Solutions to Exercises

In this appendix are regrouped the solutions to many of the exercises stated in the main body of the
book. Some solutions are given with full details, while others are only sketched. In all cases, we rec-
ommend that the reader at least spends some time thinking about these problems before reading the
solutions.

Solutions of Chapter 1

Exercise 1.1: Fix n € Z-( and observe first that our system X, w1th parameters U, V,N can be seen as a
system X’ composed of two subsystems 21,2, with parameters +; Ly L V +Nand 22 Ly, n 1 v, = 1N
Then, by additivity,

> _ 2l ly gy n=lyyn=ly n=1an_cZlyr 1y, 1 S n=17y n=1y, n-1
ST, V,N)=8" (;U, 5V, N, 5~U, 5=V, 5= N) =57 (U, 3, V, ; N) + S5 (5~U, 5~ V, 5= N),

where we used the fact that each of the two subsystems is of the same type as the original system and is
therefore associated to the same entropy function. Iterating this, we get

S*W,V,N)=ns*(tU,Lv,IN).
Using this relation twice, we conclude that, for any m,n € Z~,
Sy, My, mN) = ms*(Lu, Lv, LN = 2s* U, v, N).
This proves (1.7) for A € Q. Since S% is assumed to be differentiable, it is also continuous. We can
therefore approximate any real A > 0 by a sequence (1) ;=1 <Q, A5, — A, and get

SZ(AU,AV,AN):nlggosz(/an,A,,v,Anm:’}ilgoansz(U,v,N):ASZ(U,V,N).

Exercise 1.2: Decompose the system into two subsystems X1,Z3. By the postulate, SZ(U V, N) maxi-
mizes S* (U1, V1, N1) + S* (U3, Vo, No) over all possible ways of partitioning U, V, N into Uy + Uz, V1 + V»
and Nj + Na. This implies in particular that

SEU,V,N) = §¥(aUy, aVy,aNy) + S ((1- @)Uz, (1 - @) V2, (1 - @) N)
= aS* (U1, V1, N1) + (1 - @)SZ (U, Vo, Na),

where the equality is a consequence of (1.7).

Exercise 1.3: Fix V,N, 1,82 and a € [0,1]. For all U,
{faf1+(1-a)p2}U-SWU,V,N)=a{f1U-SWU,V,N)} + (1 -a){f2U~-S(U,V,N)}.
>F(B1,V,N) 2F (B2, V,N)
Taking the infimum over U on the left-hand side,
Fapr+0-a)B2, V,N)=aF(B1,V,N)+(1-a)F(B2,V,N),

so F'is concave in f. A similar argument, exploiting the concavity of S, shows that F is convex in V, N.
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522 Appendix C. Solutions to Exercises

Exercise 1.4: The extremum principle follows from the one postulated for S. Indeed, suppose that we
keep our system isolated, with a total energy U (and the subsystems can exchange energy, which can
always be assumed in the present setting, since they can do that through the reservoir). Then, the equi-
librium values are those maximizing

swt, v NY + s v N,
among all values satisfying the constraints on V!, N1, V2, N? as well as U' + U? = U. Therefore, the
same values minimize

BU - (SwW, v, NY + 5?2, v2 N?) = (U - s, v, NY) + (BU? - SWU?, V2, N?)),

under the same conditions. Taking now the infimum over U yields the desired result, since this removes
the constraint U' + U2 = U.

Exercise 1.5: The critical points of the function v — p(v) are given by the solutions of the equation
RTS8 = 2a(v— b)z, which is of the form f(v) = g(v). When v > b, this equation has zero, one or two
solutions depending on the value of T. The critical case corresponds to when there is exactly one solu-

tion (at which f(y) =g and f’(y) = g,(l})) This happens when T = 72$Igb'

Exercise 1.6: Writing Sgh (1) = X yeq ¥ (1(w)), where ¥ (x) def —xlog x, we see that Sg, is concave.

Exercise 1.8: The desired probabilities are given by u(i) = e‘ﬁi/Zﬁ, where Zg = Z?:l e Pl and B must
be chosen such that Y ; iuu(i) = 4. Numerically, one finds that

(1) =0.10, 1(2) = 0.12, u(3) = 0.15, u(4) = 0.17, u(5) = 0.21, u(6) = 0.25.

Exercise 1.9: Letting V' =V — % and writing N1 = g +m, Ny = % — m, we need to show that
me— (& +mu - mv’ + miv' - my!

is minimal when m = 0. But this follows by simple termwise comparison. For the second part, expressing
the desired probability using Stirling’s formula (Lemma B.3) shows that there exist constants c_ < ¢4
such that if V and N are both large, with % bounded away from 0 and 1, then

Exercise 1.10: Note that the second derivative of logQ; 5,y with respect to § yields the variance of 7’
under the canonical distribution and is thus nonnegative. We conclude that §— —1logQy,p, v is concave.
Moreover, since the limit of a sequence of concave functions is concave (see Exercise B.3), this implies
that f is concave in f.
Exercise 1.12: Plugging pix; 5y, v in the definition of Sgx () gives

SSh(”A;ﬁ(U),N) = ﬁ(Ux‘%/p)HA;ﬁ(U),N + lOgZA;ﬁ(U),N = ﬂ(U)U-F lOgZA;ﬁ(U],N' (C.1)

By the Implicit Function theorem, U — B(U) is differentiable. So, differentiating with respect to U,

OSsh(n;pun,N) 0B ] o)
U = oy UtPO* G108 2NN gy Yo~ P
J S —

=-U
as one expects from the definition of the inverse temperature in (1.3). Then,
U - TySsh(pa;puy,n) = U = TylBU)U +108Zp, 51, N} = —ﬁ logZ;5w),N >

in accordance with the definition of free energy given earlier.

Exercise 1.13: Since Mj (—w) = —Mj (w),

(MA)apo= Y MA@Hppo@ =3 Y MaA@/{inp0©@) ~paspo(-w)} =0.
weQp weQp

=0
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Solutions of Chapter 2

Exercise 2.2: 1f one writes fﬁv;ﬁ_o = jfﬁ,‘%’w o» Where S(N) wf NB/{(N), then either B(N) 1 +oo or

B(N) | 0. The conclusion now follows from our previous analysis.

Exercise 2.3: The analyticity of h — m€ § W (1) follows from the implicit function theorem (Theorem B.28).

Exercise 2.6: Let us write ¢(y) = ¢ (). Notice that, since >0, ¢(y) 1 +oo0 as y — +oo, sufficiently fast
to ensure that [*2° e~°?W) dy < oo for all ¢ > 0. Depending on f, ¢ has either one or two global minima.
For simplicity, consider the case in which there is a unique global minimum y.. Let ¢(y) ef O —py+),
Be(y+) wf [¥+ — €, ¥« +€] and write
foo e~ N@p p(y)—miny @ 1,() dyzf e NP qy.
—00 Be(yx)
Let ¢ > 0 be such that (y) < c(y — y«)? for all y € Be(ys). Then
+ev2
\/Nf N(p(y)dy> \/7[ —ch V) dy_ 1 eV2cN Z/de’
Be (J'*) Be(yx) V2c¢ J-ev2eN

and this last expression converges to v'/c when N — co.

Solutions of Chapter 3

Exercise 3.1: Notice that |B(n)|= 2n+ l)d and that
10"B(n)| = IBm\Bn-1)|=@2n+ 1% -2n-1%<d@n+1%1,

which shows that ‘al B|(3 'I') I~ o. Any sequence Ap | 74 whose boundary grows as fast as its volume,

suchas A, =B(n)u {(1,0,...,0) ez%:.0<i< e"}, will not converge in the sense of van Hove.

Exercise 3.5: By a straightforward computation, mg(h) = sinh(h)/y/ sinh?(h) + e~4P.

Exercise 3.6: 1. The partition function with free boundary condition can be expressed as

n-1
W;iw; _ 2Bn (wijwijr1-1)
B(n),Bh Z H ,6 i z+l_e,6 Z H 6'6 Wil
wj=tli=—n wj=tli=—n
ieB(n) ieB(n)

Each factor in the last product is either equal to 1 (if w; = w; 1) or to e 2P Therefore,
o 2pn 2 (2n). _apk _ . 2pn ~26\2n
28 o = 26 kgo L | =2 1T

This yields ¢(8) = logcosh(p) +log2, which of course coincides with (3.10).
2. In terms of the variables 7;,

n
o=, L, 5, 1 =ty
w-p=%x1 T1;=%1 i=—n+1
i=—n+l,.,n

Exercise 3.8: Notice that any local function can be expressed as a finite linear combination of cylinder
functions, which are of the following form: f(w) = 1 if w coincides, on a finite region A, with some
configuration 7, and zero otherwise. Since each spin w; takes only two values, there are countably
many cylinder functions, we denote them by fi, f2,.... Since, for each j, the sequence ({ f i A B, h) n>11is

bounded, a standard diagonalization argument (this type of argument will be explained in more detail
later, for instance in the proof of Proposition 6.20) allows one to extract a subsequence (ng) k=1 such
thatlimy_, oo f] A LB exists for all j. The existence of (f’ > = llmk_,oo< f) A B for all local functions

f follows by hnearlty and defines a Gibbs state.

Exercise 3.9: Simply differentiate (g 4)* .. with respect to J; j or hj and use (3.22).

A;Lh
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524 Appendix C. Solutions to Exercises

Exercise 3.10: Observe that, to show that f is nondecreasing, it suffices to show that f(w) < f (') when-
ever there exists i € Z4 such that w;=-1, w'i =1land w;= w} for all j # i. The exercise is then straight-

forward.

Exercise 3.11: We will come back to this important property in Chapter 6 and prove it in a more general
setting (see Lemma 6.7). For simplicity, assume /& = 0. The numerator appearing in y7\_ 5 h(w | o; =

w;, Vi€ A\A) contains the term

exp(f Y, wiwj)=exp(f ) wjwj)exp(f Y ww)).
i, jle&? {i,jle&p i, jleé?
{i,jinA=2

!
The first term, containing the sum over {i, j} € &P, is used to form ;LLK, 5 1, (). The same decomposition
can be used for the partition functions; the second factor then cancels out.

Exercise 3.12: Let D c éDAZ be the set of edges {i, j} with i € Ap \ A1, j € A1. Consider, for s € [0,1], the

Hamiltonian
Azﬁh ﬁ Y, 0i0j=sB ) o;0j-h}) o;.
{i, j}EéaAZ {i,jteD ieNy
{i,jl¢D

Let <~)j\ B denote the corresponding Gibbs distribution. Observe that, when A c A1, (o A}iz /3 B
(O'A)A ﬂ ,, and (aA)A B (O'A)A B The conclusion follows since, by Exercise 3.9, <UA)A 5, s

(UA>A2 iBh
For the other claim, add a magnetic field 4’ acting on the spins in A2 \ A; and let i’ — oo.

Exercise 3.15: First, the FKG inequality and translation invariance yield, for any i,
(nangi)p = na)p p(nedg -

Fix L large enough to ensure that A,B c B(L). Taking |i|l; sufficiently large, we can guarantee that
B(L+1)n (i +B(L)) = @. Fixing all the spins on 0**B(L) Ud®(i + B(L)) to +1, it follows from the FKG
inequality that

(AnBLD 1y = MAB 1y PB+D B )38, = MAYB (LB BB (L

We conclude that
(nA)ﬁ h<n3>ﬁ ns hmlnf <nA”B+i>z;-,h

< llmsup(nAnBH)ﬁ RS <nA>B(L) B, h<nB>B(L
il —o0
The desired conclusion follows by letting L — oo in the right-hand side. The case of general local func-
tions f and g follows from Lemma 3.19.

Exercise 3.16: Follow the steps of the proof of Theorem 3.17, using Exercise 3.12 for the existence of the
thermodynamic limit (use <JA)i B =(- l)lA‘ ((TA)K Br—h when dealing with & < 0).
n P M=

Exercise 3.17: Proceed as in the proof of Lemma 3.31, using the monotonicity results established in Ex-
ercises 3.9 and 3.12.

Exercise 3.18: 1. This is a consequence of (3.34). Indeed, let us denote by .7 the set of all contours y (in
B(n)) with length ¢. Then,

. ) —2p¢
,uB(n);ﬁ‘O(HyernhlylzKlogn)ﬁbKZlognl,of[\e Be

Now, the number of contours of length ¢ passing through a given point is bounded above by 4% and
the number of translates of such a contour entirely contained inside B(n) is bounded above by 4n?.
Therefore, the probability we are interested in is bounded above by

an? Y (4e~2P)¢ < gp2-K@p-log)
¢=Klogn
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for all B = log3, say. This bound can be made smaller than n~¢, for any fixed ¢ > 0, by taking K suffi-
ciently large (uniformly in § =log3).

2. Partition each row of B(#n) into intervals of length Klogn (and, possibly, a remaining shorter interval
that we ignore). We denote by I, k=1,..., N, these intervals and consider the event

jk:{ai =-1Viel}.
Of course, there exists C = C(f8) such that ,u;rk_ﬁ O(Jk) > ¢~ CKlogn _ ;,-CK oy,

N N
. + _ .
yé(m;ﬁ,o(E}/ e with |yl = Klogn) = 'uB(n)?ﬁvO(kL;Jl S)=1- “é(””ﬁ"’(kol ).

Notice that
C N C C N + m-1 C
n)ﬁO ﬂ'] rrlz_—llu (n);B jm ‘ ﬂ ‘] :rrlz_—ll{l_#B(n);ﬁ'O(]ml kq jk)}

By the FKG inequality,

m-1
-CK
'“E(n);ﬁ,o(j’" | kol ﬁ]f) > ”;rm;ﬁ,o(le) >n ,

so that ok
'“E(n)-ﬁ o(FyeT with|y|=Klogn) =1~ (1~ nmCN 2N,

The conclusion follows since N = 2n+1)[(2n+1)/Klogn| = n2=¢2/K for n > ng(c) and n CKiK =

n~¢2if K < Ky (B, c).

Exercise 3.20: In higher dimensions, the deformation operation leading to contours is less convenient,
so we will avoid it. For the sake of concreteness, we consider the case d = 3. The bounds we give below
are very rough and can be improved. The 3-dimensional analogue of the contours described above are
sets of plaquettes, which are the squares that form the boundary of the cubic cells of Z3. For a given
configuration w, the set . (w) can be defined as before and decomposed into maximal connected sets
of plaquettes: 0.7 (w) =1 U--- U¥y,. The analogue of (3.38) then becomes

Hiopo@0=-D= Y e 2PRa{y* i distq", 0 <k 17" 1= K}
k=6
To each 7* in the latter set, we associate a connected graph G* whose set of vertices V* is formed by
all the centers of the plaquettes of 7* and in which two vertices u, v € V* are connected by an edge if
the corresponding plaquettes share a common edge. The above sum is then bounded by (observe that
avertex of V* has at most 12 neighbors and that each edge is shared by two vertices, so that |[E*| < 6k)

Y e PRyl v =k} < Y e72Pk g3 105k,
k=6 k=6

This last inequality was obtained using Lemma 3.38. As in the two-dimensional case, the series is smaller
than % once f3 is large enough.

Exercise 3.21: Definetbye™" = 3628 Notice that (3.40) can be written (4e ™47 —3¢757)/(1-¢™7)2 < 3

The first point follows by verifying that this holds once > 0.88.

Let us turn to the second point. Write u% (A) = M where
pont. HB;p,0' Y = 7t Qf )
B(n);8,0""B(n)
+ def =21yl
Z5 0l A = Y 1w ] e .
weQ Yel'(w)

B(n)

sdef, _ ; +
Let A= = {o; = +1Vi € B(R)}. Under 'uB(n);ﬁ,O’

self-avoiding closed path n* < 8.4 surrounding B(R). Therefore, by flipping all the spins located inside
the region delimited by 7*, one gets

the occurrence of A~ forces the presence of at least one

[A*].

+ - + * - —2BI*| p+
ZB(ny;p0lA ]S;ZB(n);ﬁ,O[” co./,AT1<) e Z8(ny;5,0

i
But
Ze_zﬁl” l< ¥ ke 2Pk,
k=8R
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526 Appendix C. Solutions to Exercises

Now, foralle >0, Cj < (u+ o) forall large enough k. Therefore,

+ 1y + - + -
HB(mypo 7i = TIVIEBURY  ZgypoldT] Zpgypold] S ke ok

Hém);ﬁ‘o(gz‘:*IViEB(R)) Zé(n);ﬁ,O[A_] Z

+ +
B(n);ﬁ,o[A | k=8R

If e=2P 1 <1, € can be chosen such that the last series converges. Taking R sufficiently large allows to
make the whole sum < 1.

Exercise 3.23: 'We only provide the answer for the free boundary condition.
Let " def {Ec &y : 1(i,E) isevenforall i € A}. Then,

22 =2Wcosh(p)éal Y tanh(p)F!.

A; 8,0

p Eeggven

Moreover,
IE"|
” \Eo] ZE’E@?\VEH:E'CA(Eo) tanh(p)
0iopNpe= X tanh(® ¥ tanh(p)/E
(atd ii even
E0€ij\'] ke EA
connected,Ey3i

where

" LB C £y 1 1k, B) is even for all k€ B(n)\ (i, j}, but I(i, E) and I(j, E) are odd} .

Exercise 3.24: Since the Gibbs state is unique, we can consider the free boundary condition. Proceeding
as we did for the representation of (UO)X,ﬁ ;, in terms of a sum over graphs in (3.47), we get for i, j € B(n),

o2 |E|
(ULUJ)B(”);ﬁ‘OS Z tanh(B)'“'.
Eee})

B(n)
connected,Ep3i

All graphs E € Gé’{n) have atleast ||i — j|l; edges. Proceeding as in (3.49), we derive the exponential decay
once f is sufficiently small.

Exercise 3.25: Fix a shortest path 7 = (i = iy,12,...,i; = j) from i to j and introduce & d:ef{{ik, g1} :
1< k< m}. Forse|[0,1], set

{ﬁ if {u, v} € &,
Juv = .
sp otherwise.

N
n);B,h
free boundary condition. Check that

Denote by ygé the distribution of the Ising model in B(n) c 74 with these coupling constants and

LoNDs=l D LN D,s=0  _ Coad=1
@10 PRy = T A @i Dglyp0 = 0TIl N g0

Conclude, using the fact that, by GKS inequalities, (o;o j>g£i;;lﬁ,0 =(o;0 f>§&jz?;(;)3,0'
Exercise 3.26:
ZE(n);ﬁ,O — 22n+1 (COShﬁ)2n+2(l + (tanhﬁ)2n+2) ,
o = o
Z%e(rn);ﬁ,o — 22"+1(Coshﬁ)2n+l(l + (tanhﬁ)z’”l) .

Exercise 3.27: Notice that, by a straightforward computation,
laz+112 ~la+z? = 1 -1215)1 - a?).

Since 1-a? > 0, all the claims can be deduced from this identity. For example, |z| < 1 implies 1 — |z|2 >0
and, therefore, |az + 1|2 —la+ zl2 >0, that is, [p(2)| = [(@z+ 1)/ (a + 2)| > 1.
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Exercise 3.28: Since the argument of the logarithm in (3.10) is always larger than 1, only the square root
can be responsible for the singularities of the pressure. But the square root vanishes at the values h € C
at which eP cosh(h) = 2sinh(2p). Since we know that all singularities lie on the imaginary axis, they can
be expressed as h = i(x¢ + k2m), where t = arcosV 1— e’4ﬁ, k € Z. Observe that, as  — oo, the two
singularities at +it converge from above and from below to & = 0. This is compatible with the fact that,
in that limit, a singularity appears at i = 0. Namely, using (3.10),

vp(BR)

p

lim
p—oo

=|hl+1,
which is non-analytic at i = 0.

Exercise 3.29: Duplicating the system, we can write

lZi"B h|2 _ Z eﬁz(ivﬂeé”A (w,—wj+w;.w})+2i61\(hw,-+hw;) .

w,w'

Define the variables 6; € {0,7/2,7,37/2}, i € A, by cosf; = %(wi +w;) and sinf; = %(wi ﬂu’i). It is easy
to check that

Wiw; +w;-w'j =2cos(0;-0;) = Q0i=0p) 4 e_i(gi_ej),
hw; + ﬁw; =2%Rehcos(0;) +2iImhsin(@;) = (Reh+Im el + e h—Imhye i,
Substituting these expressions yields
IZi;ﬁ,hlz > exp{ Y e ZieA miai}'
Oien m=(m;)jep

m;€{0,1,2,3}

for some nonnegative coefficients am which are nondecreasing both in $Re + Jmh and Reh —Imh.
Consequently, expanding the exponential gives

|Zf~ﬁ hlz -y Y ameZieamifi,
. 0i)ien m=(m;)jep
m;€0,1,2,3}

where the coefficients & are still nonnegative and nondecreasing both in SRe h+Jm h and SRe h—JIm k.
Now, observe that

Y eilienmifi — I1 Zeimﬂi =

O7)ien ieN 6

4IMl i m; =0, VieA,
0 otherwise.

We deduce that |Zf_ﬁ h|2 =4IAl @0,0,...,0) and, thus, that IZf_ﬁ h|2 is nondecreasing in both Re h + Jm h
and Re h— Jmh. Since Re h—|Im h| = min(Re h + Im h,Re h — Im h), this proves that

1%} 1%
Zy5.1) ZZnipme hetmm = 0

Exercise 3.31: We write
1—[ echC-#Kéw'(:

! !
EAKZAKOTA= O v pgovy o = 2 @a—w))
o CEA

! "
=Y a-wpYo, ] ferferee,
w' w CcA
and we can conclude as in the proof of (3.55), since K¢ + K ’Cw’é = 0 by assumption.

Exercise 3.35: The only delicate part is showing that, for all E, E' = é?’}\’,

NY(E)+ Ny (E) < NY(EUE")+ N{(EnE). (C2)
In order to establish (C.2), it is sufficient to prove that

E'— NY(EUE") - Ny (E) is nondecreasing. (C3)
Indeed, (C.3) implies that

NY(EUE) - NY(E") = NY(EU(E'nE) - NY(E'nE) = NY(E) - NY(E'nE),
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which is equivalent to (C.2). Let E = {ey,...,ex} © @0}\’ Since
! ! 2 ! !
NX(EUE)—N/“\“(E):]CZ {Nydei,...,ex}UE) =Ny (e1,...,ex_1} UE)},
=1

it is sufficient to show that each summand in the right-hand side verifies (C.3). But this is immediate,
since, if eg = {i, j},
0 ifi—jin{ep,...,ex_1}UE,

NY(er,...,exbUE) — NY(ey,...,ep_1}UE) =
ANEL k ANEL k=1 —1 otherwise.

Exercise 3.37: Since lim Afzd (00)7\; o= <0’0)E’0, it follows from Exercise 3.34 that

lim VW

" (0= 0%A) = lim (o). 2= (000 % -
A1Zd A,pﬁ,z ATZd< 0>1\,ﬁ,0 ( 0>ﬁ,0

Therefore, we only have to check that

lim vE&Y (0 0%A) = VZI;‘:'; 0 < o0).

Observe that, forall0e Ac A E Zd,

FK,w e: FK,w e: FK,w e:
Vpﬁ,Z(O — 0%A) < VA:pb,Z(O < 0%A) < VA;pﬁ,Z(O —0%A),
the first inequality resulting from the FKG inequality (as can be checked by the reader) and the second
one from the inclusion {0 < 0°* A} c {0 — d°*A}. The desired result follows by taking the limit A { 79 and
then the limit A 1 z4,

Solutions of Chapter 4

Exercise 4.2: Let € > 0 and let ¢ be such that ZMB% K(0, j) =e. Let A« c A be a parallelepiped, large
enough to contain [p|A[] particles, but such that if either of its sides is reduced by 1, then it becomes
too small to contain those [p|A[] particles. Then [A«| = p|Al+ O(|0™A|). If . denotes the configuration
obtained by filling densely A, with particles (except possibly along its boundary), we get

~km) =% Y Y K, )+O0(0"Al.
i1€A4 jJEA&
J#i

Let then A} denote the set of vertices i € A« for which B(¢) + i = A«. Note that, whenever i € A}, we
have IZjEA* K(i, j) — x| < € and thus, since |Ax \ AL | < £|0™ A,
j#i

|k @+) = (= 3xpIAI)| < €l Al + O™ AD.

We conclude that lim Alzd [0k M) = (—%KP|A|)| / |Al < €. Since € is arbitrary, the claim follows.

Exercise 4.4: The proof is similar to the one for the free energy: if A; and Ay are two adjacent paral-
lelepipeds, ignoring the interactions between pairs composed of one particle in A and one in Ay gives

On1UABu Z ONy;5,uOn;6,1-

We conclude, as before, that the thermodynamic limit exists along any increasing sequence of paral-
lelepipeds.

Exercise 4.5: Let us denote by n! (resp. n°) the configuration in which 77 = m; foreach j#iand7n; =1
(resp. n; = 0). The difference
ok ") = pNA @) = (k") —uNA @™ == Y. KG, ymj—p
JeN, j#i
belongs to the interval (—x —u, —p1). Therefore, v, g ,, (ni=1 Inj=mjVjeA\ {i}) belongs to the interval
(1 + e Py, 171 + e=Plcrmy),
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Exercise 4.6: Since
|A|
1=Oppu< ) (lAl)eﬁ(%ﬂoN = (1+ePEHm)AL
N=o\ N

we have 0 < pg(u) < B 1log(1+ Ps *1). To bound O, from below, we keep only the configuration
in which 77; =1 for each i € A. This leads to pg(p) = g + p. The first two claims follow. The last two
claims about p g follow from the convexity of pg.

Exercise 4.7: As we did earlier, let € > 0 and take ¢ such that ¥ ;4 (s) K(i, j) < €. Then

Y Y KGj)=elA
ieA:  jen
i+B(0)cA’

and, since )
Y Y KG,j)=xelo™A],
ieN:  jeA'
i+Bygn
the conclusion follows easily.

Exercise 4.9: Consider the gas branch: p < pg. By the strict convexity of the pressure and the equiva-
lence of ensembles, there exists a unique p(p) such that

Tp(p) = pp)p— pp(p)).
4]

Since p < pg, we have p(p) < p« and p(p) is solution of p = aif Then, we use (i) the analyticity of the
pressure, which implies in particular that its first and second derivatives exist, outside p«, (ii) the fact,
0 PA;p S . a? pg

02 = fc(1 - ¢) > 0, which implies that 2
(iii) the implicit function theorem (Section B.28), to conclude that u(-) is also analytic in a neighbor-
hood of p. Since the composition of analytic maps is also analytic, this shows that fg(-) is analytic in a
neighborhood of p.

proved in Theorem 4.12, that > 0 whenever it exists,

Exercise 4.13: We only consider the case d = 1; the general case can be treated in the same way. Let us

identify each A < 7 with the interval J@ = {xeR: dist(x, Ay < %}, whose length equals J@ =g,
and let ];,a) def {yx : x€ J'@}. We have (up to terms that vanish in the van der Waals limit)

YU inf pw=iAV Y K,0,a) <AV Y Kyahs YY) sup g, (C4)
(a’) ’

a'>1 xe )y a'>1 a'>1 a'>1 xe gy

The conclusion follows, since the first and last sums of this last display are Darboux sums that converge
!
to [@(x)dx as IJJ(,“ =yt 0.

Exercise 4.14: Let N = [p|Al]. Since .4 (N; M) counts the number of ways N identical balls can be dis-
tributed in M boxes, with at most IA(” | balls per box, this number is obviously smaller than the number
of ways of putting N identical balls in M boxes, without restrictions on the number of balls per box. The
latter equals

N+M-1
M-1 |
Since
_ Al der
T Ay T AT

1

def e e .
AT} - 6, Stirling’s formula gives

and limAnZd Gpr=

1
lim lim —log
{—ocoN—oco N

N+M-1
M-1

) = [lim {1+6,)log(1+6,)+6,logds} =0.
—00

Exercise 4.15: Lete > 0 and n be large enough to ensure that f(x) —€ < f;(x) < f(x) +€ for all x € [a, b].
Since CE g < CE h whenever g < h, this implies CE f(x) —€ < CE f;(x) < CE f(x) +e¢ for all x € [a, b], which
gives the result.
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530 Appendix C. Solutions to Exercises

def _ (d-1/d
=<, p2dn

Exercise 4.16: Let ap . For all compact K< H™,

N
sup| Y ape - > ane’h"‘ <sup ) ape” Tehn < Y ape ",
heK n=1 n=1 heK n>N n>N

where xg def inf{fReh : he K} > 0, and this last series goes to zero when N — co. This implies that the
series defining y g converges uniformly on compacts. Since h — e~hn s analytic on H', Theorem B.27
implies that y g is analytic on H *. Moreover, it can be differentiated term by term an arbitrary number
of times, yielding, when / € R,

dk
—hn
liﬁrol Tk ‘ ‘( 1) hmnz;‘ln ane ) r;ln an.

d-1)/d
Alower bound on the sum is obtained by keeping only its largest term. Notice that x — x e‘Zdﬁx( !
is maximal at

X = x4 (k, B, d)def( k )d/(d—l)

2d-1)p

. def .. . NIV
Keeping the term 7 = X, reorganizing the terms and using Stirling’s formula, we get

> nfay, = nka,, = ckpd/ @D,
n=1

for some C- = C_(B,d) > 0. The reader may check that an upper bound of the same kind holds, with a
constant Cy < oo.

Solutions of Chapter 5
Exercise 5.1: In (5.9), just distinguish the case k = 1 from k = 2.

Exercise 5.2: We proceed by induction. The case n =1 is trivial. Now if the claim holds for r, it can be
shown to hold for n + 1 too, by writing

n+1 n

(]‘[(1+ak)]—17 A+ ans1) (]‘[ 1+ak)—1)+a,,+1.

Exercise 5.5: When using more general boundary conditions, the same sets S; can be used, but the sur-
face term e~2P19¢Si! in their weights might have to be modified if S; 3" A # &. The condition (5.26) can
nevertheless be seen to hold since the surface term was ignored in our analysis. Then, the contributions
to log:IL\F 6, coming from clusters containing sets S; that intersect 8™ A is a surface contribution that
vanishes in the thermodynamic limit, yielding the same expression for the pressure.

Exercise 5.6: First,

n n

P~ @)=Y ﬁn(z Ck% ) Yan )y, ]l Ckizki =) an ) 2" > [1 Ck;
n=1 k=1 n=1 ky,.kp=1i=1 n=1 m=n ky,kp=1 i=1
ky+-t+kp=m

m n
- Z{Z an Y Hcki}zm
m=1 n=1 ki,kp=1 i=1
ki+-+kp=m

However, since ¢ (¢! (2)) = z by definition, we conclude that the coefficient of z in the last sum, which
is aj c1, must be equal to 1, while the coefficient of z™™, m = 2 must vanish. The claim follows.

Exercise 5.7: The procedure is identical to that used in the proof of Lemma 5.10. The expansion, up to
the second nontrivial order, is given by

¥(0) — d log(cosh p) —log2 = 3 d(d - 1)(tanh f)* + d(d —1)(8d - 13)(tanh §)° + O(tanh ) . (C.5)

These two terms correspond, respectively, to sets of 4 and 6 edges. In the terminology used in the proof
of Lemma 5.10, one has: A =4,B =1,C =1 for the first term and A =6,B = 1,C = 1 for the second.
Therefore, the only thing left to do in order to derive (C.5) is to determine the number of such sets
containing the origin, which is a purely combinatorial task left to the reader.
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Exercise 5.8: First, the high-temperature representation (5.38) needs to be adapted to the presence of a
magnetic field. Indeed, (3.44) must be replaced by

Z wl((l,E)ehwi —
w;=%1

2cosh(h) if I(i, E) is even,
2sinh(h) if I(i, E) is odd.

Then, the class of sets E that contribute to the partition function is larger (the incidence numbers I(i, E)
are allowed to be odd), giving

Zf-ﬁ o = (2coshh) 1Ml (cosh g€l Y (tanh B)'#! (tanh 1) 19F!,

" Ecé&)

where 0E def {i ezd . (i, E) is odd } Notice that [tanh k| < 1 when |k| is small enough. Then, the
weights of the components are bounded by the same weight as the one used above, (tanh B! and the
rest of the analysis is essentially the same (keeping in mind that the class of objects is larger).

Exercise 5.9: Itis convenient to use the notion of interior of a contour depicted in Figure 5.2. Then, given
acollection I’ = {¥1,...,¥n} € T'p of pairwise disjoint contours in A, consider the configuration

'
w; = (_1)#{yel" sielnty}

Since AN U},Er/ Inty = @ when A is c-connected, it follows that w € QX. It is also easy to verify that

I (w) =T". This shows that the collection is admissible.

When A is not c-connected, this implication is not true anymore. For example, consider the set A =
B(2n) \ B(n). Because of the + boundary condition outside B(2n) and inside B(n), in any configuration
wE QX, the number of contours y € I''(w) such that B(n) c Inty has to be even. Observe that the latter is
a global constraint on the family of contours.

Exercise 5.10: See Exercise 3.20.

Exercise 5.11: As was done earlier, one can write for example
A A A
ng- Vg0 = X;A Vg0 - ng- Y5 (0.
XcA XA

The clusters that satisfy at the same time X ~ A and X ¢ A have a support of size at least d(A, A®). As
before, one can show that their contribution vanishes when A 1 74,

Solutions of Chapter 6

Exercise 6.2: Clearly, the family of subsets A € z4 is at most countable. Since each %(A) is finite and
since a countable union of finite sets is countable, € is countable. To show that %’s is an algebra,
observe that, whenever A € €, there exists some A € S and some B € Qp such that A= 1'[1_\1 (B). But,
since A = Hl_\l (B©), we also have A€ € €. Moreover, if A, A’ € €, of the form A = HKI (B), A = Hx,l (B,
then one can find some A" € S containing A and A’ (for example A” = AU A'), use the hint to express

A=T5,(By), A" =11}, (By), and write AU A’ =1}, (B U By). This implies AU A’ € €.

Exercise 6.4: For example, consider A = {0,1} x {0} and A = {0, 1}2. It then immediately follows from the
high-temperature representation that

(U(O,O)U(I,O]>§ = tanhﬁ ,

while
<o(0,0)a(1,o)>f = (tanh B+ tanh® B)/(1 + tanh? B).

Since these two expressions do not coincide when > 0, it follows that ,uf o (1'12)‘1 # ui .

Exercise 6.5: By definition,
aATA(Alm) = Y. mA(@A M TA(Al@ATAC),
WAEQA

which only depends on 7 5c. This also immediately implies that 77 is proper.
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Exercise 6.6: If f =14,

ump (1) :an(Alw)/,t(dw):anlA(w)p(dw) =umpaly).

For the general case, just approximate f by a sequence of simple functions of the form }_; a;1,4;.
Exercise 6.7: The proof of the first claim is left to the reader. For the second, observe that, for any A € .%#,
prA(A) = fﬂA(Alw)p(dw) = f lA(rAwAc)pA(drA)p(dec) =p(4),

so that p € 4(n). To prove uniqueness, let i € ¢ () and consider an arbitrary cylinder C = l'[/_\1 (E) with
base A. Then, one must have

H(C) = prp(C) = an(H,"\l (B) | w)p(dw) = fp"(E)u(dw) =B =p(O),

and therefore 1 must coincide with p on all cylinders, which implies that p = p.

Exercise 6.8: To show absolute summability, it suffices to prove that

> Joi= Y 10MB@Ir®
iez4\{0} rzl

is bounded. Since |#™B(r)| is of order rd’l, the potential is absolutely summable if and only if a > d.

Exercise 6.9: Clearly, d(w,n) = 0 with equality if and only if w =17. Since 1y, #n,;} < Liw,#1;} + Liz; ;) for

allie Zd, we have d(w,n) < d(w,7) +d(7,n), so d(-,-) is a distance.

Notice that if wg(r) =1B(y), then d(w,n) <2d X >, k912K %F (1), with e(r) — 0 as r — oo.

()

Suppose that o™ — w*. In this case, for any r = 1, there exists ng such that gy =

*
“B(r) for all

n = ng. This implies that dw'™,w*) —0as n— oo.
Assume now that d (", w*) — 0. In that case, for any k = 1, one can find n; such that d(w™,w*) <

(n _

—k J. . _ . . L. .
27" for all n = ny. But this implies that l{wg.”);éw;‘} =0 each time ||i[loo < k. This implies that wB(k) =

w’é(k) for all n = nj. Therefore, 0 — w*.

Exercise 6.10: Let C = 1'[1_\1 (A) be a cylinder. If w € C, then any configuration o’ which coincides with @
on A€ is also in C, which implies that C is open. Now let G < Q be open. For each w € G, one can find a
cylinder C,, such that G> C, 3 w. Therefore, G =Uyeg Cw- But, since € is countable (Exercise 6.2), that
union is countable. This shows that G € .Z.

Exercise 6.11: Assume f: Q — R is continuous but not uniformly continuous. There exists some € >0, a
sequence (8 ) ;>1 decreasing to 0 and two sequences @M) =1, (U(m)nzl < Q such that d(w("),n(”)) —
0 and |f(w™) - f(n'")| = € for all n. By Proposition 6.20, there exists a subsequence (w(”k))kzl and
some wx such that 0"k — . This implies also d(n[”k),w*) < d(n(”k],w("k)) +d@") w,) — 0. But,
since € < If(w(nk)) - flw)+ If(n(”k)) — f(w+)], at least one of the sequences (If(w(”k)) — f(@)Dg=1»
(If(n("k)) — f(w+)D k=1 cannot converge to zero. This implies that f is not continuous at w«, a contra-
diction. The other two facts are proved in a similar way.

Exercise 6.12: 1=2 is immediate since local functions can be expressed as finite linear combinations of
indicators of cylinders.
2=3: Let f € C(Q). Fixe > 0, and let g be a local function such that ||g — flleo < €. Then |u, (f) — pu(f)l <
[n(g) — u(g)l +2¢, and thus limsup,, |, (f) — 1(f)| < 2e. This implies that p, (f) — p(f).
3=1is immediate, since for each C € &, f = 1 is continuous.
154: Let my (k) % maxcee @k I1n (C) = p(O)]. Notice that my (k) < 1. Fixe > 0. Let ko ' ¢, Clearly,
as n— oo,
max mp(k) —0.

1<k<kgy

On the other hand, if k > kp, then m”T(k) < % <. Therefore,

. . mp (k)
limsup p(up, ) =limsup sup <e.
n—oo n—oo k=1 k

4=1: Let C € ¥ and fix some ¢ > 0. Let k be large enough so that C € ¥ (B(k)), and let ng be such that
0(un, w) < £ forall n = ng. For those values of n, we also have

(C)—pu(C)<  max (Ch-ucchl<e.
(@~ HOT= By 1~
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Exercise 6.13: Writing 5 f () = X7, (T wAc)7A (T |w) makes the statement obvious.

Exercise 6.14: The construction of ,ng j» using Exercise 3.16 and Theorem 6.5, is straightforward. We

check that /1? n€ 4(B, h). Let f be some local function and take A € z4 sufficiently large to contain the

supportof f. Lemma 6.7 (whose proof extends verbatim to the case of free boundary condition) implies

that, forany A € z4 containing A, (f) Again, since w — ()% islocal, one can

Aﬁh =UDnp ) i Aiph

letA? Zd and obtain <f>[5 n= ((f)A 5, h [5 w from which the claim follows.

Exercise 6.15: Assume there exists p € ¢4 (). Notice that
RNt =0)=ulin ) =pra(n™h = fn/\({n’} |w)p(dw) =
Then, p(NJr =1)= ZieZd p({n"i}). However, for all A € z4 containing 7,
uin ’l})—uﬂA({n < L
Al
so that p({fn~'}) = 0. We conclude that g(N* = 1) = 0. Finally, u(N* = 2) < Yizjpulw;=wj=+1) =0,

since p({w; = w; = +1}) = pry;, j(lw; = w; = +1}) = 0 for all i # j. All this implies that ¢(Q) = 0, which
contradicts the assumption that u is a probability measure.

Exercise 6.16: For example,

flw) = 11msup B w
| )l ieB(n)
has A(f) =0, but it is not continuous (see Exercise 6.23). In dimension d = 2, take € > 0 and consider, for
example,

wj— min w;).

1
w) = —_
g(w) k; e ( Jin

max
jeBk)
Then g € C(Q), but A(g) =

Exercise 6.17: By the FKG inequality, for any w € Q,

- —2h+4dp -1
V2 ply 5 (0= D) 2 g, (07 = 1) = {1+ e 4P
Therefore,
2
17 (i |w) =7 (; | 0)] € ———— .
wigil JAC) i\wj 1+ g2h—4dp

Since the expression in the left-hand side is actually equal to 0 when w i= w} forall j ~ i, we obtain

4d

cin = T haap’

which is indeed smaller than 1 as soon as i > 2df + % log(4d —1).

Exercise 6.19: Clearly, c; j(n) = 0 whenever j # i. Let j ~ i and consider two configurations w,n such
that o =y forall k # j. When s€{0,...,g—1}\{w;,nj}, m;(0; = s|n) =7m;(0; = s|w). Let us therefore
assume that w ; ji=S$ #0i j In this case,

—B#{k~i:n=s} Zr’
nioi=slp-m;0;=slw) = ————{1- -8 ’ﬂ}.

T L
Ziyy Zi

Now, observe that

z!

ﬂ -B_ /3(5171 nj 5(7 j +1) —-28

et )yt
Therefore, |7;(0; = s|n) —n; (0, =s|lw)| < l/Z{ L S < 1/(q —2d). This yields c,j(ﬂ) < 2/(q - 2d) and thus
c(m) <4d/(q—2d), which is indeed smaller than 1 as soon as g > 6d.

Exercise 6.20: We have seen in Exercise 6.8 that a > d is necessary for the potential to be absolutely
summable. Then,

b= sup 3 (B1-DI0sle= T 7 Lfjez?: j#o, Iileo =k} <24 3
iez4 B3i k=

d_ef
W bo(a,d).

For all @ > d, we have uniqueness as soon as 8 < o def 211) Observe that g | 0Owhen a | d.
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Exercise 6.21: Using the invariance of 5 in the second equality,

(CIMEINE :/nA(AIij)/,t(dw):fng;lA(ijlAlw)y(dw):/,47[6;1A(9]71A) :p(ajflA):ejy(A).

Exercise 6.22: By Theorem 6.24, we can consider a subsequence along which pp, converges: pin, = tx.

To see that p is translation invariant, 0;p« = u« forall i € Z4, it suffices to observe that, for any local
function f,

> 0j+ip(f)—- Y 9jﬂ(f)|SC”f”oo”i”golaexB(nk)l‘
jeB(ny) jeB(ny)

Then, p € ¢ () and Exercise 6.21 imply that uy, € ¢ () for all k. Since ¢ () is closed (Theorem 6.27),
this implies that y« € 4 ().

Exercise 6.23: Let w € Q. Since f is non-constant, there exists o’ such that f(w) # f(w'). Let o™ =

]w’ - Then w"Y — w. However, f(w") = f(w') for all n and therefore f(w') £ f(w).

wB(n B(n

Exercise 6.24: Let g be % 5c-measurable. We first assume that g is a finite linear combination ¥ jajl Aj
with Aje F pc. On the one hand,

(gV)TA(A) :an(Am)g(w)v(dw):Zaij A (Alw)v(do).
J J

On the other hand,

g(vnA)(A):ng(w')vnA(dw’):ZajvnA(AnAj):Zajan(AmAjm)v(dw).
J i

By Lemma 6.13, we have mp (AN Aj |w) = nA(AIw)lAj (w). This implies that (gv)mp = g(vmp). In the
general case, it suffices to consider a sequence of approximations g5 (each being a finite linear combi-
nation of the above type) with ||g; — gllcoc — 0, and use twice dominated convergence to compute

(gVIma(A) = lim (gaVIwA(A) = lim gn(vp)(A) = g(vap)(A).

The reader can find counterexamples that show that (6.63) does not hold in general when g is not .% yc-
measurable.

Exercise 6.25: Sincel, = (1+09)/2and 1p, = (1+0;)/2, p(ANB;) - pu(A)u(B;) = %(N(ani)—H(Uo)u(Cfi)}
By symmetry, uE‘O(aooi) = 150(0007) and p(og) = 24— D“E,O(UO)' (o) = A - D'“E,O(Ui)' By the
FKG inequality, '“E 0(0007) = u;; O(UO)NE 0(0i). We therefore conclude that u(ogo;) — p(oo)p(o;) =
(1-@A- 1)2)(;1; 0(00))2, which is positive for all > f.(2) and all A € (0,1).

Exercise 6.26: Extremality of ME h implies that, for any € > 0, there exists r such that 0 < (o;;0 j)E pS€
forall j ¢ i + B(r). Therefore,
— -2 et
Varﬂgh(mB(n))—|B(n)| I RGP
' i,jeB(n)
_ IB(r)|
< B2 > { Y <"i¢"j>E,h+ > <‘7i;‘7j>25—,h]f = Bm T
i€B(n) jEitB() e j€B(1) e’ 1B
<1 jei+B(r) =e
Letting n — oo and then € — 0 shows that lim;—c Varu+ (mp(y)) = 0. The conclusion follows from
B.h

Chebyshev’s inequality (B.18).
Exercise 6.27: On the one hand, if v is trivial on 74, then
f v(B)v(dw) =v(B)v(A) =v(AnB),
A

forall Be % and all A € 9, since v(A) is either 1 or 0. This shows that v(B) = v(B| J5) v-almost surely.
On the other hand, if the latter condition holds, then, for any A € I,

v(A) :f lAdv:f v(A| 7oo)dv:f v(A)dv:v(A)z,
A A A

which implies that v(A) € {0, 1}.

Revised version, August 22 2017
To be published by Cambridge University Press (2017)
© S. Friedli and Y. Velenik
www.unige.ch/math/folks/velenik/smbook



535

Exercise 6.28: A simple computation yields

1+m 1+m 1-m 1-m
— 2 _ _
an(pvn)_lvnl{dﬁm +hm 5 log 5 5 log 5 },
where we have introduced m def (O)p;- It is now a matter of straightforward calculus to show that the
unique maximum is attained when m satisfies m = tanh(2dfm + h).

Exercise 6.29: By (6.93), we have, for any n =0,

S Sy (HK) SRy (W
limsup s(ug) =limsup inf A(kE) < limsup Bun #'k) _ 2Bun H .
k—o00 k—oo NeZ Al k—oo 1B [B(n)|

Letting n — oo yields the desired result.

Exercise 6.32: We show that uﬂf =pforallA e Z4. For each local function f, we write

k k
pr () = {uny () =k af (O + ik n R (H - * 7 (O} +ukay (.

Since @ has finite range, w — n(/l\) (flw) is local. Therefore, /,Lk = u implies that pknf(f) — /,mf(f) as
k — oo. For the second term, proceeding as in (6.32) gives

k k
luka® () - ukn® (f)|sf|n‘k(f|w)—ni’ (flo)lpFdo) <21All fllo Y 195~ DKl
B30

which tends to zero when k — oo. Finally, since ,uk XACLE ,ukn%k H= yk(f), and ,uk(f) — u(f).

Exercise 6.33: Assume that there is a unique Gibbs measure at (89, hp). Observe that, setting g = ﬁ Yi~0000;
and A = - B, we have

< i ! * Isin; Isin;
(M) = lim ——log(expsA 0. _ 86, ho) — 8 (o, ho).
v Afzd [A(Q)] g< p{ je;(g)éw ]}>A;ﬁ0’h0 =8B, ho) = (Bo, o
We deduce that
al‘ _ W‘ tll/| _ oyIN8(B, hy)
oA~ Ia=0 0B~ B=po’ AT =0 " apt B=Bo"

Therefore, if wlsmg (B, hp) was not differentiable at fp, then the same would be true of ¥ and Proposi-
tion 6.91 would imply the existence of multiple Gibbs measures at (g, i), which would contradict our
assumption.

Solutions of Chapter 7

Exercise 7.2: Tt suffices to show that 7 enjoys the following property. For each k = 1, n is a minimizer

(possibly not unique) of JL”B( f);@0 among all configurations of QUB " To prove this, observe that the

configuration 7 possesses a unique Peierls contour y and check that the length of yn{x € R? : | X)loo < k}
cannot be decreased by flipping spins in B(k—1).

Exercise 7.3: The following construction relies on a diagonalization argument, as already done earlier in
the book. Fix some arbitrary configuration 7 € Q. For each n = 0, let ™ be a configuration coinciding
with 7 outside B(n) and minimizing 3?’5(");@. Order the vertices of Z%: i1,12,.... Let (ny k=1 be a

n
sequence such that wil Lk} converges as k — oo. Let then (ny ;) k=2 be a subsequence of (1 ;)1 such

that a)(.nz‘k]
ip

(n

(; mk )) k=1 converges as k — co. We claim that the configuration w defined by
" >

converges. We proceed in the same way for all vertices of 7% foreach m = 1, the sequences

def . n .
w; = n%un a)E. m’m), viez?,
—00

is a ground state. Indeed, let ' Z w and choose 1 so large that w and o' coincide outside B(n). Let N be
so large that w coincides with o™ on B(n+r(®)). Then, by our choice of o™,

HpWlw)= Y {op)-opw}

BRBm)#®
- / NIV — s (] o)
_BmB%);ée{(DB(wB(NmB(N)C)_(DB(w )} = Ao wp Mgy 1@ ) 20
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536 Appendix C. Solutions to Exercises

Exercise 7.4: 1. Consider the pressure constructed using a boundary condition 1 € gP¢"(®). On the one
hand, Zg A = e P A@  which gives ¥ (®) = —eq (17). On the other hand, for any w € Q']\,

A0 ) = o) + {00 () - K0} = Hps0 @) + o (0]1) = Haom).
This gives

7 ~BFp0m) a7
Zy(N<e Ao Q2,1

Since |7 | = 100/, this yields /() < —eq () + 5~ log|Q.
2. Observe that a configuration w € 07\ is completely characterized by its restriction to %(w). Therefore,

ZlN= Y e PHhe@ <P o ppIB0 2 P A e S mPPIB
wEQZ wEQZ BeA wEQZ:
B(w)NA=B

|A|
< P Y ('2') (190l PP) = P (1 1 1 1e=PP) A
n=0

This gives y(®) < —eq + ! log(1 +Qole BP) < —eq + 1 1Qple PP,

Exercise 7.5: Tt is convenient to work with the following equivalent potential:

- wiwi—545w;+w;) fB={i,j},i~],
dp() def iwj 2d(w, w]) i {l. jhi~j
0 otherwise.

We are going to determine g, (®). For any pair i ~ j,

1-(h/d) ifh=+2d,
bii,jy =min®; j (@) =1 -1 if |l <2d,
1+ (h/d) ifh<-2d.

(The three cases correspond to w; =w; =1, w; =wj = -1 and w; # w; respectively) The cases h = +2d
are discussed below; for all other cases:

n*} ifh>+2d,
gm(@ =< n*,nT} iflhl<2d,
n~} if h<-2d,

_ d _
where 7, 7™ are the two chessboard configurations defined by 77 4t _1Zk=1% and n™ © —p*. When
h =+2d, gm (®) contains infinitely many ground states. For example, if h = +2d,

gm(®):{w€Q:§Ei,j€Zd,i~j, such thatw; =w; = ~1}.

Exercise 7.7: Forall{i,jle 7, w;jw Ji is minimal if and only if w; # @ Iz and this cannot be realized simul-
taneously for all three pairs of spins living at the vertices of any given triangle. This implies that ® is not
an m-potential.

For the triangle T = {(0,0), (0, 1), (1, 1)}, let

D7 (W) = w0,0)@(0,1) +@O,1HP(,1) +O0,0@(1,1)-

Define @ similarly on all translates of T. Then ® is clearly equivalent to @, and can be easily seen to be
an m-potential; each ®7 being minimized if the configuration on T contains at least one spin of each
sign. This allows to construct infinitely many periodic ground states for ®. For example, any configu-
ration obtained by alternating the spin values along every column necessarily belongs to g, (®). Since
this yields two possible configurations for each column, one can alternate them in order to construct
configurations on Z2 of arbitrarily large period.

Exercise 7.8: Clearly, the constant configurations 7+ and n~ are periodic ground states, and their energy
density equals ep = a. Then, any other periodic configuration will necessarily contain (infinitely many)
plaquettes whose energy is § > a. By Lemma 7.13, this implies that gP®"(®) = {n™,n~}. Examples of
non-periodic ground states are obtained easily, by patching plaquettes with minimal energy.

To see that Peierls’ condition is not satisfied, consider a configuration w x 1, which coincides
everywhere with 7~ except on a triangular region of the following type, with L large:
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L
0 0 0 06 0 06 0 06 0 06 0 0
0 0 0 00 0 0 060 0 00
o o0 0le © 0 06 0 00 00
06 0 0 00 6 © @ ® 0 0 0
eeeeiejLeeeeeeeL
eeeeeejLeeeeee
6 0 0606000066 6 0060
eeeeeeeiejL@Jeee
6 6 06 0 0 0 060 0 0 060 00
06 0 06 0 0 0 0 06 0 06 0 0

Notice that all points along the boundary of the triangle are incorrect, which implies that |2 (w)|
(and therefore |I'(w)|) grows linearly with L. Nevertheless, for each L, there are exactly three plaquettes
with a non-zero contribution to 7% (w 1), indicated at the three corners of the triangle. This means that
o (w|n) is bounded, uniformly in L: Peierls’ condition is not satisfied.

Exercise 7.9: Let
-1 . . .
Wé » def [B(rs)| l{“’B:”lB} if B is a translate of B(r4),

otherwise.

Suppose first that m € I. In that case, setting Al =0forallie Iand AJ =1 >0 for all jefl,....,m\ 1, we
obtain, for each k€ {1,2,...,m},

( k) g<D0+/1 ifkef{l,...,m\I,
e L -
@0+ r AW & ep0 ifkel.

When m ¢ I, we proceed similarly by setting Al =0forallie {,...,m}\Iand A=A <0forall jel
The reader can check that these potentials do not create new ground states.

Exercise 7.10: By construction,
Ky @1f) = Hp(wn) = plT ()] 2 pl B (W),

where we used Peierls’ condition for ®. Now, observe that if a vertex 7 of the renormalized lattice is not
#-correct, there must exist a vertex of the original lattice such that j € ir, +B(374) and j is not #-correct.
Therefore, |Z(@)| = |BBr)| L |Bw)| = 3~ B(r:)| "L |B(w)|. Thus, since [T(@)| < 39| B(®)|,

plBW)| = p3~4B(ra)| " 1B@)| = 03724 |B(r)| " IT@)].

We conclude that Peierls’ condition holds for ® with a constant p3’2d IB(rs) I’l‘

Exercise 7.11: Leti,je€ A; and consider a path 7 = (i1 = i,12,...,ip—1,in = j), With doo (i, ig4+1) = 1. If

. def . . def . . .
7 exits AY, let 51 = min{k: i€ Ay} -1 and s, = max{k: i € As} + 1. By construction, i, ,is, €Y.
Since ¥ is connected, there exists a path from i, to is, entirely contained inside y. But this allows us to
deform 7 so that it is entirely contained in A;.

Exercise 7.12: For ease of notation, we treat the case of a single contour; the same argument applies in
the general situation. Proceeding exactly as we did to arrive at (7.34), treating separately the numerator
and the denominator, we arrive at the following representation:

Treap yerw' ), Treas Myerw’ ()

= =w'(y)) =w' @),
ZI‘QQ{O HYGFW#(Y) ¥ ZI‘EMO HyeFW#(Y) r

uiﬁirIBYU
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538 Appendix C. Solutions to Exercises

where we have introduced the following families of contours:

o) def {I' compatible}, A def {lC € o : ¥ is an external contour of '},

while .7 is the set of all T € %) such that each y € T is compatible with y’ and there does not exist y € T
such that ¥’ cinty.

Exercise 7.13: Notice thatif Ry, Ry are two parallelepipeds such that Ry UR; is also a parallelepiped, then
Z(R1UR2) = Z(R1)E(R2). Namely, the union of two compatible families contributing to Z(R1) and Z(Ry)
is always a family contributing to Z(R; U R2). One can then use Lemma B.6.

Solutions of Chapter 8

Exercise 8.1: One could use a Gaussian integration formula, but we prefer to provide an argument that
also works for more general gradient models. We can assume that A is connected. Consider a spanning
tree 1 T of the graph (A,&)) and denote by Ty the tree obtained by adding to T one vertex iy € 3°A
and an edge of é’Ab between iy and one of the vertices of T; we consider i to be the root of the tree
To = (Vp, Ep). Clearly,
Hopip,m (@) = % DI —w))? d;f;gZTo;ﬁ(w).
{i,J}€Ey
Of course, B
Z7\;ﬁ,m sfe_%TO‘ﬁ(wVOmO) H dw;.
ieA
Let i € A be aleaf 2 of the tree Ty. Then, denoting by j the unique neighbor of i in Tp,

o _ B _ )2 © _p 2
f e 4d(“’t ‘”J) dwi:f e 1d* dx=/4nd/p.

—00 —00
We can thus integrate over each variable in A, removing one leaf at a time. The end result is the upper
bound A2
7]
Zppm= {ama/p}' ™=,

Exercise 8.2: The problem arises from the fact that, when no spins are fixed on the boundary, all spins
inside A can be shifted by the same amount without changing the energy. This can already be seen in
the simple case where A = {0, 1} c Z, with free boundary condition:

_ P won—w)? 4adn
oz _ (wp—wq) _ _
ZA;ﬂ,O‘f{fe id dwl}dwo—ﬂ 5 fdw0—+oo.

Exercise 8.3: The first claim follows from the fact ¢, -
respect to the density (8.10) (with a, = 0) vanishes.
Let us turn to the second claim. First, observe that one can assume that all vertices iy, ..., 2, are
distinct; otherwise for each vertex j appearing r;j > 1 times, introduce r;j — 1 new random variables,
perfectly correlated with ¢ ;.
The desired expectation can be obtained from the moment generating function by differentiation:

@iy, is an odd function, so its integral with

0271

Enl@js iy 1= —2E efA“/’A‘ .
A[(pll <pt2n] at,-l--~ati2n A[ ]tAE()

The identity (8.9) allows one to perform this computation in another way. First,

exp{%tA.ZAtA} = Z #an{ Z A3, k)tjl’k}n.
n=0 jikeA
Therefore,
92" n
H ZA(jmykm)y
{1 k1beoljnkntcA m=1
;anlfjm,km}={i1wni2n}

1 1
——————€expy3 A ZAL ‘ ==
6ti1 ~~6t,~2n p{z ATEA A} tA=0 nt

where the factor 27" was canceled by the factor 2" accounting for the possible interchange of j,;; and
km for each m =1,..., n. Now, we can rewrite the latter sum in terms of pairings as in the claim. Note
that, doing so, we lose the ordering of the n pairs {j;, ki;}, so that we have to introduce an additional
factor of n!, canceling the factor 1/n!. The claim follows.

1A spanning tree of a graph G = (V, E) is a connected subgraph of G which is a tree and contains all
vertices of G.
2 leaf of a tree if a vertex of degree 1 distinct from the root.
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Exercise 8.4: The procedure is very similar to the one used in the previous exercise. We write C;;j =
E(pi9j). Then, using (8.11) and (8.12),

Eleor]= Y, ¥ E[[Tef]T]4
n=0(r;)jepA<Zz0: i i
iri=2n

=Y X {Z [1 C//'}Ht,-ri

n20(ry)jeaSZ=0: Pl e P i

Yiri=2n
1 & i
— -n P
- Z Z w2 { Z H Clmjm}ntl‘l
n=0(r;)jepcZ=0: {1, kbl knicA m=1 i
Xiri=2n 1 Ujm=iy ik =ip) =T, YiEA
n
_ 1o-n T
- Z 2 { . Z H Clﬂl]mtlmt]m}
n=0 {1, k1}olin.kntcAm=1

1,— n 1
= mZ n{ Z Cijtitj} :exp{ Z QCijt,-tj}.
JEA i, JEA

n=0 i

Exercise 8.6: Let (§;)j=_,_1,.,n be iid. random variables with distribution &; ~ .#7(0,2). Let Ly def

é_p-1+--+¢&-1and Ry, def &o+ -+ &yn. The density of ¢ coincides with the conditional probability
density of L, given that L, + R, =0, which is equal to

12

1,232 ;
an (X)fR,, (=x) _ {\/47l(n+1) e " } _ 1 e—% (nxjjl)
0 1 ~ V2am+D ’
JLa+R, 0 -

so that g ~ A (0,n+1).

Exercise 8.7: Since ¢ is centered, ¢ also is. Then, observe that
ER;O[QUA".T’A] — E?\;O[eifA"PA]’
where 7; def tjforalli#0and 7 = — X jea\(} ¢;. From (8.8), we get
EQ ol Or ] =exp{-3 Y GaG, phifjt=exp{-3 Y Gali,)ritj},
i,jeA i,jEA\{0}

with Gy (i, j) given in (8.34).

Exercise 8.10: Whend =1, (— ﬁA +m?)u=0becomes

U+ =21+ mz)uk —Up_q-
For any pair of initial values up, 11 € R, we can then easily verify that uy, k = 2, is of the form
U = Az’j +BzK,

where z+ =1+ m? +v2m? + m# and A, B are functions of up, u1. The conclusion follows, since z— =
1/Z+.

Solutions of Chapter 9

Exercise 9.1: Since (S; ~Sj>y — 0 uniformly as || j — il — oo, we can find, for any € > 0, a number R such
that (S; -Sj)# <eforall i, j such that || j — i|l2 > R. Consequently, for any i € B(n),

Y (Si-Sju=<IBM®I+elBnl.
jeBm)
It follows that
limsup(llmg ) I3), =limsup|B(m)| > Y. ($;-S;)u <limsup[B(m)| ™" max Y (S;-S;)u<e.
n—oo n—oo i,jeBn) n—oo i€B() jeB(n)

Since € was arbitrary, the conclusion follows.
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Exercise 9.3: Simply take HSW (1= Uilloo/m)m.

Exercise 9.4: First, observe that

Y (FUlillee) = FULlIeo))? Z L) - fk+1)?.

{i, ]}Eé"B(m =

By the Cauchy-Schwarz inequality,

{nil(f )~ fk+ 1)} {Z k47 (f ) = f e+ 1)) }{Z k@Dl
k=¢
Therefore,
Y (Uil - FUljlleo))? {i Fle+1) }z{nfk—(d—n}‘l
0jeER k=¢ k=¢

> (fO-fm)*{ ¥ k—(d—n}*l -y k—(d—l)}’l

k=¢ k=¢

Exercise 9.5: Fix M = 2 and partition (-n,n] into intervals Iy,...,Ip; of length 27/M. Write v, def
”g(n)-ﬁ(ﬁo € I;). Then, (9.9) implies that [v,; —vg| < ¢/Ty(d) for all 1 < r,s < M and thus |v, — ﬁl =

ﬁ IZé\i 1 Vr =v5)| < ¢/ Tp(d). The first claim follows. The second claim is an immediate consequence of
the first one.

Exercise 9.7: Writing S; = (cos?;,sind;) gives §;-S; = cos(9; — 9;), so the partition function with free
boundary condition can be written as

n
Bcos@;—0;_1)
ZEip f d0-n fdenlz_nﬂe T

Now, observe that

s /A
[ douepoos0n0n-0 - [* arePeost —zmpy py.
=7 -

One can then continue integrating successively over 8,,_1,...,0_,+1, getting each time a factor 2m Iy (),
with a final factor 27 for the last integration (over 6_). Therefore,

Zg 5 = @m P15 P,

and, thus, 9(B) = lim;—co |B(1)| 7! loglgmm6 =log(2n) +logIp(B). The computation of the numerator
of the correlation function (Sg - S i>§ (3B is similar. We assume that i > 0. Integration over 8y,...,0;,1 is

carried out as before and yields Io(ﬁ)"’i . The integration over 0; yields, using the identity cos(s+ ) =
cosscost+sinssint,
/g 0.—0 Y/
f dgieﬁcos( i—0i-1) cos(6; —6g) :f dTeﬁCOSTCOS(T+9i_1 ~0p)
_r -

T
=cos(B;_1 — Bo)f drePOST cos(r) = 2111 (B) cos(O;_1 — Op) .
=7

The integration over 0;_1,...,0; is performed identically. Then, the integration over 6y, ...,0_ is done
as for the partition function. We thus get, after simplification,

(So-S;)2 _ 271(27110(.[5))"(27111(ﬁ))i(ZnIo(ﬁ))nfi _ (Il (ﬁ))li\
0 " B(n);p 2H(2n[0(ﬁ))2" 710(ﬁ) .

Letting n — oo yields (So - S;)y = (I B ().
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Solutions of Chapter 10

Exercise 10.2: Suppose first that ©(u) = p. In this case, for any f, g € A4 (©),
(fO@u=(OFOE@Nu=O(Ngyu-

Conversely, suppose that (f@)(g)}u = (g@(f)}w forall f,ge A+ (O). Let Ac QgL'+(®], Bc QOTL"(G) be
T._©) = Tr..(©
arbitrary measurable sets and set A def 4 x Q, £-® , B d:efQO L+® B,f=1;andg= 1g - We then

have o o
wANB) = (fOR) = Oy = OANB)).
Since events of the form AN B generate the product o-algebra, we have shown that p = O (u).

d .
Exercise 10.3: Consider Qg = {+1}. Let ’,w” € Q; be defined as follows: w'l. = (—l)zkzl Y| w’l.’ = —w;.'.

de1

Let p = 58, +6,r). Then u is translation invariant but not reflection positive. Namely, let © be

any reflection through the edges and let e = {i, j} € &7, be such that j = ©(i). Let f( w) = w, Then
(fOf)Hy=-1<0.

Exercise 10.4: As a counterexample to such an identity, one can consider, for example, the Ising model
on Tg with blocks of length B = 2 and the four Ay-local functions given by fo = 14+, f1 = 1+—, f2 =

1-_,f3=1_4,wherelgy d:efl{gozsya.lzsl).
Exercise 10.5: Write f(S;,Sj) = —a8;-8;—-(1- a)S}S}.. The first term is minimal if and only if §; = S ;.
The second term is minimal if and only if S} = S} = +1. The claim follows.
Exercise 10.6: This is immediate using the following elementary identities:
|TZ|_1 3 U0 = 6jk foralljkeTr, and Tty AP=pJ = 8p,pr forallp, peT].

peT} JeTr

Exercise 10.7: We will use twice an adaptation of the discrete Green identity (8.14) on the torus. First,
since (using ¥ jet, (Ah); = 0 for the last identity)

Zyph) 2
—— =(expi-2f ). (§;=S))-(hj—hp-B Y lhi-hjl5)
Z1,5(0) < { e ] wies, P 2}>L,ﬁ
<exp{2ﬁ Y S;-(An);-p Y ||hi—hj||§}> )
ieTy, {i,jle&y, L;p
=(expl2p ¥ 8i-So)-am;i-p Y Wmi-mjid})
€Ty (i, jleéy Lip

the equivalence of (10.43) and (10.45) follows.
Now, observe that the Boltzmann weight appearing in v, 5 can be written as a product:

eXP(—ﬁ Z Hsi—sj'llg):klﬁlexp(—ﬁ Z ((Pz k)ZJ'

{i,jle&L {i,jleéL,

where we defined the collections (pf def \/4613[38{.C . Therefore, the families (q)f)iﬂ ,, and ((pf )ieT, are
independent of each other if k # ¢ and each is distributed as a massless Gaussian Free Field on T; .

Of course, the latter is ill-defined on the torus. However, notice that the expectation we are interested

in only involves the field (,oiC def (p (,0(]]C . Adapting the arguments of Chapter 8 (working on T; with

0 boundary condition at the Vertex {0}), the reader can check that the latter is a well-defined centered
Gaussian field with covariance matrix

Grp\oy (i, e Z P;(Xn=j,10>n),
n=0
that is, the Green function of the simple random walk on T, killed at its first visit at 0. Moreover, this
Green function is the inverse of the discrete Laplacian — ﬁ AonTy.
We can thus fix k € {1,2,...,v}, define

def def
W= bier,, € (/BaBR) i, 0 @bt
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and use (8.9):

K.k
<exp{2ﬁi§L(Ahk)i (S{»C - Sg)}>VL;/3 = <etL ¢L>VL;[3 = exp(% tllf -GT,\(0) tI,f)

Changing back to the original variables and using the fact that the Green function is the inverse of the
discrete Laplacian, the conclusion follows:

%tllf . GTL\{()} l’f = —ﬁAhk . {G]IL\{O}(—ﬁA)hk} = —ﬁAhk . hk.

Solutions of Appendix B

Exercise B.1: For the first inequality, it suffices to write y as y = ax+ (1 —a)z, with a = (z—y)/(z—x). The
second follows by subtracting f(x) on both sides of (B.5).

Exercise B.4: Assume first that f(x) = 0 for all x € I. Then, forall x,y € I,
y y u
I :f(x)+f f’(u)du:f(x)+f {f’(x)+f ' wdvlduz fx)+ 0y -0,
X X X

This implies that f has a supportingline at each point of I and is thus convex by Theorem B.13. Now if f
is convex, then, for all x € I and all & # 0 (small enough), (f'(x+ h) — f'(x))/h = 0, since f’ is increasing.
By letting i1 — 0, it follows that f”/(x) = 0.

Exercise B.5: Assume f is affine on some interval I = [a, b], and consider a < ap < bg < b. On the one
hand, by Theorem B.12 and since each f;, is differentiable, 0 = f’(bg) — f(ag) = lim, (f},(bo) — f},(ag))-
On the other hand, f/ = ¢ and the Mean Value Theorem implies that, uniformly in n, f},(bo) — f5,(ag) =
c(bg — ap) > 0, a contradiction.

Exercise B.6: Tt suffices to write, for all x, y;, y2 and a € [0, 1],

xay+l-a)y) - f=afxyi - fO}+Q-a){xyp - f@}<af* G+L-a)f (y2).

Exercise B.7: By explicit computation: f*(y) = % ¥, N 44% Y413, f3 () = yl, which are all convex.
Furthermore, fl** =11, 2** = f» but f3** # f3 since 3** (x) =0if |x| < 1, +oc0 otherwise.

Exercise B.8:
F**(x) =sup{xy-sup(yz- f(@)} < f(x).
y Z
[ —
=yx—f(x)

Exercise B.10:

_< f7(xJ N\ / ! W _\1 o /1 *
X

Exercise B.11: Let x, — x. Then, forany z€ I,

l%rrlioréff* (xp) = liminf sylérl){xny -f}= l%rrlioréf{xnz -f@}=xz-f(2).
Therefore, liminf,—.oo f* (xp) = sup e {xz— f(2)} = f* ().
Exercise B.12: Since f(x) = f(xg) + m(x — xp) for all x, we have f*(m) = xom — f(xg). By definition,

f*(y) =sup,{yx— f(x)}, and so
Fr ) =x0y - fxo) = xo(y—m) + (xom— f(x0)) = x0(y — m) + f* (m).

Exercise B.14: Since epi(g) is convex, closed and contains epi(f) (since g < f), we have

CEf(x) =inf{y: (x,y) e C} =inf{y: (x,y) €epi(g)} = g(x).

Exercise B.15: Let u be the counting measure on (N, Z(N)): p(n) def 1 forall n e N. Let (x;);>1 < I be
any sequence converging to xo and consider the sequence (fy);>1 of functions f;, : N — R defined by

fu(k) d:efék(xn). Then Y i &x (x) = [ fndp, so the result follows from Theorem B.40.
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