3). We
can then define the Gibbs distribution on (ΩL ,FL), associated to a Hamiltonian
HL :ΩL →R, by

∀A ∈FL , µL(A)
def=

∫

ΩL

e−HL (ω)

ZL
1A(ω)µ0(dω) , (10.5)

where

ZL =
∫

ΩL

e−HL (ω)µ0(dω) = 〈e−HL 〉µ0 .

(Of course, for this definition to make sense, we must have ZL <∞. This will always
be the case below.)

Lemma 10.8. Let µL be as above. Let Θ be a reflection on TL and assume that the
Hamiltonian can be written as

−HL = A+Θ(A)+
∑
α

CαΘ(Cα) , (10.6)

for some functions A,Cα ∈A+(Θ). Then µL ∈MRP(Θ).
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Proof. Using a Taylor expansion for the factor exp
(∑

αCαΘ(Cα)
)
,

〈 f Θ(g )〉µL = 1

ZL

〈
f Θ(g )e A+Θ(A)+∑

αCαΘ(Cα)〉
µ0

= 1

ZL

∑
n≥0

1

n!

∑
α1,...,αn

〈
f e ACα1 · · ·Cαn Θ(g e ACα1 · · ·Cαn )

〉
µ0

.

The result now follows from Lemma 10.7, since µ0 ∈MRP(Θ).

As usual, the Hamiltonian can be constructed from a potentialΦ= {ΦB }:

HL
def=

∑
B⊂TL

ΦB ,

whereΦB is a measurable function with support in B . To ensure that HL can be put
in the form (10.6), some symmetry assumptions will be made about the functions
ΦB .

Example 10.9. Consider a translation-invariant potential {ΦB }B⊂TL involving inter-
actions only between pairs (that is, satisfying ΦB = 0 whenever |B | ̸= 2) and such
that Φ{i , j } = 0 whenever ∥ j − i∥∞ > 1. Assume Θ is a reflection through the vertices
of TL satisfying

Φ{i , j }(ω) =Φ{Θ(i ),Θ( j )}(Θ(ω)) , ∀ω , (10.7)

for all {i , j } ⊂ TL . This holds, for example, if Φ{i , j } depends only on the distance
∥ j − i∥1.

Let us show that µL ∈ MRP(Θ). Namely, let again P denote the set of vertices of
TL lying in the reflection plane ofΘ. Notice that, since the only pairs e = {i , j } to be
considered involve points with ∥ j − i∥∞ ≤ 1, the Hamiltonian can be written as

HL =
∑

e⊂TL

Φe =
∑

e⊂P
Φe +

∑
e⊂TL,+

e ̸⊂P

Φe +
∑

e⊂TL,−
e ̸⊂P

Φe .

Each pair e = {i , j } ⊂TL,− can be paired with its reflectionΘ(e) = {Θ(i ),Θ( j )} ⊂TL,+.
Therefore, a change of variables yields, using (10.7),

∑
e⊂TL,−

e ̸⊂P

Φe (ω) =
∑

e⊂TL,+
e ̸⊂P

ΦΘ(e)(ω) =
∑

e⊂TL,+
e ̸⊂P

Φe (Θ(ω)) .

This means that −HL = A+Θ(A), with A ∈A+(Θ) given by

A
def= − 1

2

∑
e⊂P

Φe −
∑

e⊂TL,+
e ̸⊂P

Φe ,

Lemma 10.8 now implies that µL ∈MRP(Θ). ⋄
Example 10.10. Let Ω0 = Rν and ρ be compactly supported. We assume that, for
each 1 ≤ m ≤ ν and each 1 ≤ k ≤ d , J m

k is a fixed nonnegative number. We consider
a Hamiltonian of the form

HL
def= −

∑
{i , j }∈EL

ν∑
m=1

J m
i , j Sm

i Sm
j , (10.8)
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where J m
i , j = J m

k when i and j differ in their kth component and Sm
i is the mth

component of Si . This Hamiltonian actually covers all the applications we are going
to consider in this chapter.

Let Θ be a reflection through edges of the torus. Proceeding similarly to what
we did in Example 10.9, it is easy to check that

−HL = A+Θ(A)+
ν∑

m=1

∑
i∈TL,+:

{i ,Θ(i )}∈EL

C m
i Θ(C m

i ) ,

where the functions A,C m
i ∈A+(Θ) are given by

A
def=

ν∑
m=1

∑
{i , j }∈EL :
i , j∈TL,+

J m
i , j Sm

i Sm
j and C m

i
def=

√
J m

i ,Θ(i ) Sm
i .

Lemma 10.8 implies again that µL ∈MRP(Θ). ⋄

Exercise 10.3. Give an example of a translation invariant measure µ ∈M (ΩL ,FL)
which is not reflection positive.

10.4 The chessboard estimate

In this section, we establish a first major consequence of reflection positivity, the
chessboard estimate and provide two applications.

10.4.1 Proof of the estimate

To simplify the exposition, we shall focus on the case of reflections through edges;
however, both the statement and the proof can be adapted straightforwardly to the
case of reflections through vertices.

Let B < L be two positive integers such that 2B divides L and let us defineΛB
def=

{0, . . . ,B −1}d ⊂ TL . We decompose the torus into a disjoint union of translates of
ΛB , called blocks. These can be indexed by t ∈TL/B :

TL =
⋃

t∈TL/B

(ΛB +B t ) .

A function f with support inside ΛB is said to be ΛB -local. Given a ΛB -local func-
tion f and t ∈ TL/B , we define a (ΛB + tB)-local function f [t ] by successive re-
flections: Let t0 = 0, t1, . . . , tk = t be a self-avoiding nearest-neighbor path in TL/B

and let Θi be the reflection through the plane going through the edges connecting
ΛB + ti−1B andΛB + ti B ; we set

f [t ] def= Θk ◦Θk−1 ◦ · · · ◦Θ1( f ) .

A glance at Figure 10.3 shows that the definition of f [t ] does not depend on the
chosen path (observe that this relies on L/B being even).
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∣∣∣∣
〈

f(0,0)

f(0,2)

f(2,0)

f(2,2)

f(1,0)

f(1,2)

f(3,0)

f(3,2)

f(0,1)

f(0,3)

f(2,1)

f(2,3)

f(1,1)

f(1,3)

f(3,1)

f(3,3)

〉∣∣∣∣≤
∏

t∈TL/B

〈

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

〉1/|TL/B |

µ

Figure 10.4: In d = 2, a graphical evocation of the claim of the chessboard
estimate.

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

Figure 10.3: A graphical evocation of the definition of f [t ]; it is obtained by
applying reflections to the original function f (located in the bottom left
block ΛB ), until reaching the block indexed by t (top right on the picture).
The definition of f [t ] is independent of the chosen path (shaded cells).

Let us say that µ ∈M (ΩL ,FL) is B -periodic if it is invariant under translations
by B along any coordinate axis: µ=µ◦θBek for all k ∈ {1, . . . ,d}.

Theorem 10.11 (Chessboard estimate). Let µ ∈M (ΩL ,FL) be B-periodic and such
that µ ∈MRP(Θ) for all reflectionsΘ between neighboring blocks (that is, pairsΛB+tB,
ΛB + t ′B, where t and t ′ are nearest neighbors of TL/B ). Then (see Figure 10.4), for
any family ( ft )t∈TL/B ΛB -local functions, which are either all bounded or all nonneg-
ative, ∣∣∣

〈 ∏
t∈TL/B

f [t ]
t

〉
µ

∣∣∣≤
∏

t∈TL/B

[〈 ∏
s∈TL/B

f [s]
t

〉
µ

]1/|TL/B |
. (10.9)

Proof of Theorem 10.11: We can assume that the functions ft are bounded. Indeed,
if they are unbounded (but nonnegative), we can apply the result to the bounded
functions ft ∧K (K ∈N) and use monotone convergence to take the limit K ↑∞.

The proof is done by induction on the dimension.
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The case d = 1: In the one-dimensional case, the boxes are simply intervals in-
dexed by t ∈ {0,1, . . . ,2N − 1}, where N = L/(2B) ∈ N. Observe that, in this case,
given a ΛB -local function f , each function f [t ] coincides either with a translate of
f or with a translate of theΛB -local function defined by

f̄ (ω0,ω1, . . . ,ωB−1,ωB , . . . ,ωL−1)
def= f (ωB−1,ωB−2, . . . ,ω0,ωL−1, . . . ,ωB ) .

Consider the following multilinear functional on the 2N -tuples of ΛB -local func-
tions:

F ( f0, . . . , f2N−1)
def=

〈2N−1∏
t=0

f [t ]
t

〉
µ

.

Reformulated in terms of F , the chessboard estimate (10.9) that we want to estab-
lish can be expressed as

∣∣F ( f0, . . . , f2N−1)
∣∣≤

2N−1∏
t=0

F ( ft , . . . , ft )1/2N . (10.10)

Observe that each of the expectations in the right-hand side of (10.10) is nonnega-
tive. Indeed, we can write

F ( ft , . . . , ft ) =
〈(N−1∏

t=0
f [t ]

t

)
Θ

(N−1∏
t=0

f [t ]
t

)〉
µ

,

where Θ is the reflection through the edge between the blocks N − 1 and N (and
2N − 1 and 0). This implies, in particular, that (10.10) trivially holds whenever
F ( f0, . . . , f2N−1) = 0. We will thus assume from now on that ( f0, . . . , f2N−1) is fixed
and that

F ( f0, . . . , f2N−1) ̸= 0. (10.11)

We start with two fundamental properties of F .

Lemma 10.12. For all ΛB -local functions f0, . . . , f2N−1,

F ( f0, f1, . . . , f2N−1) = F ( f̄2N−1, f̄0, f̄1, . . . , f̄2N−2) (10.12)

and

F ( f0, . . . , fN−1, fN , . . . , f2N−1)2

≤ F ( f0, . . . , fN−1, fN−1, . . . , f0)F ( f2N−1, . . . , fN , fN , . . . , f2N−1) . (10.13)

Exercise 10.4. Show that, in general, F ( f0, . . . , f2N−1) ̸= F ( f̄0, . . . , f̄2N−1).

Proof. The first identity is a simple consequence of the B-periodicity ofµ and of the
definition of F . To prove the second one, let again Θ denote the reflection through
the edge between the blocks N −1 and N (and 2N −1 and 0). Observe that, for each

N ≤ t ≤ 2N −1, f [t ]
t =Θ( f [t ′]

2N−1−t ′ ), where t ′ = 2N −1− t ∈ {0, . . . , N −1}. Therefore, by
Lemma 10.6,

F ( f0, . . . , fN−1, fN , . . . , f2N−1)2 =
〈(N−1∏

t=0
f [t ]

t

)
Θ

(N−1∏
t=0

f [t ]
2N−1−t

)〉2

µ

≤ F ( f0, . . . , fN−1, fN−1, . . . , f0)F ( f2N−1, . . . , fN , fN , . . . , f2N−1) .
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When 2N is a power of 2, repeated use of the above lemma leads directly
to (10.10). For simplicity, assume first that 2N = 4. In this case, (10.13) yields

F ( f0, f1, f2, f3)4 ≤ F ( f0, f1, f1, f0)2F ( f3, f2, f2, f3)2 .

Now, by (10.12), F ( f0, f1, f1, f0) = F ( f̄0, f̄0, f̄1, f̄1), F ( f3, f2, f2, f3) = F ( f̄2, f̄2, f̄3, f̄3).
But, using again (10.13) twice,

F ( f̄0, f̄0, f̄1, f̄1)2F ( f̄2, f̄2, f̄3, f̄3)2 ≤
3∏

t=0
F ( f̄t , f̄t , f̄t , f̄t ) .

This implies (10.10), since F ( f̄t , f̄t , f̄t , f̄t ) = F ( ft , ft , ft , ft ) by (10.12). Clearly, if 2N =
2M , the same argument can be used repeatedly. The proof of (10.10) for general val-
ues of N relies on a variant of this argument, as we explain below. ⋄

Let us consider the auxiliary functional

G( f0, . . . , f2N−1)
def= |F ( f0, . . . , f2N−1)|

∏2N−1
t=0 F ( ft , . . . , ft )1/2N

,

which is well defined thanks to the following property.

Lemma 10.13. For each t ∈ {0,1, . . . ,2N −1}, F ( ft , . . . , ft ) > 0.

Proof. For the sake of readability, we treat explicitly only the case 2N = 6. The ex-

tension to general values of 2N is straightforward, as explained below. Let KN
def=

(maxt ∥ ft∥∞)2N . Applying (10.13), we get

|F ( f0, f1, f2, f3, f4, f5)| ≤ F ( f0, f1, f2, f2, f1, f0)1/2F ( f5, f4, f3, f3, f4, f5)1/2

≤ K 1/2
3 F ( f0, f1, f2, f2, f1, f0)1/2 .

We now apply (10.12) in order to push the two copies of f0 in the first two slots:

K 1/2
3 F ( f0, f1, f2, f2, f1, f0)1/2 = K 1/2

3 F ( f̄0, f̄0, f̄1, f̄2, f̄2, f̄1)1/2 .

Using (10.13) once more, we obtain

K 1/2
3 F ( f̄0, f̄0, f̄1, f̄2, f̄2, f̄1)1/2 ≤ K 3/4

3 F ( f̄0, f̄0, f̄1, f̄1, f̄0, f̄0)1/4 .

Again, (10.12) allows us to push the four copies of f̄0 in the first four slots:

K 3/4
3 F ( f̄0, f̄0, f̄1, f̄1, f̄0, f̄0)1/4 = K 3/4

3 F ( f̄0, f̄0, f̄0, f̄0, f̄1, f̄1)1/4 .

Applying (10.13) one last time yields

K 3/4
3 F ( f̄0, f̄0, f̄0, f̄0, f̄1, f̄1)1/4 ≤ K 7/8

3 F ( f̄0, f̄0, f̄0, f̄0, f̄0, f̄0)1/8

and thus, since F ( f0, f0, f0, f0, f0, f0) = F ( f̄0, f̄0, f̄0, f̄0, f̄0, f̄0) by (10.12),

F ( f0, f0, f0, f0, f0, f0) ≥ K −7
3 |F ( f0, f1, f2, f3, f4, f5)|8 > 0.

(We used our assumption (10.11).) General values of 2N are treated in exactly the
same way, applying (10.12) and (10.13) alternatively until all 2N slots of F are filled
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by copies of f0. Since the number of such copies doubles at each stage, the number
of required iterations is given by the smallest integer M such that 2M ≥ 2N , which
yields

F ( f0, . . . , f0) ≥ K 1−2M

N |F ( f0, . . . , f2N−1)|2M > 0.

The same argument applies to other values of t using (10.12).

By construction, G verifies the same properties as those satisfied by F in (10.12)
and (10.13). Moreover, G( ft , . . . , ft ) = 1 for all t . In terms of G , we will obtain (10.10)
by showing that G( f0, . . . , f2N−1) ≤ 1, which is equivalent to saying that G reaches its
maximum value on 2N -tuples of functions (from the collection { f0, f1, . . . , f2N−1})
which are composed of a single function ft .

Let (g0, . . . , g2N−1) be such that

(i) gi ∈ { f0, . . . , f2N−1} for each i ∈ {0, . . . ,2N −1};

(ii) (g0, . . . , g2N−1) maximizes G ;

(iii) (g0, . . . , g2N−1) is minimal, in the sense that it contains the longest contiguous
substring of the form fi , . . . , fi for some i ∈ {0, . . . ,2N −1}. Here g2N−1 and g0

are considered contiguous (because of property 10.12).

Let k be the length of the substring in (iii). Thanks to (10.12), we can assume that
the latter occurs at the beginning of the string (g0, . . . , g2N−1), that is, that g0 = g1 =
·· · = gk−1 = fi (or f̄i , with bars on each of the 2N entries). We shall now check that
k = 2N , which will conclude the proof of the one-dimensional case.

Suppose that k < 2N . We have

G(g0, . . . , g2N−1)2 ≤G(g0, . . . , gN−1, gN−1, . . . , g0)G(g2N−1, . . . , gN , gN , . . . , g2N−1)

≤G(g0, . . . , gN−1, gN−1, . . . , g0)G(g0, . . . , g2N−1) ,

since (g0, . . . , g2N−1) maximizes G . Therefore (G(g0, . . . , g2N−1) > 0 by (10.11)),

G(g0, . . . , g2N−1) ≤G(g0, . . . , gN−1, gN−1, . . . , g0) ,

which means that (g0, . . . , gN−1, gN−1, . . . , g0) is also a maximizer of G . But this is im-
possible, since the string (g0, . . . , gN−1, gN−1, . . . , g0) possesses a substring fi , . . . , fi

of length min{2N ,2k} > k, which would violate our minimality assumption (iii).

The case d ≥ 2: We now assume that the chessboard estimate (10.9) has been es-
tablished for all dimensions d ′ ∈ {1, . . . ,d} and show that it also holds in dimension
d +1. Although this induction step is rather straightforward, it involves a few sub-
tleties which we discuss after the proof, in Remark 10.14.

We temporarily denote the d-dimensional torus by Td
L and consider Td+1

L as L

adjacent copies of Td
L :

Td+1
L =T1

L ×Td
L .
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We can thus write u ∈ Td+1
L/B as u = (i , t ), with i ∈ T1

L/B and t ∈ Td
L/B , and use the

shorthand notation f [u] = f [(i ,t )] ≡ f [i ,t ]. Therefore, applying (10.9) with d ′ = 1,
∣∣∣
〈 ∏

u∈Td+1
L/B

f [u]
u

〉
µ

∣∣∣=
∣∣∣
〈 ∏

i∈T1
L/B

{ ∏

t∈Td
L/B

f [t ]
(i ,t )

}[i ]
〉
µ

∣∣∣

≤
∏

i∈T1
L/B

[〈 ∏
j∈T1

L/B

{ ∏

t∈Td
L/B

f [t ]
(i ,t )

}[ j ]
〉
µ

]1/|T1
L/B | (10.14)

=
∏

i∈T1
L/B

[〈 ∏

t∈Td
L/B

{ ∏
j∈T1

L/B

f [ j ]
(i ,t )

}[t ]
〉
µ

]1/|T1
L/B | . (10.15)

The expectation in the right-hand side can be bounded using (10.9) once more, this
time with d ′ = d : for each i ∈T1

L/B ,

〈 ∏

t∈Td
L/B

{ ∏
j∈T1

L/B

f [ j ]
(i ,t )

}[t ]
〉
µ
≤

∏

t∈Td
L/B

[〈 ∏

s∈Td
L/B

{ ∏
j∈T1

L/B

f [ j ]
(i ,t )

}[s]
〉
µ

]1/|Td
L/B | (10.16)

=
∏

t∈Td
L/B

[〈 ∏

v∈Td+1
L/B

f [v]
(i ,t )

〉
µ

]1/|Td
L/B | .

Inserting the latter bound into (10.15),

∣∣∣
〈 ∏

u∈Td
L/B

f [u]
u

〉
µ

∣∣∣≤
∏

i∈T1
L/B

∏

t∈Td
L/B

[〈 ∏

v∈Td+1
L/B

f [v]
(i ,t )

〉
µ

]1/|Td+1
L/B |

=
∏

u∈Td+1
L/B

[〈 ∏

v∈Td+1
L/B

f [v]
u

〉
µ

]1/|Td+1
L/B |

.

This completes the proof of Theorem 10.11.

Remark 10.14. Let us make a comment about what was done in the last part of the
proof. The verification of certain claims made below is left as an exercise to the
reader.

With Td+1
L = T1

L ×Td
L , we are naturally led to identify ΩL , the set of configura-

tions on Td+1
L , with the set of configurations on T1

L defined by

Ω̃L
def= {

ω̃= (ω̃i )i∈T1
L

: ω̃i ∈ Ω̃0
}

,

where we introduced the new single-spin space

Ω̃0
def= ×

j∈Td
L

Ω0 .

Let us denote this identification by φ :ΩL → Ω̃L . Each f :ΩL → R can be identified

with f̃ : Ω̃L → R, by f̃ (ω̃)
def= f (φ−1(ω̃)). The single-spin space Ω̃0 can of course be

equipped with its natural σ-algebra of Borel sets, leading to the product σ-algebra
F̃L on Ω̃L . The measure µ on (ΩL ,FL) can be identified with the measure µ̃ on

(Ω̃L ,F̃L) defined by µ̃
def= µ◦φ−1. We then have

〈 f 〉µ = 〈 f̃ 〉µ̃ ,
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for every bounded measurable function f and, clearly, µ̃ is reflection positive with
respect to all reflections of T1

L . This is what guarantees that the one-dimensional
chessboard estimate can be used to prove (10.14). A similar argument justifies the
second use of the chessboard estimate in (10.16). ⋄
Remark 10.15. We will actually make use of a version of Theorem 10.11 in which the
cubic block ΛB (and its translates) is replaced by a rectangular box ×d

i=1{0, . . . ,Bi }
(and its translates) such that 2Bi divides L for all i . Of course, the conditions of
periodicity and reflection positivity have to be correspondingly modified, but the
proof applies essentially verbatim. ⋄

10.4.2 Application: the Ising model in a large magnetic field

In this section, we show a use of the chessboard estimate in the simplest possible
setting. A more involved application is described in the following sections.

We have studied the Ising model in a large magnetic field in Section 5.7.1. In
particular, we obtained in (5.34) a convergent cluster expansion for the pressure of

the model, in terms of z = e−2βh . When h > 0,
∂ψβ
∂h = 〈σ0〉+β,h and, therefore,

µ+
β,h(σ0 =−1) = 1

2

(
1− ∂ψβ

∂h

)
.

The expansion (5.34) thus implies that µ+
β,h(σ0 =−1) = e−2h−4dβ+O(e−4h) for h > 0

large enough. Here, we show how a simple application of the chessboard estimate
leads to an upper bound for this probability (on the torus) valid for all h,β≥ 0.

For convenience, we write the Hamiltonian of the d-dimensional Ising model
on TL as

HL;β,h(ω)
def= −β

∑
{i , j }∈EL

(ωiω j −1)−h
∑

i∈TL

ωi . (10.17)

Let µL;β,h be the corresponding Gibbs distribution.

Proposition 10.16. For all h ≥ 0, uniformly in L (even) and β≥ 0,

µL;β,h(σ0 =−1) ≤ e−2h . (10.18)

Proof. The first observation is that HL;β,h can be put in the form (10.8) (up to an
irrelevant constant), from which we conclude that µL;β,h is reflection positive with
respect to all reflections through edges.

Using 1×1 blocks (which we naturally identify with the vertices of TL) and set-

ting f0
def= 1{σ0=−1} and ft

def= 1 for all t ∈TL \ {0}, the chessboard estimates yields

〈1{σ0=−1}〉L;β,h ≤
〈 ∏

s∈TL

1{σs=−1}

〉1/|TL |
L;β,h

. (10.19)

(Just observe that all the factors corresponding to t ̸= 0 in the product in (10.9) are
equal to 1.) This can be rewritten as

µL;β,h(σ0 =−1) ≤µL;β,h(η−)1/|TL | =
{e−HL;β,h (η−)

ZL;β,h

}1/|TL |
,

where η−j = −1 for all j ∈ TL . On the one hand, HL;β,h(η−) = h|TL |. On the other

hand, we obtain a lower bound on the partition function by keeping only the con-
figuration η+ ≡ 1: ZL;β,h ≥ e−HL;β,h (η+) = e+h|TL |. This proves (10.18).
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In probabilistic terms, (10.19) shows how the chessboard estimate allows us to
bound the probability of a local event, namely {σ0 = −1}, by the probability of the
same event, but “spread out throughout the system”:

⋂
s∈TL {σs = −1}. This global

event is much easier to estimate. ⋄

10.4.3 Application: the two-dimensional anisotropic X Y model

We now consider the two-dimensional anisotropic X Y model, in which the spins
take values inΩ0 =S1 and whose Hamiltonian on TL is defined by

HL;β,α
def= −β

∑
{i , j }∈EL

{
S1

i S1
j +αS2

i S2
j

}
, (10.20)

where 0 ≤ α ≤ 1 is the anisotropy parameter and we have written Si = (S1
i ,S2

i ) for
the spin at i . We denote by µL;β,α the corresponding Gibbs distribution on ΩL

(see (10.5)), with reference measure ρ on Ω0 given by the normalized Lebesgue
measure (that is, such that ρ(Ω0) = 1).

To quantify global ordering, we will again use the magnetization density :

mL
def= 1

|TL |
∑

i∈TL

Si ,

which now takes values in the unit disk
{
u ∈R2 : ∥u∥2 ≤ 1

}
. By translation invari-

ance and symmetry,

〈mL〉L;β,α = 〈S0〉L;β,α = 0 .

Nevertheless, we will see that, the distribution of mL is far from uniform at low
temperatures, when α< 1. This, in turn, will lead to the proof of Theorem 10.2.

First, as the following exercise shows, when α< 1, this model possesses exactly
two ground states: one in which all spins take the value e1 and one in which this
value is −e1.

Exercise 10.5. Let Si = (S1
i ,S2

i ) and S j = (S1
j ,S2

j ) be two unit vectors inR2. Show that,

when 0 ≤α< 1, the function

f (Si ,S j )
def= −S1

i S1
j −αS2

i S2
j ,

is minimal when either Si = S j = e1 or Si = S j =−e1.

In view of this, it is reasonable to expect that, at sufficiently low temperature, typical
configurations should be given by local perturbations of these two ground states,
even in the thermodynamic limit. This is confirmed by the following result.

Theorem 10.17. For each 0 ≤ α < 1 and each ϵ > 0, there exists β0 = β0(α,ϵ) such
that, for all β>β0,

〈
(mL ·e1)2〉

L;β,α ≥ 1−ϵ , and therefore
〈

(mL ·e2)2〉
L;β,α ≤ ϵ ,

uniformly in L (multiple of 4).
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This result is in sharp contrast with the case α = 1 (see Exercise 9.1); it will be a
consequence of the orientational long-range order that occurs at low enough tem-
peratures. Observe that

〈
(mL ·e1)2〉

L;β,α = 1

|TL |2
∑

i , j∈TL

〈S1
i S1

j 〉L;β,α .

We will use reflection positivity to prove the following result, of which Theo-
rem 10.17 is a direct consequence.

Proposition 10.18. For each 0 ≤α< 1 and each ϵ> 0, there exists β0 =β0(α,ϵ) such
that, for all β>β0,

〈S1
i S1

j 〉L;β,α ≥ 1−ϵ , ∀i , j ∈TL , (10.21)

uniformly in L (multiple of 4).

Proof. First, we easily check that HL;β,α can be put in the form (10.8), from which
we conclude that µL;β,α is reflection positive with respect to all reflections through
edges of the torus.

Second, sinceµL;β,α is invariant under all translations of the torus, we only need
to prove that

〈S1
0S1

j 〉L;β,α ≥ 1−ϵ(β) , (10.22)

uniformly in L and in j ∈T2
L , with ϵ(β) → 0 when β→∞.

Now, in view of the discussion before Theorem 10.17, we expect that |S1
i | should

be close to 1 for most spins in the torus and that the sign of S1
i should be the same

at most vertices. To quantify this, let us fix some δ ∈ (0,1). If (i) |S1
0| ≥ δ, (ii) |S1

j | ≥ δ
and (iii) S1

0S1
j > 0, then S1

0S1
j ≥ δ2. Therefore, we can write

〈S1
0S1

j 〉L;β,α ≥ δ2 −µL;β,α(|S1
0| < δ)−µL;β,α(|S1

j | < δ)−µL;β,α(S1
0S1

j ≤ 0) . (10.23)

Since µL;β,α(|S1
j | < δ) = µL;β,α(|S1

0| < δ) by translation invariance, the claim of

Proposition 10.18 follows immediately from Lemmas 10.19 and 10.20 below:
choose δ2 = 1− 1

4ϵ and let β be sufficiently large to ensure that the last three terms
in (10.23) are smaller than ϵ/4.

Lemma 10.19. For any 0 ≤ α < 1, 0 < δ < 1 and ϵ > 0, there exists β′
0 = β′

0(ϵ,α,δ)
such that, for all β>β′

0,
µL;β,α(|S1

0| < δ) ≤ ϵ ,

uniformly in L (even).

Lemma 10.20. For any 0 ≤α< 1, 0 < δ< 1 and ϵ> 0, there exists β′′
0 = β′′

0 (ϵ,α) such
that, for all β>β′′

0 ,
µL;β,α(S1

0S1
j ≤ 0) ≤ ϵ ,

uniformly in j ∈TL and L (multiple of 4).

Proof of Lemma 10.19. We proceed as in the proof of Proposition 10.16. Applying

the chessboard estimate, Theorem 10.11, with d = 2, B = 1, f0
def= 1{|S1

0|<δ} and ft
def= 1

for t ∈TL \ {0}, we obtain

µL;β,α(|S1
0| < δ) ≤µL;β,α(|S1

i | < δ, ∀i ∈TL)1/|TL | . (10.24)
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We write

µL;β,α(|S1
i | < δ, ∀i ∈TL) =

〈
e−HL;β,α1{|S1

i |<δ, ∀i∈TL }

〉
µ0

〈e−HL;β,α〉µ0

, (10.25)

where we remind the reader that µ0(dω) =⊗
i∈TL ρ(dωi ), with ρ the uniform prob-

ability measure on S1.
We first bound the numerator in (10.25) from above. When |S1

i | < δ for all i ∈TL ,
a simple computation shows that

HL;β,α ≥−β
∑

{i , j }∈EL

(
δ2 +α(1−δ2)

)=−2β
(
δ2 +α(1−δ2)

) |TL | .

(We used the fact that |EL | = 2|TL | in d = 2.) Consequently, since µ0 is normalized
by assumption,

〈
e−HL;β,α1{|S1

i |<δ, ∀i∈TL }

〉
µ0

≤ e2β(δ2+α(1−δ2)) |TL | . (10.26)

To obtain a lower bound on the denominator, let 0 < δ̃< 1 and write

〈e−HL;β,α〉µ0 ≥
〈

e−HL;β,α1{S1
i ≥δ̃, ∀i∈TL }

〉
µ0

= 〈
e−HL;β,α

∣∣ S1
i ≥ δ̃, ∀i ∈TL

〉
µ0
µ0(S1

i ≥ δ̃, ∀i ∈TL)

= 〈
e−HL;β,α

〉
µ̃0
µ0(S1

i ≥ δ̃, ∀i ∈TL) , (10.27)

where we have introduced the probability measure µ̃0(·) def= µ(· |S1
i ≥ δ̃, ∀i ∈TL). On

the one hand, observe that 〈S2
i 〉µ̃0 = 0, by symmetry, and 〈S1

i 〉µ̃0 ≥ δ̃. Therefore,

〈HL;β,α〉µ̃0 =−β
∑

{i , j }∈EL

〈S1
i 〉µ̃0〈S1

j 〉µ̃0 ≤−2βδ̃2 |TL | .

So, an application of Jensen’s inequality yields

〈e−HL;β,α〉µ̃0 ≥ e−〈HL;β,α〉µ̃0 ≥ e2βδ̃2 |TL | . (10.28)

On the other hand,

µ0(S1
i ≥ δ̃, ∀i ∈TL) = ( 1

π arccos(δ̃)
)|TL | = e−b(δ̃)|TL | ,

where b(δ̃)
def= − log( 1

π arccos(δ̃)) > 0. Inserting this and (10.28) into (10.27) yields

〈e−HL;β,α〉µ0 ≥ exp
{(

2βδ̃2 −b(δ̃)
) |TL |

}
. (10.29)

Let us then choose δ̃ such that δ̃2 = 1
2 (1 + δ2 +α(1 − δ2)) ∈ (0,1). By (10.26)

and (10.29),

µL;β,α(|S1
i | < δ, ∀i ∈TL) ≤ exp

[−β{
(1−δ2)(1−α)−b(δ̃)/β

}|TL |
]

≤ exp
[− 1

2 (1−δ2)(1−α)β|TL |
]

,

for all β ≥ β1(α,δ)
def= b(δ̃)/((1− δ)2(1−α)). By (10.24), this ensures that, for any

α,δ< 1 and any β≥β1(α,δ),

µL;β,α(|S1
0| < δ) ≤ exp

[− 1
2 (1−δ2)(1−α)β

]
.

The right-hand side can be made as small as desired by taking β large enough.
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Figure 10.5: The three types of contours on a torus, separating the vertices 0
and j (indicated by the two dots). The mesh corresponds to the dual lattice
here, with the vertices in the middle of the faces.

Proof of Lemma 10.20. This proof relies on a variant of Peierls’ argument, as ex-
posed in Section 3.7.2. We assume that the reader is familiar with this material.

Let, for each i ∈TL , I+i
def= 1{S1

i ≥0} and I−i
def= 1{S1

i ≤0}. We have, by symmetry,

µL;β,α(S1
0S1

j ≤ 0) = 2〈I+0 I−j 〉L;β,α .

Since, almost surely, I+i + I−i = 1 for all i ∈ TL (namely, {S1
i = 0} has measure zero

under the reference measure and therefore also under µL;β,α), we can write

〈I+0 I−j 〉L;β,α =
〈

I+0 I−j
∏

i∈TL \{0, j }
(I+i + I−i )

〉
L;β,α

=
∑

η∈{−1,1}TL

η0=1,η j =−1

〈 ∏
i∈TL

Iηi
i

〉
L;β,α

.

To each configuration η appearing in the sum, we associate the corresponding set
of contours Γ(η), exactly as in Section 3.7.2 (including the deformation rule). Note,
however, that it would not be possible to reconstruct a configuration ω only from
the geometry of its contours: the latter only determine the configuration up to a
global spin flip. In order to avoid this problem, we consider contours that are not
purely geometrical objects, but also include the information of the values of the
spins on both “sides”. When u, v denote neighbors separated by γ, we will make
the convention that ηu =+1 and ηv =−1.

The configurations η appearing in the sum above are such that η0 ̸= η j . There-
fore, there exists (at least) one contour γ separating 0 and j , in the sense that it
satisfies one of the three following conditions (see Figure 10.5): (i) γ surrounds 0
but not j , (ii) γ surrounds j but not 0, (iii) γ is winding around the torus (of course,
in this case, there must be at least one other such contour). We can thus write

〈
I+0 I−j

〉
L;β,α ≤

∑
γ

∑
η:Γ(η)∋γ

〈 ∏
i∈TL

Iηi
i

〉
L;β,α

, (10.30)

where the first sum is taken over all contours separating 0 and j .
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γ

Figure 10.6: The partition of TL (here, L = 12) in 2×1 blocks, using translates

of {(0,0), (1,0)} (represented by the two dots). For a contour γ, the set E h,0
γ

(whose corresponding blocks were highlighted) represents the blocks of that
partition which are crossed by γ in their middle.

Given a contour γ, we denote by Eγ the set of all edges of EL which are crossed
by γ. Notice that

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α = 〈 ∏
{u,v}∈Eγ

I+u I−v
∏

k∈TL

(I+k + I−k )
〉

L;β,α

≥
∑

η:Γ(η)∋γ

〈 ∏
i∈TL

Iηi
i

〉
L;β,α . (10.31)

The last inequality is due to the fact that forcing ηu ̸= ηv for each {u, v} ∈ Eγ is not
sufficient to guarantee that γ ∈ Γ(η) (remember, in particular, the deformation rule
used in the definition of contours). Putting all this together,

µL;β,α(S1
0S1

j ≤ 0) ≤ 2
∑
γ

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α . (10.32)

The chessboard estimate will be used to show that the presence of a contour is
strongly suppressed when α< 1 and β is taken sufficiently large:

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α ≤ e−c(α)β|γ| , (10.33)

where c(α)
def= (1−α)/16 > 0.

In order to use the chessboard estimate, we consider four distinct partitions of
the torus into blocks. Consider first the partition of TL into blocks of sizes 2× 1,
translates of {(0,0), (1,0)} by all vectors of the form 2me1 +ne2 (m,n are integers)
(see Figure 10.6). This partition can be identified with the set E h,0

L ⊂ EL of horizontal
nearest-neighbor edges with both endpoints in the same block of the partition. We
will use {u, v} ∈ E h,0

L to index the |TL |/2 blocks of this partition.
Similarly, one defines the partition made of 2× 1 blocks that are translates of

{(1,0), (2,0)}; the corresponding set of horizontal edges is written E h,1
L ⊂ EL .
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Figure 10.7: The configuration ηh,0 (on the same torus as in Figure 10.6). The
shaded block, containing the origin, is the support of φ+−, which is then
spread out throughout the torus, by successive reflections through the edges
separating the blocks.

Finally, we define two partitions made of 1×2 blocks, which are, respectively,
translates of the block {(0,0), (0,1)} or of the block {(0,1), (0,2)}. The corresponding
sets of vertical edges are denoted E v,0

L and E v,1
L respectively.

This leads us to split the edges crossing γ into four families, according to the
element of the partition to which they belong: Eγ = E h,0

γ ∪E h,1
γ ∪E v,0

γ ∪E v,1
γ . Applying

twice the Cauchy–Schwarz inequality,

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α ≤
∏

a∈{h,v}
#∈{0,1}

(〈 ∏

{u,v}∈E a,#
γ

I+u I−v
〉

L;β,α

)1/4
. (10.34)

The four factors in the right-hand side can be treated in the same way. To be spe-
cific, we consider the factor with a = h and # = 0. Notice that, for each {u, v} ∈ E h,0

γ ,
the function I+u I−v can be obtained by successive reflections through edges (be-

tween the blocks of E h,0
L ) of one of the two following {(0,0), (1,0)}-local functions:

φ+− def= I+(0,0)I−(1,0) and φ−+ def= I−(0,0)I+(1,0); we denote the corresponding function f{u,v}.

For each {u, v} ∈ E h,0
L \E h,0

γ , we take f{u,v}
def= 1. The chessboard estimate (which we

use for non-square blocks here, see Remark 10.15) yields

〈 ∏

{u,v}∈E h,0
γ

I+u I−v
〉

L;β,α ≤
∏

{u,v}∈E h,0
γ

〈 ∏

{u′,v ′}∈E h,0
γ

f{u,v}
[{u′,v ′}]〉1/(|TL |/2) . (10.35)

Now, by translation invariance, for all {u, v} ∈ E h,0
γ ,

〈 ∏

{u′,v ′}∈E h,0
γ

f{u,v}
[{u′,v ′}]〉= 〈 ∏

{u′,v ′}∈E h,0
γ

(φ+−)[{u′,v ′}]〉
L;β,α = 〈 ∏

i∈TL

I
ηh,0

i
i

〉
L;β,α , (10.36)

where ηh,0 ∈ {±1}TL is depicted in Figure 10.7.
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To evaluate the last expectation in (10.36), we proceed similarly to what we did
in the proof of Lemma 10.19:

〈 ∏
i∈TL

I
ηh,0

i
i

〉
µ0

=
〈

e−HL;β,α
∏

i∈TL I
ηh,0

i
i

〉
µ0〈

e−HL;β,α
〉
µ0

.

Let us bound from below the energy of any configuration for which
∏

i∈TL I
ηh,0

i
i = 1.

Each edge between two vertices at which ηh,0 takes the same value contributes at
least −β to the energy and those edges account for 3

4 of all the edges of the torus.
However, it is easy to check that, for spins located at the endpoints of the remain-
ing edges, the minimal energy is obtained when both their first components van-
ish; this yields a minimal contribution of −βα. We conclude that the energy of the
relevant configurations is always at least −2( 3

4 + 1
4α)β|TL | and, therefore,

〈
e−HL;β,α

∏
i∈TL

I
ηh,0

i
i

〉
µ0

≤ exp
{ 1

2β(3+α)|TL |
}

.

Combining this with the lower bound (10.29), we obtain, choosing δ̃2 = (7+α)/8,

〈 ∏
i∈TL

I
ηh,0

i
i

〉
L;β,α ≤ exp

{
−2β

(
δ̃2 − b(δ̃)

2β
− 1

4 (3+α)
)|TL |

}

= exp
{
− 1

4β
(
1−α− 4b(δ̃)

β

)|TL |
}

≤ exp
{− 1

8 (1−α)β |TL |
}

,

for all β≥ 8b(δ̃)/(1−α). Inserting this into (10.35), we obtain

〈 ∏

{u,v}∈E h,0
γ

I+u I−v
〉

L;β,α ≤ exp
{− 1

4 (1−α)β |E h,0
γ |} .

Doing this for the other three partitions and using (10.34) and the fact that |E h,0
γ |+

|E h,1
γ |+ |E v,0

γ |+ |E v,1
γ | = |γ|, (10.33) follows. Using this estimate, (10.32) becomes

µL;β,α(S1
0S1

j ≤ 0) ≤ 2
∑
γ

e−c(α)β|γ| .

We can now conclude the proof following the energy-entropy argument used when
implementing Peierls’ argument in Section 3.7.2. There is only one minor differ-
ence: in the sum over γ, there are also contours that wind around the torus, a situ-
ation we did not have to consider in Chapter 3. However, since such contours have
length at least L,

∑
γ, winding

e−c(α)β|γ| =
∑

k≥L
e−c(α)βk #

{
γ : winding, |γ| = k

}≤
∑

k≥L
e−c(α)βk (L28k ) .

Takingβ sufficiently large, this last sum is bounded uniformly in L and can be made
as small as desired. The conclusion thus follows exactly as in Chapter 3.
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Remark 10.21. As the reader can check, the arguments above apply more generally.
In particular, they extend readily to the anisotropic O(N ) model, in which the spins
Si = (S1

i , . . . ,SN
i ) ∈SN−1 and the Hamiltonian is given by

HL;β,α =−β
∑

{i , j }∈EL

{
S1

i S1
j +α

(
S2

i S2
j +·· ·+SN

i SN
j

)}
.

Also, the extension to d ≥ 3 is rather straightforward (only the implementation of
Peierls’ argument is affected and can be dealt with as in Exercise 3.20). ⋄

We can finally conclude the proof of Theorem 10.2. We will rely on the main
result of Section 6.11.

Proof of Theorem 10.2. Let m1
L

def= mL ·e1 and

ψ(h)
def= lim

L→∞
1

|TL |
log

〈
exp

{
h

∑
j∈TL

S1
j

}〉
L;β,α

= lim
L→∞

1

|TL |
log

〈
ehm1

L |TL |〉
L;β,α .

Existence of this limit and its convexity in h follow from Lemma 6.89 (used with

g
def= S1

0 and with periodic boundary conditions, for which that result also holds).
We have seen that m1

L remains bounded away from zero with high probability, uni-
formly in L, when β is large. We are going to show that this implies that ψ is not
differentiable at h = 0.

Let 0 ≤ α < 1, ϵ > 0 and β > β0(α,ϵ), where β0(α,ϵ) was introduced in Theo-
rem 10.17. Let also 0 < δ < 1 be such that δ2 < 1− ϵ. To start, observe that, for any
h ≥ 0,

〈
ehm1

L |TL |〉
L;β,α ≥ 〈

ehm1
L |TL |1{m1

L≥δ}

〉
L;β,α ≥ eδh|TL |µL;β,α(m1

L ≥ δ) . (10.37)

But Theorem 10.17 implies that, uniformly in L (multiple of 4),

1−ϵ≤ 〈
(m1

L)2〉
L;β,α ≤ δ2 +µL;β,α

(
(m1

L)2 ≥ δ2) .

Therefore, again uniformly in L (multiple of 4),

µL;β,α(m1
L ≥ δ) = 1

2µL;β,α
(
(m1

L)2 ≥ δ2)≥ 1
2 (1−ϵ−δ2) > 0.

Inserting this estimate in (10.37), we conclude that (ψ(h)−ψ(0))/h = ψ(h)/h ≥ δ,
for all h > 0. Letting h ↓ 0 yields

∂ψ

∂h+

∣∣∣
h=0

≥ δ> 0.

Since ψ(−h) = ψ(h), this implies that ψ is not differentiable at h = 0. Proposi-
tion 6.91 then guarantees the existence of two Gibbs measures µ+ ̸=µ− such that

〈S1
0〉µ+ = ∂ψ

∂h+

∣∣∣
h=0

> 0 > ∂ψ

∂h−

∣∣∣
h=0

= 〈S1
0〉µ− ,

thereby completing the proof of Theorem 10.2.
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10.5 The infrared bound

We now turn to the second major consequence of reflection positivity, the in-
frared bound, which provides one of the few known approaches to proving spon-
taneous breaking of a continuous symmetry. In this section we go back to the d-
dimensional torus TL , d ≥ 1.

In order to motivate the infrared bound, we start by showing how it appears as
the central tool to prove Theorem 10.1, in Section 10.5.2. The proof of the infrared
bound and of the related Gaussian domination is provided in Section 10.5.3.

10.5.1 Models to be considered

The infrared bound holds for a wide class of models, but still requires a little more
structure than just reflection positivity. Namely, we will assume that the spins are
ν-dimensional vectors,

Ω0
def= Rν ,

and that the Hamiltonian is given by

HL;β
def= β

∑
{i , j }∈EL

∥Si −S j ∥2
2 , (10.38)

with β ≥ 0. As before, we assume that the reference measure ρ on Ω0 (equipped
with the Borel subsets of Rν) is supported on a compact subset of Rν and write

µ0
def= ⊗

i∈TL ρ. The Gibbs distribution µL;β on (ΩL ,FL), associated to HL;β, is then
defined exactly as in (10.5).

The choice of the reference measure ρ leads to various interesting models en-
countered in previous chapters.

Example 10.22. Choose ν = N and let ρ be the Lebesgue measure on the sphere
SN−1 ⊂ RN . Since ∥Si∥2 = 1 for all i ∈ TL , almost surely, the Hamiltonian can be
rewritten as

HL;β = 2β|EL |−2β
∑

{i , j }∈EL

Si ·S j .

We recognize (up to an irrelevant constant 2β|EL |) the Hamiltonian of the O(N )
model. ⋄
Example 10.23. Choose ν = q − 1 and let ρ be the uniform distribution concen-
trated on the vertices of the regular ν-simplex (see Figure 10.8). The vertices of this
simplex lie onSν−1 and the scalar product of any two vectors from the origin to two
distinct vertices of the simplex is always the same. Note that this is just the q-state
Potts model in disguise. Indeed, a configuration can almost surely be identified
with a configuration ω′ ∈ {1, . . . , q}TL , where 1, . . . , q is a numbering of the vertices
of the simplex. Then, up to an irrelevant constant, we see that the Hamiltonian
becomes −βν

∑
{i , j }∈EL

δω′
i ,ω′

j
, for some βν ≥ 0 proportional to β. ⋄

10.5.2 Application: Orientational long-range order in the O(N ) model

In order to motivate the infrared bound, we start with one of its major applications:
the proof that, when d ≥ 3, there is orientational long-range order at low tempera-
tures for models with continuous spins of the type described above.
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Figure 10.8: The simplex representation for the 2-, 3- and 4-state Potts model.

We have seen, when proving the Mermin–Wagner Theorem in Chapter 9, that
the absence of orientational long-range order in the two-dimensional O(N ) model
was due to the fact that spin waves, by which we meant spin configurations varying
slowly over macroscopic regions, were created in the system, at arbitrarily low cost
(remember Figure 9.3). If we want to establish orientational long-range order, we
have to exclude the existence of such excitations. In order to do that, it is very con-
venient to consider the Fourier representation of the variables (S j ) j∈TL .

Consider the reciprocal torus, defined by

T⋆L
def=

{
2π

L
(n1, . . . ,nd ) : 0 ≤ ni < L

}
.

Note that |T⋆L | = |TL |. The Fourier transform of (S j ) j∈TL is (Ŝp )p∈T⋆L , defined by

Ŝp
def= 1

|TL |1/2

∑
j∈TL

e ip· j S j , p ∈T⋆L .

Let us recall two important properties,

1. First, the original variables can be reconstructed from their Fourier trans-
form, by the inversion formula:

S j =
1

|T⋆L |1/2

∑
p∈T⋆L

e−ip· j Ŝp , j ∈TL .

Each index p is called a mode and corresponds to an oscillatory term e−ip· j .
This sum should be interpreted as the contributions of the different Fourier
modes to the field variable S j . The importance of mode p is measured by
∥Ŝp∥2. On the one hand, modes with small values of p describe slow varia-
tions of S j , meaning variations detectable only on macroscopic regions, at
the scale of the torus. In particular, the mode p = 0 corresponds to the non-
oscillating (“infinite wavelength”) component of S j and is proportional to the
magnetization of the system (see below). On the other hand, modes with
large p represent rapid oscillations present in S j .

2. Second, Plancherel’s Theorem states that

∑
p∈T⋆L

∥Ŝp∥2
2 =

∑
j∈TL

∥S j ∥2
2 . (10.39)

Exercise 10.6. Prove the above two properties.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

10.5. The infrared bound 461

As mentioned above, the magnetization density mL = 1
|TL |

∑
i∈TL Si is simply related

to the p = 0 mode by

mL = 1

|TL |1/2
Ŝ0 .

Therefore, the importance of the p = 0 mode characterizes the presence or absence
of orientational long-range order in the system. For example, we have seen in Exer-
cise 9.1 that the contribution of the p = 0 mode becomes negligible in the thermo-
dynamic limit for the two-dimensional X Y model; this was due to the appearance
of spin waves. Therefore, to prove that orientational long-range order does occur,
one must show that the p = 0 mode has a non-zero contribution even in the ther-
modynamic limit.

In order to do this, we add a new restriction to the class of models we consider.
Namely, we will assume in the rest of this section that the reference measure ρ is
such that, almost surely,

∥S j ∥2 = 1 ∀ j ∈TL .

This is of course the case in the O(N ) and Potts models. With this assumption,
(10.39) implies that

∑
p∈T⋆L ∥Ŝp∥2

2 = |TL |, which yields

∥Ŝ0∥2
2 = |TL |−

∑
p∈T⋆L
p ̸=0

∥Ŝp∥2
2 .

Moreover, by translation invariance,

〈∥Ŝp∥2
2 〉L;β =

1

|TL |
∑

i , j∈TL

e ip·( j−i ) 〈Si ·S j 〉L;β =
∑

j∈TL

e ip· j 〈S0 ·S j 〉L;β .

Gathering these identities, we conclude that

〈∥mL∥2
2 〉L;β =

1

|TL |
〈∥Ŝ0∥2

2 〉L;β = 1−
{ 1

|TL |
∑

p∈T⋆L
p ̸=0

∑
j∈TL

e ip· j 〈S0 ·S j 〉L;β

}
. (10.40)

To obtain a lower bound on 〈∥mL∥2
2 〉L;β, we thus need to find an upper bound on

the double sum appearing on the right-hand side of the previous display. This is
precisely at this stage that the infrared bound becomes crucial; its proof will be
provided in Section 10.5.3.

Theorem 10.24 (Infrared bound). Let µL;β be the Gibbs distribution associated to a
Hamiltonian of the form (10.38). Then, for any p ∈T⋆L \ {0},

∑
j∈TL

e i p· j 〈S0 ·S j 〉L;β ≤
ν

4βd

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

.

Using the infrared bound in (10.40), we get

〈∥mL∥2
2

〉
L;β ≥ 1− ν

4βd

1

|TL |
∑

p∈T⋆L
p ̸=0

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

.
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The reader can recognize a Riemann sum in the right-hand side, which implies that

β0
def= ν

4d(2π)d
lim

L→∞
(2π)d

|TL |
∑

p∈T⋆L
p ̸=0

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

= ν

4d(2π)d

∫

[−π,π]d

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

dp . (10.41)

Notice that this integral is improper, precisely because of the singularity of the in-
tegrand at p = 0. Therefore,

liminf
L→∞

〈∥mL∥2
2 〉L;β ≥ 1− β0

β
.

This proves that there is orientational long-range order for all β > β0. The only
remaining task is to make sure that β0 is indeed finite.

It turns out (see Theorem B.72) that β0 is finite if and only if the symmetric
simple random walk on Zd is transient. As shown in Corollary B.73 (by directly
studying the integral above), this occurs if and only if d ≥ 3.

We have thus proved the following result.

Theorem 10.25. Assume that d ≥ 3. Let µL,β be defined with respect to a reference
measure µ0 under which ∥Si∥2 = 1, almost surely, for all i ∈TL . Let

β0
def= ν

4d(2π)d

∫

[−π,π]d

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1dp .

Then β0 <∞ and, for any β>β0,

liminf
L→∞

〈∥mL∥2
2

〉
L;β ≥ 1− β0

β
. (10.42)

Remark 10.26. Theorem 10.25 implies the existence of orientational long-range or-
der for the q-state Potts model on Zd , d ≥ 3. The latter, however, displays orienta-
tional long-range order also in dimension 2, even though this cannot be inferred
from the infrared bound. (This can be proved, for example, via a Peierls argument
as in Section 3.7.2 or using the chessboard estimate, using a variant of the proof
of Lemma 10.19.) The crucial difference, of course, is that the symmetry group is
discrete in this case. ⋄

With the help of Theorem 10.25, we can now prove existence of a continuum of
distinct Gibbs states in such models, as stated in Theorem 10.1.

Proof of Theorem 10.1. First, fix some unit vector e ∈SN−1. For simplicity and with
no loss of generality, we can take e = e1 (indeed, µL;β is invariant under any global
rotation of the spins). Then, define

ψ(h)
def= lim

L→∞
1

|TL |
log

〈
exp

{
h

∑
j∈TL

S j ·e1

}〉
L;β

.

We again use Theorem 10.25 to show that ψ is not differentiable at h = 0, follow-
ing the pattern used to prove Theorem 10.2, and conclude using Proposition 6.91.
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The only difference here is when showing that µL;β(mL · e1 ≥ δ) is bounded away
from zero. To use the lower bound we have on 〈∥mL∥2〉L;β, we can use the following
comparisons:

µL;β(mL ·e1 ≥ δ) ≥ 1
2d µL;β(∥mL∥∞ ≥ δ) ≥ 1

2d µL;β(∥mL∥2 ≥ δ
p

d)

When δ is sufficiently small, a lower bound on the latter, uniform in L, can be ob-
tained as before.

10.5.3 Gaussian domination and the infrared bound

The infrared bound relies on the following proposition, whose proof will use reflec-
tion positivity. Let h = (hi )i∈TL ∈ (Rν)TL and

ZL;β(h)
def=

〈
exp

{
−β

∑
{i , j }∈EL

∥Si −S j +hi −h j ∥2
2

}〉
µ0

.

Notice that ZL;β(h) is well defined (since we are assuming ρ to have compact sup-
port) and that ZL;β(0) coincides with the partition function ZL;β associated to HL;β.

Proposition 10.27 (Gaussian domination). For all h = (hi )i∈TL ,

ZL;β(h) ≤ ZL;β(0) . (10.43)

Proposition 10.27 will be a consequence of the following lemma, which is a ver-
sion of the Cauchy–Schwarz-type inequality of Lemma 10.6.

Lemma 10.28. Let µ ∈MRP(Θ) and A,B ,Cα,Dα ∈A+(Θ). Then

{〈
e A+Θ(B)+∑

αCαΘ(Dα)〉
µ

}2 ≤ 〈
e A+Θ(A)+∑

αCαΘ(Cα)〉
µ

〈
eB+Θ(B)+∑

αDαΘ(Dα)〉
µ .

Proof. Expanding the exponential,

〈
e A+Θ(B)+∑

αCαΘ(Dα)〉
µ =

∑
n≥0

1

n!

∑
α1,...,αn

〈
e ACα1 · · ·CαnΘ(eB Dα1 · · ·Dαn )

〉
µ . (10.44)

By Lemma 10.6,

〈
e ACα1 · · ·CαnΘ(eB Dα1 · · ·Dαn )

〉
µ

≤ 〈
e ACα1 · · ·CαnΘ(e ACα1 · · ·Cαn )

〉1/2
µ

×〈
eB Dα1 · · ·DαnΘ(eB Dα1 · · ·Dαn )

〉1/2
µ .

The classical Cauchy–Schwarz inequality,
∑

k |ak bk | ≤ (
∑

k a2
k )1/2(

∑
k b2

k )1/2, yields

∑
α1,...,αn

〈e ACα1 · · ·CαnΘ(eB Dα1 · · ·Dαn )〉µ

≤
[ ∑
α1,...,αn

〈
e ACα1 · · ·CαnΘ(e ACα1 · · ·Cαn )

〉
µ

]1/2

×
[ ∑
α1,...,αn

[〈
eB Dα1 · · ·DαnΘ(eB Dα1 · · ·Dαn )

〉
µ

]1/2
.
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Inserting this in (10.44), using again the Cauchy–Schwarz inequality (this time, to
the sum over n) and resumming the series, we get

〈
e A+Θ(B)+∑

αCαΘ(Dα)〉
µ

≤ [ ∑
n≥0

1

n!

∑
α1,...,αn

〈
e ACα1 · · ·CαnΘ(e ACα1 · · ·Cαn )

〉
µ

]1/2

× [ ∑
n≥0

1

n!

∑
α1,...,αn

〈
eB Dα1 · · ·DαnΘ(eB Dα1 · · ·Dαn )

〉
µ

]1/2

= [〈
e A+Θ(A)+∑

αCαΘ(Cα)〉
µ

〈
eB+Θ(B)+∑

αDαΘ(Dα)〉
µ

]1/2 .

Proof of Proposition 10.27. First, notice that ZL;β(h) = ZL;β(h′) whenever there ex-
ists c ∈ R such that hi −h′

i = c for all i ∈ TL . There is thus no loss of generality in
assuming that h0 = 0, which we do from now on. Next, observe that ZL;β(h) tends
to 0 as any ∥hi∥2 →∞, i ̸= 0. In particular, there exists C such that

∑
i ∥hi∥2

2 ≤C for
all h that maximize ZL;β(h). Among the latter, let us denote by h⋆ a maximizer that

minimizes the quantity N (h)
def= #

{
{i , j } ∈ EL : hi ̸= h j

}
. We claim that N (h⋆) = 0.

Since h⋆0 = 0, this will then imply that h⋆i = 0 for all i ∈TL , which will conclude the
proof.

Let us therefore suppose to the contrary that N (h⋆) > 0. In that case, we can
find {i , j } ∈ EL such that h⋆i ̸= h⋆j . Let Π be the reflection plane going through the

middle of the edge {i , j } and let Θ denote the reflection through Π. Below, we use
{i ′, j ′} to denote the edges that cross Π, with i ′ ∈ TL,+ and j ′ = Θ(i ′) ∈ TL,−. Since
∥ωi ′ −ω j ′ +hi ′ −h j ′∥2

2 = ∥ωi ′ +hi ′∥2
2 +∥ω j ′ +h j ′∥2

2 −2(ωi ′ +hi ′ ) · (ω j ′ +h j ′ ), we can
write

−β
∑

{i , j }∈EL

∥ωi −ω j +hi −h j ∥2
2 = A+Θ(B)+

∑
i ′

Ci ′ ·Θ(Di ′ ) ,

where A,B ,Ci ,Di ∈A+(Θ), and

A
def= −β

∑
{i , j }∈EL :

i , j∈TL,+(Θ)

∥ωi −ω j +hi −h j ∥2
2 −β

∑
i ′
∥ωi ′ +hi ′∥2

2 ,

Θ(B)
def= −β

∑
{i , j }∈EL :

i , j∈TL,−(Θ)

∥ωi −ω j +hi −h j ∥2
2 −β

∑
j ′
∥ω j ′ +h j ′∥2

2 ,

Ci ′
def=

√
2β(ωi ′ +hi ′ ) , Θ(Di ′ )

def=
√

2β(ω j ′ +h j ′ ) .

(Remember thatΘ acts on ω, not on h; this implies that in general, A ̸= B and Ci ′ ̸=
Di ′ .) One can thus use Lemma 10.28 to obtain

ZL;β(h⋆)2 ≤ ZL;β(h⋆,+)ZL;β(h⋆,−) ,

where

h⋆,+
i =

{
h⋆i ∀i ∈TL,+(Θ) ,

h⋆
Θ(i ) ∀i ∈TL,−(Θ) ,

h⋆,−
i =

{
h⋆i ∀i ∈TL,−(Θ) ,

h⋆
Θ(i ) ∀i ∈TL,+(Θ) .

Our choice ofΘ guarantees that min
{

N (h⋆,+), N (h⋆,−)
}< N (h⋆). To be specific, let

us assume that N (h⋆,+) < N (h⋆). Then, since h⋆ is a maximizer,

ZL;β(h⋆)2 ≤ ZL;β(h⋆,+)ZL;β(h⋆,−) ≤ ZL;β(h⋆,+)ZL;β(h⋆) ,
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that is, ZL;β(h⋆,+) ≥ ZL;β(h⋆). This implies that h⋆,+ is also a maximizer which satis-
fies N (h⋆,+) < N (h⋆). This contradicts our choice of h⋆, and therefore implies that
N (h⋆) = 0.

The following exercise provides some motivation for the terminology “Gaussian
domination”. One can define the discrete Laplacian of h = (hi )i∈TL , ∆h, by

(∆h)i
def=

∑
j∼i

(h j −hi ) , i ∈Zd .

The Discrete Green identities of Lemma 8.7 can also be used here; they take slightly
simpler forms due to the absence of boundary terms on the torus.

Exercise 10.7. Show that (10.43) can be rewritten as
〈

exp
{

2β
∑

i∈TL

(∆h)i · (Si −S0)
}〉

L;β
≤ exp

{
−β

∑
i∈TL

(∆h)i ·hi

}
. (10.45)

Let νL;β be the Gibbs distribution corresponding to the reference measure given by
the Lebesgue measure: ρ(dωi ) = dωi . Show that

〈
exp

{
2β

∑
i∈TL

(∆h)i · (Si −S0)
}〉

νL;β
= exp

{
−β

∑
i∈TL

(∆h)i ·hi

}
,

so that the bound (10.45) is saturated by the Gaussian measure νL;β.

We can now turn to the proof of the infrared bound.

Proof of Theorem 10.24: We know from Proposition 10.27 that ZL;β(h) is maximal at
h ≡ 0. Consequently, at fixed h,

∂

∂λ
ZL;β(λh)

∣∣
λ=0 = 0 and

∂2

∂λ2 ZL;β(λh)
∣∣
λ=0 ≤ 0. (10.46)

The first claim in (10.46) does not provide any nontrivial information, but the sec-
ond one is instrumental in the proof. Elementary computations show that

∂2

∂λ2 ZL;β(λh)
∣∣
λ=0

= 4β2
〈∣∣ ∑

{i , j }∈EL

(Si −S j ) · (hi −h j )
∣∣2 exp

{−β
∑

{i , j }∈EL

∥Si −S j ∥2
2

}〉
µ0

−2β
∑

{i , j }∈EL

∥hi −h j ∥2
2

〈
exp

{−β
∑

{i , j }∈EL

∥Si −S j ∥2
2

}〉
µ0

.

The inequality in (10.46) is thus equivalent to

〈∣∣ ∑
{i , j }∈EL

(Si −S j ) · (hi −h j )
∣∣2

〉
L;β

≤ 1

2β

∑
{i , j }∈EL

∥hi −h j ∥2
2 . (10.47)

The latter holds for any h ∈ (Rν)TL , but it is easily seen that it also extends to any
h ∈ (Cν)TL (just treat separately the real and imaginary parts). Let us fix p ∈T⋆L \ {0},
ℓ ∈ {1, . . . ,ν} and make the following specific choice:

∀ j ∈TL , α j
def= e i p· j , h j

def= α j eℓ .
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The Green identity (8.14) yields (ᾱ denoting the complex conjugate of α)

∑
{i , j }∈EL

∥hi −h j ∥2
2 =

∑
{i , j }∈EL

(∇ᾱ)i j (∇α)i j =
∑

i∈TL

ᾱi (−∆α)i

= 2d |TL |
{

1− 1

2d

∑
j∼0

cos(p · j )
}

,

since, for any i ∈TL ,

(−∆α)i =
∑
j∼i

(αi −α j ) = e ip·i ∑
j∼i

(1−e i p·( j−i )) = 2de ip·i
{

1− 1

2d

∑
j∼0

cos(p · j )
}

.

Similarly, denoting by Sℓi
def= Si ·eℓ the ℓth component of Si ,

∑
{i , j }∈EL

(Si −S j ) · (hi −h j ) =
∑

{i , j }∈EL

(∇Sℓ)i j (∇α)i j =
∑

i∈TL

Sℓi (−∆α)i

= 2d
{

1− 1

2d

∑
j∼0

cos(p · j )
} ∑

i∈TL

Sℓi e i p·i ,

and therefore

〈∣∣ ∑
{i , j }∈EL

(Si −S j ) · (hi −h j )
∣∣2

〉
L;β

= 4d 2
∣∣∣1− 1

2d

∑
j∼0

cos(p · j )
∣∣∣
2〈∣∣ ∑

i∈TL

Sℓi e i p·i ∣∣2
〉

L;β
.

The inequality (10.47) thus implies that

〈∣∣ ∑
i∈TL

Sℓj e i p·i ∣∣2
〉

L;β
≤ |TL |

4dβ

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

.

Since, by translation invariance of µL;β,

〈∣∣ ∑
i∈TL

Sℓj e i p·i ∣∣2
〉

L;β
=

∑
i , j∈TL

e i p·( j−i )〈Sℓi Sℓj 〉L;β = |TL |
∑

j∈TL

e i p· j 〈Sℓ0Sℓj 〉L;β ,

the conclusion follows by summing over ℓ ∈ {1, . . . ,ν} to recover the inner product.

10.6 Bibliographical remarks

There exist several nice reviews on reflection positivity, which can serve as com-
plements to what is discussed in this chapter and provide additional examples of
applications. These include the reviews by Shosman [305] and Biskup [22] and the
books by Sinai [312, Chapter 3], Prum [282, Chapter 7] and Georgii [134, Part IV].
The present chapter was largely inspired by the presentation in [22].

Reflection positivity. Reflection positivity was first introduced in the context of
constructive quantum field theory, where it plays a fundamental role. Its use in
equilibrium statistical mechanics started in the late 1970s, see [118, 98, 157, 115,
116].
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Infrared bound and long-range order inO(N ) models. The infrared bound, The-
orem 10.24, was first proved by Fröhlich, Simon and Spencer in [118]. In this pa-
per, among other applications, they use this bound to establish existence of spon-
taneous magnetization in O(N ) models on Zd , d ≥ 3, at low temperature (Theo-
rem 10.1 in this chapter).

Chessboard estimate and the anisotropic X Y model. The chessboard estimate,
in the form stated in Theorem 10.11, was first proved by Fröhlich and Lieb [117].
There were however earlier versions of it, see [134, Notes on Chapter 17]. The ap-
plication to the anisotropic X Y model, Theorem 10.2, was first established using
other methods in [226] and [202]. The first proof relying on the chessboard esti-
mate appeared in [117] and served as a basis for Section 10.2.
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