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C Solutions to Exercises

In this appendix are regrouped the solutions to many of the exercises stated in the main body of the
book. Some solutions are given with full details, while others are only sketched. In all cases, we rec-
ommend that the reader at least spends some time thinking about these problems before reading the
solutions.

Solutions of Chapter 1
Exercise 1.1: Fix n ∈ Z>0 and observe first that our system Σ, with parameters U ,V , N can be seen as a
system Σ′ composed of two subsystems Σ1,Σ2 with parameters 1

n U , 1
n V , 1

n N and n−1
n U , n−1

n V , n−1
n N .

Then, by additivity,

SΣ(U ,V , N ) = SΣ
′
( 1

n U , 1
n V , 1

n N , n−1
n U , n−1

n V , n−1
n N ) = SΣ( 1

n U , 1
n V , 1

n N )+SΣ( n−1
n U , n−1

n V , n−1
n N ) ,

where we used the fact that each of the two subsystems is of the same type as the original system and is
therefore associated to the same entropy function. Iterating this, we get

SΣ(U ,V , N ) = nSΣ( 1
n U , 1

n V , 1
n N ) .

Using this relation twice, we conclude that, for any m,n ∈Z>0,

SΣ( m
n U , m

n V , m
n N ) = mSΣ( 1

n U , 1
n V , 1

n N ) = m
n SΣ(U ,V , N ) .

This proves (1.7) for λ ∈ Q. Since SΣ is assumed to be differentiable, it is also continuous. We can
therefore approximate any real λ> 0 by a sequence (λn )n≥1 ⊂Q, λn →λ, and get

SΣ(λU ,λV ,λN ) = lim
n→∞SΣ(λnU ,λnV ,λn N ) = lim

n→∞λn SΣ(U ,V , N ) =λSΣ(U ,V , N ) .

Exercise 1.2: Decompose the system into two subsystems Σ1,Σ2. By the postulate, SΣ(U ,V , N ) maxi-
mizes SΣ(Ũ1,Ṽ1, Ñ1)+SΣ(Ũ2,Ṽ2, Ñ2) over all possible ways of partitioning U ,V , N into Ũ1 +Ũ2, Ṽ1 + Ṽ2
and Ñ1 + Ñ2. This implies in particular that

SΣ(U ,V , N ) ≥ SΣ
(
αU1,αV1,αN1

)+SΣ
(
(1−α)U2, (1−α)V2, (1−α)N2

)

=αSΣ(U1,V1, N1)+ (1−α)SΣ(U2,V2, N2) ,

where the equality is a consequence of (1.7).

Exercise 1.3: Fix V , N ,β1,β2 and α ∈ [0,1]. For all U ,

{αβ1 + (1−α)β2}U −S(U ,V , N ) =α{β1U −S(U ,V , N )︸ ︷︷ ︸
≥F̂ (β1 ,V ,N )

}+ (1−α){β2U −S(U ,V , N )︸ ︷︷ ︸
≥F̂ (β2 ,V ,N )

} .

Taking the infimum over U on the left-hand side,

F̂ (αβ1 + (1−α)β2,V , N ) ≥αF̂ (β1,V , N )+ (1−α)F̂ (β2,V , N ) ,

so F̂ is concave in β. A similar argument, exploiting the concavity of S, shows that F̂ is convex in V , N .
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Exercise 1.4: The extremum principle follows from the one postulated for S. Indeed, suppose that we
keep our system isolated, with a total energy U (and the subsystems can exchange energy, which can
always be assumed in the present setting, since they can do that through the reservoir). Then, the equi-
librium values are those maximizing

S(U 1,V 1, N 1)+S(U 2,V 2, N 2),

among all values satisfying the constraints on V 1, N 1,V 2, N 2 as well as U 1 +U 2 = U . Therefore, the
same values minimize

βU − (
S(U 1,V 1, N 1)+S(U 2,V 2, N 2)

)= (
βU 1 −S(U 1,V 1, N 1)

)+ (
βU 2 −S(U 2,V 2, N 2)

)
,

under the same conditions. Taking now the infimum over U yields the desired result, since this removes
the constraint U 1 +U 2 =U .

Exercise 1.5: The critical points of the function v 7→ p(v) are given by the solutions of the equation
RT v3 = 2a(v −b)2, which is of the form f (v) = g (v). When v > b, this equation has zero, one or two
solutions depending on the value of T . The critical case corresponds to when there is exactly one solu-
tion (at which f (v) = g (v) and f ′(v) = g ′(v)). This happens when T = 8a

27Rb .

Exercise 1.6: Writing SSh(µ) =∑
ω∈Ωψ(µ(ω)), where ψ(x)

def= −x log x, we see that SSh is concave.

Exercise 1.8: The desired probabilities are given by µ(i ) = e−βi /Zβ, where Zβ = ∑6
i=1 e−βi and β must

be chosen such that
∑

i iµ(i ) = 4. Numerically, one finds that

µ(1) ∼= 0.10,µ(2) ∼= 0.12,µ(3) ∼= 0.15,µ(4) ∼= 0.17,µ(5) ∼= 0.21,µ(6) ∼= 0.25.

Exercise 1.9: Letting V ′ =V − N
2 and writing N1 = N

2 +m, N2 = N
2 −m, we need to show that

m 7→ ( N
2 +m)!( N

2 −m)!(V ′+m)!(V ′−m)!

is minimal when m = 0. But this follows by simple termwise comparison. For the second part, expressing
the desired probability using Stirling’s formula (Lemma B.3) shows that there exist constants c− < c+
such that if V and N are both large, with N

2V bounded away from 0 and 1, then

c−p
N

≤

( V
N
2

)( V
N
2

)

(2V
N

) ≤ c+p
N

.

Exercise 1.10: Note that the second derivative of logQΛ;β,N with respect to β yields the variance of H
under the canonical distribution and is thus nonnegative. We conclude thatβ 7→ − logQΛ;β,N is concave.
Moreover, since the limit of a sequence of concave functions is concave (see Exercise B.3), this implies
that f̂ is concave in β.

Exercise 1.12: Plugging µΛ;β(U ),N in the definition of SSh(·) gives

SSh(µΛ;β(U ),N ) =β(U )〈H 〉µΛ;β(U ),N + log ZΛ;β(U ),N =β(U )U + log ZΛ;β(U ),N . (C.1)

By the Implicit Function theorem, U 7→β(U ) is differentiable. So, differentiating with respect to U ,

∂SSh(µΛ;β(U ),N )

∂U
= ∂β(U )

∂U
U +β(U )+ ∂

∂β
log ZΛ;β,N

∣∣∣
β=β(U )︸ ︷︷ ︸

=−U

∂β(U )

∂U
=β(U ) ,

as one expects from the definition of the inverse temperature in (1.3). Then,

U −TUSSh(µΛ;β(U ),N ) =U −TU {β(U )U + logZΛ;β(U ),N } =− 1
β(U ) logZΛ;β(U ),N ,

in accordance with the definition of free energy given earlier.

Exercise 1.13: Since MΛ(−ω) =−MΛ(ω),

〈MΛ〉Λ;β,0 =
∑

ω∈ΩΛ
MΛ(ω)µΛ;β,0(ω) = 1

2

∑
ω∈ΩΛ

MΛ(ω)
{
µΛ;β,0(ω)−µΛ;β,0(−ω)
︸ ︷︷ ︸

=0

}= 0.
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Solutions of Chapter 2

Exercise 2.2: If one writes H̃N ;β,0 = H CW
N ;β(N ),0

, where β(N )
def= Nβ/ζ(N ), then either β(N ) ↑ +∞ or

β(N ) ↓ 0. The conclusion now follows from our previous analysis.

Exercise 2.3: The analyticity of h 7→ mCW
β

(h) follows from the implicit function theorem (Theorem B.28).

Exercise 2.6: Let us writeϕ(y) ≡ϕβ,h (y). Notice that, since β> 0,ϕ(y) ↑ +∞ as y →±∞, sufficiently fast

to ensure that
∫ +∞
−∞ e−cϕ(y) dy <∞ for all c > 0. Depending on β,ϕ has either one or two global minima.

For simplicity, consider the case in which there is a unique global minimum y∗. Let ϕ̃(y)
def= ϕ(y)−ϕ(y∗),

Bϵ(y∗)
def= [y∗−ϵ, y∗+ϵ] and write

∫ ∞

−∞
e−N (ϕβ,h (y)−miny ϕβ,h (y)) dy ≥

∫

Bϵ(y∗)
e−N ϕ̃(y) dy .

Let c > 0 be such that ϕ̃(y) ≤ c(y − y∗)2 for all y ∈ Bϵ(y∗). Then

p
N

∫

Bϵ(y∗)
e−N ϕ̃(y) dy ≥

p
N

∫

Bϵ(y∗)
e−cN (y−y∗)2

dy = 1p
2c

∫ +ϵ
p

2cN

−ϵ
p

2cN
e−x2/2 dx ,

and this last expression converges to
p
π/c when N →∞.

Solutions of Chapter 3

Exercise 3.1: Notice that |B(n)| = (2n +1)d and that

|∂inB(n)| = |B(n) \B(n −1)| = (2n +1)d − (2n −1)d ≤ d(2n +1)d−1 ,

which shows that |∂inB(n)|
|B(n)| → 0. Any sequence Λn ↑ Zd whose boundary grows as fast as its volume,

such asΛn =B(n)∪{
(i ,0, . . . ,0) ∈Zd : 0 ≤ i ≤ en}

, will not converge in the sense of van Hove.

Exercise 3.5: By a straightforward computation, mβ(h) = sinh(h)/
√

sinh2(h)+e−4β.

Exercise 3.6: 1. The partition function with free boundary condition can be expressed as

Z∅
B(n);β,h

=
∑

ωi =±1
i∈B(n)

n−1∏
i=−n

eβωiωi+1 = e2βn ∑
ωi =±1
i∈B(n)

n−1∏
i=−n

eβ(ωiωi+1−1) .

Each factor in the last product is either equal to 1 (if ωi =ωi+1) or to e−2β. Therefore,

Z∅
B(n);β,h

= 2e2βn
2n∑

k=0

(
2n

k

)
(e−2β)k = 2e2βn (1+e−2β)2n .

This yields ψ(β) = logcosh(β)+ log2, which of course coincides with (3.10).

2. In terms of the variables τi ,

Z∅
B(n);β,h

=
∑

ω−n=±1

∑
τi =±1

i=−n+1,...,n

n∏
i=−n+1

eβτi = 2
(
eβ+e−β

)2n .

Exercise 3.8: Notice that any local function can be expressed as a finite linear combination of cylinder
functions, which are of the following form: f (ω) = 1 if ω coincides, on a finite region Λ, with some
configuration τ, and zero otherwise. Since each spin ωi takes only two values, there are countably
many cylinder functions, we denote them by f1, f2, . . .. Since, for each j , the sequence (〈 f j 〉ηn

Λn ;β,h
)n≥1 is

bounded, a standard diagonalization argument (this type of argument will be explained in more detail
later, for instance in the proof of Proposition 6.20) allows one to extract a subsequence (nk )k≥1 such

that limk→∞〈 f j 〉
ηnk
Λnk ;β,h

exists for all j . The existence of 〈 f 〉 def= limk→∞〈 f 〉ηnk
Λnk ;β,h

for all local functions

f follows by linearity and defines a Gibbs state.

Exercise 3.9: Simply differentiate 〈σA〉+Λ;J,h with respect to Ji j or hi and use (3.22).
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Exercise 3.10: Observe that, to show that f is nondecreasing, it suffices to show that f (ω) ≤ f (ω′) when-
ever there exists i ∈Zd such that ωi =−1, ω′

i = 1 and ω j =ω′
j for all j ̸= i . The exercise is then straight-

forward.

Exercise 3.11: We will come back to this important property in Chapter 6 and prove it in a more general
setting (see Lemma 6.7). For simplicity, assume h = 0. The numerator appearing in µ

η

Λ;β,h

(
ω | σi =

ω′
i , ∀i ∈Λ\∆

)
contains the term

exp
(
β

∑

{i , j }∈E b
Λ

ωiω j
)= exp

(
β

∑

{i , j }∈E b
∆

ωiω j
)

exp
(
β

∑

{i , j }∈E b
Λ

{i , j }∩∆=∅

ωiω j
)

.

The first term, containing the sum over {i , j } ∈ E b
∆

, is used to form µω
′

∆;β,h (ω). The same decomposition

can be used for the partition functions; the second factor then cancels out.

Exercise 3.12: Let D ⊂ EΛ2 be the set of edges {i , j } with i ∈ Λ2 \Λ1, j ∈ Λ1. Consider, for s ∈ [0,1], the
Hamiltonian

H s
Λ2 ;β,h

def= −β
∑

{i , j }∈EΛ2
{i , j } ̸∈D

σiσ j − sβ
∑

{i , j }∈D
σiσ j −h

∑
i∈Λ2

σi .

Let 〈·〉s
Λ2 ;β,h denote the corresponding Gibbs distribution. Observe that, when A ⊂ Λ1, 〈σA〉∅Λ2 ;β,h

=
〈σA〉s=1

Λ2 ;β,h and 〈σA〉∅Λ1 ;β,h
= 〈σA〉s=0

Λ2 ;β,h . The conclusion follows since, by Exercise 3.9, 〈σA〉s=0
Λ2 ;β,h ≤

〈σA〉s=1
Λ2 ;β,h .

For the other claim, add a magnetic field h′ acting on the spins inΛ2 \Λ1 and let h′ →∞.

Exercise 3.15: First, the FKG inequality and translation invariance yield, for any i ,

〈nA nB+i 〉+β,h ≥ 〈nA〉+β,h〈nB 〉+β,h .

Fix L large enough to ensure that A,B ⊂ B(L). Taking ∥i∥1 sufficiently large, we can guarantee that
B(L + 1)∩ (i +B(L)) = ∅. Fixing all the spins on ∂exB(L)∪∂ex(i +B(L)) to +1, it follows from the FKG
inequality that

〈nA nB+i 〉+β,h ≤ 〈nA〉+B(L);β,h〈nB+i 〉+i+B(L);β,h = 〈nA〉+B(L);β,h〈nB 〉+B(L);β,h .

We conclude that

〈nA〉+β,h〈nB 〉+β,h ≤ liminf
∥i∥1→∞

〈nA nB+i 〉+β,h

≤ limsup
∥i∥1→∞

〈nA nB+i 〉+β,h ≤ 〈nA〉+B(L);β,h〈nB 〉+B(L);β,h .

The desired conclusion follows by letting L →∞ in the right-hand side. The case of general local func-
tions f and g follows from Lemma 3.19.

Exercise 3.16: Follow the steps of the proof of Theorem 3.17, using Exercise 3.12 for the existence of the
thermodynamic limit (use 〈σA〉∅Λn ;β,h

= (−1)|A|〈σA〉∅Λn ;β,−h
when dealing with h < 0).

Exercise 3.17: Proceed as in the proof of Lemma 3.31, using the monotonicity results established in Ex-
ercises 3.9 and 3.12.

Exercise 3.18: 1. This is a consequence of (3.34). Indeed, let us denote by Aℓ the set of all contours γ (in
B(n)) with length ℓ. Then,

µ+B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≤

∑
ℓ≥K logn

|Aℓ|e−2βℓ .

Now, the number of contours of length ℓ passing through a given point is bounded above by 4ℓ and
the number of translates of such a contour entirely contained inside B(n) is bounded above by 4n2.
Therefore, the probability we are interested in is bounded above by

4n2 ∑
ℓ≥K logn

(4e−2β)ℓ ≤ 8n2−K (2β−log4) ,
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for all β ≥ log3, say. This bound can be made smaller than n−c , for any fixed c > 0, by taking K suffi-
ciently large (uniformly in β≥ log3).

2. Partition each row of B(n) into intervals of length K logn (and, possibly, a remaining shorter interval
that we ignore). We denote by Ik , k = 1, . . . , N , these intervals and consider the event

Ik = {σi =−1 ∀i ∈ Ik } .

Of course, there exists C =C (β) such that µ+Ik ;β,0(Ik ) ≥ e−C K logn = n−C K . Now,

µ+B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≥µ+B(n);β,0

( N⋃
k=1

Ik
)= 1−µ+B(n);β,0

( N⋂
k=1

I c
k

)
.

Notice that

µ+B(n);β,0

( N⋂
k=1

I c
k

)=
N∏

m=1
µ+B(n);β,0

(
I c

m |
m−1⋂
k=1

I c
k

)=
N∏

m=1

{
1−µ+B(n);β,0

(
Im |

m−1⋂
k=1

I c
k

)}
.

By the FKG inequality,

µ+B(n);β,0

(
Im |

m−1⋂
k=1

I c
k

)≥µ+Im ;β,0(Im ) ≥ n−C K ,

so that

µ+B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≥ 1− (1−n−C K )N ≥ 1−e−n−C K N .

The conclusion follows since N = (2n + 1)⌊(2n + 1)/K logn⌋ ≥ n2−c/2/K for n > n0(c) and n−C K /K ≥
n−c/2 if K ≤ K1(β,c).

Exercise 3.20: In higher dimensions, the deformation operation leading to contours is less convenient,
so we will avoid it. For the sake of concreteness, we consider the case d = 3. The bounds we give below
are very rough and can be improved. The 3-dimensional analogue of the contours described above are
sets of plaquettes, which are the squares that form the boundary of the cubic cells of Z3. For a given
configurationω, the set ∂M (ω) can be defined as before and decomposed into maximal connected sets
of plaquettes: ∂M (ω) = γ̂1 ∪·· ·∪ γ̂n . The analogue of (3.38) then becomes

µ+B(n);β,0(σ0 =−1) ≤
∑

k≥6
e−2βk #

{
γ̂∗ : dist(γ̂∗,0) ≤ k, |γ̂∗| = k

}
.

To each γ̂∗ in the latter set, we associate a connected graph G∗ whose set of vertices V ∗ is formed by
all the centers of the plaquettes of γ̂∗ and in which two vertices u, v ∈ V ∗ are connected by an edge if
the corresponding plaquettes share a common edge. The above sum is then bounded by (observe that
a vertex of V ∗ has at most 12 neighbors and that each edge is shared by two vertices, so that |E∗| ≤ 6k)

∑
k≥6

e−2βk #
{
G∗ : |V ∗| = k

}≤
∑

k≥6
e−2βk ·k3 ·126k .

This last inequality was obtained using Lemma 3.38. As in the two-dimensional case, the series is smaller
than 1

2 once β is large enough.

Exercise 3.21: Define τ by e−τ def= 3e−2β. Notice that (3.40) can be written (4e−4τ−3e−5τ)/(1−e−τ)2 < 3
4 .

The first point follows by verifying that this holds once β> 0.88.

Let us turn to the second point. Write µ±
B(n);β,0

(A) =
Z±
B(n);β,0

[A]

Z±
B(n);β,0

[Ω±
B(n)

]
, where

Z±
B(n);β,0[A]

def=
∑

ω∈Ω±
B(n)

1A (ω)
∏

γ∈Γ(ω)
e−2β|γ| .

Let A± def= {σi =±1∀i ∈B(R)}. Under µ+
B(n);β,0

, the occurrence of A− forces the presence of at least one

self-avoiding closed path π∗ ⊂ ∂M surrounding B(R). Therefore, by flipping all the spins located inside
the region delimited by π∗, one gets

Z+
B(n);β,0[A−] ≤

∑
π∗

Z+
B(n);β,0[π∗ ⊂ ∂M , A−] ≤

∑
π∗

e−2β|π∗| Z+
B(n);β,0[A+] .

But ∑
π∗

e−2β|π∗| ≤
∑

k≥8R
ke−2βkCk .
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Now, for all ϵ> 0, Ck ≤ (µ+ϵ)k for all large enough k. Therefore,

µ+
B(n);β,0

(σi =−1∀i ∈B(R))

µ−
B(n);β,0

(σi =−1∀i ∈B(R))
=

Z+
B(n);β,0

[A−]

Z−
B(n);β,0

[A−]
=

Z+
B(n);β,0

[A−]

Z+
B(n);β,0

[A+]
≤

∑
k≥8R

ke−2βk (µ+ϵ)k .

If e−2βµ < 1, ϵ can be chosen such that the last series converges. Taking R sufficiently large allows to
make the whole sum < 1.

Exercise 3.23: We only provide the answer for the free boundary condition.

Let Eeven
Λ

def= {
E ⊂ EΛ : I (i ,E) is even for all i ∈Λ}

. Then,

Z∅
Λ;β,0

= 2|Λ| cosh(β)|EΛ|
∑

E∈Eeven
Λ

tanh(β)|E | .

Moreover,

〈σiσ j 〉∅Λ;β,0
=

∑

E0∈Ei , j
Λ

connected,E0∋i

tanh(β)|E0|
∑

E ′∈Eeven
Λ

:E ′⊂∆(E0) tanh(β)|E
′|

∑
E∈Eeven

Λ
tanh(β)|E | ,

where

E
i , j
Λ

def= {
E ⊂ EΛ : I (k,E) is even for all k ∈B(n) \ {i , j }, but I (i ,E) and I ( j ,E) are odd

}
.

Exercise 3.24: Since the Gibbs state is unique, we can consider the free boundary condition. Proceeding
as we did for the representation of 〈σ0〉+Λ;β,h in terms of a sum over graphs in (3.47), we get for i , j ∈B(n),

〈σiσ j 〉∅B(n);β,0
≤

∑

E∈Ei , j
B(n)

connected,E0∋i

tanh(β)|E | .

All graphs E ∈Ei , j
B(n)

have at least ∥i− j∥1 edges. Proceeding as in (3.49), we derive the exponential decay

once β is sufficiently small.

Exercise 3.25: Fix a shortest path π = (i = i1, i2, . . . , im = j ) from i to j and introduce Eπ
def= {

{ik , ik+1} :
1 ≤ k < m

}
. For s ∈ [0,1], set

Juv =
{
β if {u, v} ∈ Eπ,

sβ otherwise.

Denote by µ∅,s
B(n);β,h

the distribution of the Ising model in B(n) ⊂Zd with these coupling constants and

free boundary condition. Check that

〈σiσ j 〉∅,s=1
B(n);β,0

= 〈σiσ j 〉∅B(n);β,0
and 〈σiσ j 〉∅,s=0

B(n);β,0
= 〈σ0σ∥ j−i∥1 〉

d=1
Λi j ;β,0 .

Conclude, using the fact that, by GKS inequalities, 〈σiσ j 〉∅,s=1
B(n);β,0

≥ 〈σiσ j 〉∅,s=0
B(n);β,0

.

Exercise 3.26:

Z+
B(n);β,0 = 22n+1(coshβ)2n+2(

1+ (tanhβ)2n+2)
,

Z∅
B(n);β,0

= 22n+1(coshβ)2n ,

Zper
B(n);β,0

= 22n+1(coshβ)2n+1(
1+ (tanhβ)2n+1)

.

Exercise 3.27: Notice that, by a straightforward computation,

|αz +1|2 −|α+ z|2 = (1−|z|2)(1−α2) .

Since 1−α2 > 0, all the claims can be deduced from this identity. For example, |z| < 1 implies 1−|z|2 > 0
and, therefore, |αz +1|2 −|α+ z|2 > 0, that is, |ϕ(z)| = |(αz +1)/(α+ z)| > 1.
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Exercise 3.28: Since the argument of the logarithm in (3.10) is always larger than 1, only the square root
can be responsible for the singularities of the pressure. But the square root vanishes at the values h ∈C
at which eβ cosh(h) = 2sinh(2β). Since we know that all singularities lie on the imaginary axis, they can

be expressed as h = i(±t + k2π), where t = arcos
√

1−e−4β, k ∈ Z. Observe that, as β → ∞, the two
singularities at ±it converge from above and from below to h = 0. This is compatible with the fact that,
in that limit, a singularity appears at h = 0. Namely, using (3.10),

lim
β→∞

ψβ(βh)

β
= |h|+1,

which is non-analytic at h = 0.

Exercise 3.29: Duplicating the system, we can write

|Z∅
Λ;β,h

|2 =
∑
ω,ω′

e
β

∑
{i , j }∈EΛ

(ωiω j +ω′
iω

′
j )+∑

i∈Λ(hωi +h̄ω′
i )

.

Define the variables θi ∈ {0,π/2,π,3π/2}, i ∈Λ, by cosθi = 1
2 (ωi +ω′

i ) and sinθi = 1
2 (ωi −ω′

i ). It is easy
to check that

ωiω j +ω′
iω

′
j = 2cos(θi −θ j ) = ei(θi −θ j ) +e−i(θi −θ j ),

hωi + h̄ω′
i = 2Reh cos(θi )+2iImh sin(θi ) = (Reh +Imh)eiθi + (Reh −Imh)e−iθi .

Substituting these expressions yields

|Z∅
Λ;β,h

|2 =
∑

(θi )i∈Λ
exp

{ ∑
m=(mi )i∈Λ
mi ∈{0,1,2,3}

αmei
∑

i∈Λmi θi
}

,

for some nonnegative coefficients αm which are nondecreasing both in Reh +Imh and Reh −Imh.
Consequently, expanding the exponential gives

|Z∅
Λ;β,h

|2 =
∑

(θi )i∈Λ

∑
m=(mi )i∈Λ
mi ∈{0,1,2,3}

α̂mei
∑

i∈Λmi θi ,

where the coefficients α̂m are still nonnegative and nondecreasing both in Reh+Imh and Reh−Imh.
Now, observe that

∑
(θi )i∈Λ

ei
∑

i∈Λmi θi =
∏

i∈Λ

∑
θi

eimi θi =
{

4|Λ| if mi = 0, ∀i ∈Λ,

0 otherwise.

We deduce that |Z∅
Λ;β,h

|2 = 4|Λ| α̂(0,0,...,0) and, thus, that |Z∅
Λ;β,h

|2 is nondecreasing in both Reh +Imh

and Reh −Imh. Since Reh −|Imh| = min(Reh +Imh,Reh −Imh), this proves that

|Z∅
Λ;β,h

| ≥ Z∅
Λ;β,Reh−|Imh| > 0.

Exercise 3.31: We write

(ZΛ;KZΛ;K′ )〈σA −σ′
A〉νΛ;K⊗νΛ;K′ =

∑
ω,ω′

(ωA −ω′
A )

∏
C⊂Λ

eKCωC +K ′
Cω

′
C

=
∑
ω′′

(1−ω′′
A )

∑
ω
ωA

∏
C⊂Λ

e(KC +K ′
Cω

′′
C )ωC ,

and we can conclude as in the proof of (3.55), since KC +K ′
Cω

′′
C ≥ 0 by assumption.

Exercise 3.35: The only delicate part is showing that, for all E ,E ′ ⊂ E b
Λ

,

N w
Λ(E)+N w

Λ(E ′) ≤ N w
Λ(E ∪E ′)+N w

Λ(E ∩E ′) . (C.2)

In order to establish (C.2), it is sufficient to prove that

E ′ 7→ N w
Λ(E ∪E ′)−N w

Λ(E ′) is nondecreasing. (C.3)

Indeed, (C.3) implies that

N w
Λ(E ∪E ′)−N w

Λ(E ′) ≥ N w
Λ(E ∪ (E ′∩E))−N w

Λ(E ′∩E) = N w
Λ(E)−N w

Λ(E ′∩E),



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik
www.unige.ch/math/folks/velenik/smbook

528 Appendix C. Solutions to Exercises

which is equivalent to (C.2). Let E = {e1, . . . ,en } ⊂ E b
Λ

. Since

N w
Λ(E ∪E ′)−N w

Λ(E ′) =
n∑

k=1

{
N w
Λ({e1, . . . ,ek }∪E ′)−N w

Λ({e1, . . . ,ek−1}∪E ′)
}

,

it is sufficient to show that each summand in the right-hand side verifies (C.3). But this is immediate,
since, if ek = {i , j },

N w
Λ({e1, . . . ,ek }∪E ′)−N w

Λ({e1, . . . ,ek−1}∪E ′) =
{

0 if i ↔ j in {e1, . . . ,ek−1}∪E ′,
−1 otherwise.

Exercise 3.37: Since lim
Λ↑Zd 〈σ0〉+Λ;β,0 = 〈σ0〉+β,0, it follows from Exercise 3.34 that

lim
Λ↑Zd

νFK,w
Λ;pβ ,2(0 ↔ ∂exΛ) = lim

Λ↑Zd
〈σ0〉+Λ;β,0 = 〈σ0〉+β,0 .

Therefore, we only have to check that

lim
Λ↑Zd

νFK,w
Λ;pβ ,2(0 ↔ ∂exΛ) = νFK,w

pβ ,2(0 ↔∞) .

Observe that, for all 0 ∈∆⊂Λ⋐Zd ,

νFK,w
pβ ,2(0 ↔ ∂exΛ) ≤ νFK,w

Λ;pβ ,2(0 ↔ ∂exΛ) ≤ νFK,w
Λ;pβ ,2(0 ↔ ∂ex∆) ,

the first inequality resulting from the FKG inequality (as can be checked by the reader) and the second
one from the inclusion {0 ↔ ∂exΛ} ⊂ {0 ↔ ∂ex∆}. The desired result follows by taking the limitΛ ↑Zd and
then the limit ∆ ↑Zd .

Solutions of Chapter 4
Exercise 4.2: Let ϵ > 0 and let ℓ be such that

∑
j ̸∈B(ℓ) K (0, j ) ≤ ϵ. Let Λ∗ ⊂ Λ be a parallelepiped, large

enough to contain ⌈ρ|Λ|⌉ particles, but such that if either of its sides is reduced by 1, then it becomes
too small to contain those ⌈ρ|Λ|⌉ particles. Then |Λ∗| = ρ|Λ|+O(|∂inΛ|). If η∗ denotes the configuration
obtained by filling denselyΛ∗ with particles (except possibly along its boundary), we get

−HΛ;K (η∗) = 1
2

∑
i∈Λ∗

∑
j∈Λ∗
j ̸=i

K (i , j )+O(|∂inΛ|) .

Let then Λ−∗ denote the set of vertices i ∈ Λ∗ for which B(ℓ)+ i ⊂ Λ∗. Note that, whenever i ∈ Λ−∗ , we
have |∑ j∈Λ∗

j ̸=i
K (i , j )−κ| ≤ ϵ and thus, since |Λ∗ \Λ−∗ | ≤ ℓ|∂inΛ|,

|HΛ;K (η∗)− (− 1
2κρ|Λ|

)| ≤ ϵ|Λ|+O(|∂inΛ|) .

We conclude that lim
Λ↑Zd |HΛ;K (η∗)− (− 1

2κρ|Λ|
)| / |Λ| ≤ ϵ. Since ϵ is arbitrary, the claim follows.

Exercise 4.4: The proof is similar to the one for the free energy: if Λ1 and Λ2 are two adjacent paral-
lelepipeds, ignoring the interactions between pairs composed of one particle inΛ1 and one inΛ2 gives

ΘΛ1∪Λ2 ;β,µ ≥ΘΛ1 ;β,µΘΛ2 ;β,µ .

We conclude, as before, that the thermodynamic limit exists along any increasing sequence of paral-
lelepipeds.

Exercise 4.5: Let us denote by η1 (resp. η0) the configuration in which η j = m j for each j ̸= i and ηi = 1
(resp. ηi = 0). The difference

{HΛ;K (η1)−µNΛ(η1)}− {HΛ;K (η0)−µNΛ(η0)} =−
∑

j∈Λ, j ̸=i
K (i , j )m j −µ

belongs to the interval (−κ−µ,−µ). Therefore, νΛ;β,µ
(
ηi = 1 |η j = m j ,∀ j ∈Λ\{i }

)
belongs to the interval(

1/(1+e−βµ),1/(1+e−β(κ+µ))
)
.
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Exercise 4.6: Since

1 ≤ΘΛ;β,µ ≤
|Λ|∑

N=0

(
|Λ|
N

)
eβ( κ2 +µ)N = (

1+eβ( κ2 +µ))|Λ| ,

we have 0 ≤ pβ(µ) ≤β−1 log(1+eβ( κ2 +µ)). To bound ΘΛ;β,µ from below, we keep only the configuration

in which ηi = 1 for each i ∈ Λ. This leads to pβ(µ) ≥ κ
2 +µ. The first two claims follow. The last two

claims about ρβ follow from the convexity of pβ.

Exercise 4.7: As we did earlier, let ϵ> 0 and take ℓ such that
∑

j ̸∈B(ℓ) K (i , j ) ≤ ϵ . Then

∑

i∈Λ′ :
i+B(ℓ)⊂Λ′

∑
j∈Λ′′

K (i , j ) ≤ ϵ|Λ′|

and, since ∑

i∈Λ′ :
i+B(ℓ)̸⊂Λ′

∑
j∈Λ′′

K (i , j ) ≤ κℓ|∂inΛ′| ,

the conclusion follows easily.

Exercise 4.9: Consider the gas branch: ρ < ρg . By the strict convexity of the pressure and the equiva-
lence of ensembles, there exists a unique µ(ρ) such that

fβ(ρ) =µ(ρ)ρ−pβ(µ(ρ)) .

Since ρ < ρg , we have µ(ρ) < µ∗ and µ(ρ) is solution of ρ = ∂pβ
∂µ

. Then, we use (i) the analyticity of the

pressure, which implies in particular that its first and second derivatives exist, outside µ∗, (ii) the fact,

proved in Theorem 4.12, that
∂2pΛ;β

∂µ2 ≥ βc2 > 0, which implies that
∂2pβ
∂µ2 > 0 whenever it exists, (iii) the

implicit function theorem (Section B.28), to conclude that µ(·) is also analytic in a neighborhood of ρ.
Since the composition of analytic maps is also analytic, this shows that fβ(·) is analytic in a neighbor-
hood of ρ.

Exercise 4.13: We only consider the case d = 1; the general case can be treated in the same way. Let us
identify each Λ(α) ⊂Z with the interval J (α) = {

x ∈ R : dist(x,Λ(α)) ≤ 1
2

}
, whose length equals |J (α)| = ℓ,

and let J (α)
γ

def= {
γx : x ∈ J (α)}. We have (up to terms that vanish in the van der Waals limit)

∑
α′>1

|J (α′)
γ | inf

x∈J (α′)
γ

ϕ(x) ≤ |Λ(1)|
∑
α′>1

K γ(1,α′) ≤ |Λ(1)|
∑
α′>1

K γ(1,α′) ≤
∑
α′>1

|J (α′)
γ | sup

x∈J (α′)
γ

ϕ(x) . (C.4)

The conclusion follows, since the first and last sums of this last display are Darboux sums that converge

to
∫
ϕ(x)dx as |J (α′)

γ | = γℓ ↓ 0.

Exercise 4.14: Let N = ⌈ρ|Λ|⌉. Since N (N ; M) counts the number of ways N identical balls can be dis-
tributed in M boxes, with at most |Λ(1)| balls per box, this number is obviously smaller than the number
of ways of putting N identical balls in M boxes, without restrictions on the number of balls per box. The
latter equals (

N +M −1

M −1

)
.

Since

M = |Λ|
|Λ(1)|

def= δΛ,ℓN ,

and lim
Λ⇑Zd δΛ,ℓ = 1

ρ|Λ(1)|
def= δℓ, Stirling’s formula gives

lim
ℓ→∞

lim
N→∞

1

N
log

(
N +M −1

M −1

)
= lim
ℓ→∞

{
(1+δℓ) log(1+δℓ)+δℓ logδℓ

}= 0.

Exercise 4.15: Let ϵ> 0 and n be large enough to ensure that f (x)− ϵ≤ fn (x) ≤ f (x)+ ϵ for all x ∈ [a,b].
Since CE g ≤ CEh whenever g ≤ h, this implies CE f (x)−ϵ≤ CE fn (x) ≤ CE f (x)+ϵ for all x ∈ [a,b], which
gives the result.
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Exercise 4.16: Let an
def= e−β2dn(d−1)/d

. For all compact K ⊂ H+,

sup
h∈K

∣∣∣
∑

n≥1
an e−hn −

N∑
n=1

an e−hn
∣∣∣≤ sup

h∈K

∑
n>N

an e−Rehn ≤
∑

n>N
an e−x0n ,

where x0
def= inf{Reh : h ∈ K } > 0, and this last series goes to zero when N →∞. This implies that the

series defining ψβ converges uniformly on compacts. Since h 7→ e−hn is analytic on H+, Theorem B.27

implies that ψβ is analytic on H+. Moreover, it can be differentiated term by term an arbitrary number
of times, yielding, when h ∈R>0,

∣∣∣lim
h↓0

dkψβ

dhk

∣∣∣=
∣∣∣(−1)k lim

h↓0

∑
n≥1

nk an e−hn
∣∣∣=

∑
n≥1

nk an .

A lower bound on the sum is obtained by keeping only its largest term. Notice that x 7→ xk e−2dβx(d−1)/d

is maximal at

x∗ = x∗(k,β,d)
def=

( k

2(d −1)β

)d/(d−1)
.

Keeping the term n∗
def= ⌊x∗⌋, reorganizing the terms and using Stirling’s formula, we get

∑
n≥1

nk an ≥ nk∗an∗ ≥C k−k !d/(d−1) ,

for some C− =C−(β,d) > 0. The reader may check that an upper bound of the same kind holds, with a
constant C+ <∞.

Solutions of Chapter 5
Exercise 5.1: In (5.9), just distinguish the case k = 1 from k ≥ 2.

Exercise 5.2: We proceed by induction. The case n = 1 is trivial. Now if the claim holds for n, it can be
shown to hold for n +1 too, by writing

(n+1∏
k=1

(1+αk )
)
−1 = (1+αn+1)

( n∏
k=1

(1+αk )−1
)
+αn+1 .

Exercise 5.5: When using more general boundary conditions, the same sets Si can be used, but the sur-
face term e−2β|∂e Si | in their weights might have to be modified if Si ∩∂inΛ ̸=∅. The condition (5.26) can
nevertheless be seen to hold since the surface term was ignored in our analysis. Then, the contributions
to logΞLF

Λ;β,h coming from clusters containing sets Si that intersect ∂inΛ is a surface contribution that

vanishes in the thermodynamic limit, yielding the same expression for the pressure.

Exercise 5.6: First,

φ(φ−1(z)) =
∑

n≥1
ãn

( ∑
k≥1

ck zk
)n =

∑
n≥1

ãn
∑

k1 ,...,kn≥1

n∏
i=1

cki
zki =

∑
n≥1

ãn
∑

m≥n
zm ∑

k1 ,...,kn≥1
k1+···+kn=m

n∏
i=1

cki

=
∑

m≥1

{ m∑
n=1

ãn
∑

k1 ,...,kn≥1
k1+···+kn=m

n∏
i=1

cki

}
zm .

However, since φ(φ−1(z)) = z by definition, we conclude that the coefficient of z in the last sum, which
is ã1c1, must be equal to 1, while the coefficient of zm , m ≥ 2 must vanish. The claim follows.

Exercise 5.7: The procedure is identical to that used in the proof of Lemma 5.10. The expansion, up to
the second nontrivial order, is given by

ψβ(0)−d log(coshβ)− log2 = 1
2 d(d −1)(tanhβ)4 + 1

3 d(d −1)(8d −13)(tanhβ)6 +O(tanhβ)8 . (C.5)

These two terms correspond, respectively, to sets of 4 and 6 edges. In the terminology used in the proof
of Lemma 5.10, one has: A = 4,B = 1,C = 1 for the first term and A = 6,B = 1,C = 1 for the second.
Therefore, the only thing left to do in order to derive (C.5) is to determine the number of such sets
containing the origin, which is a purely combinatorial task left to the reader.
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Exercise 5.8: First, the high-temperature representation (5.38) needs to be adapted to the presence of a
magnetic field. Indeed, (3.44) must be replaced by

∑
ωi =±1

ω
I (i ,E)
i ehωi =

{
2cosh(h) if I (i ,E) is even,

2sinh(h) if I (i ,E) is odd.

Then, the class of sets E that contribute to the partition function is larger (the incidence numbers I (i ,E)
are allowed to be odd), giving

Z∅
Λ;β,0

= (2coshh)|Λ|(coshβ)|EΛ|
∑

E⊂EΛ

(tanhβ)|E |(tanhh)|∂E | ,

where ∂E
def= {

i ∈ Zd : I (i ,E) is odd
}
. Notice that | tanhh| ≤ 1 when |h| is small enough. Then, the

weights of the components are bounded by the same weight as the one used above, (tanhβ)|E |, and the
rest of the analysis is essentially the same (keeping in mind that the class of objects is larger).

Exercise 5.9: It is convenient to use the notion of interior of a contour depicted in Figure 5.2. Then, given
a collection Γ′ = {γ1, . . . ,γn } ⊂ ΓΛ of pairwise disjoint contours inΛ, consider the configuration

ωi = (−1)#
{
γ∈Γ′ : i∈Intγ

}
.

Since Λc ∩⋃
γ∈Γ′ Intγ = ∅ when Λ is c-connected, it follows that ω ∈ Ω+

Λ
. It is also easy to verify that

Γ′(ω) = Γ′. This shows that the collection is admissible.
WhenΛ is not c-connected, this implication is not true anymore. For example, consider the setΛ=

B(2n) \B(n). Because of the + boundary condition outside B(2n) and inside B(n), in any configuration
ω ∈Ω+

Λ
, the number of contours γ ∈ Γ′(ω) such that B(n) ⊂ Intγ has to be even. Observe that the latter is

a global constraint on the family of contours.

Exercise 5.10: See Exercise 3.20.

Exercise 5.11: As was done earlier, one can write for example
∑

X∼A:
X⊂Λ

ΨA
β (X ) =

∑
X∼A

ΨA
β (X )−

∑
X∼A:
X ̸⊂Λ

ΨA
β (X ) .

The clusters that satisfy at the same time X ∼ A and X ̸⊂ Λ have a support of size at least d(A,Λc). As
before, one can show that their contribution vanishes whenΛ ↑Zd .

Solutions of Chapter 6

Exercise 6.2: Clearly, the family of subsets Λ⋐ Zd is at most countable. Since each C (Λ) is finite and
since a countable union of finite sets is countable, CS is countable. To show that CS is an algebra,
observe that, whenever A ∈ CS , there exists some Λ⋐ S and some B ∈ΩΛ such that A = Π−1

Λ
(B). But,

since Ac =Π−1
Λ

(Bc), we also have Ac ∈CS . Moreover, if A, A′ ∈CS , of the form A =Π−1
Λ

(B), A′ =Π−1
Λ′ (B ′),

then one can find some Λ′′ ⋐ S containing Λ and Λ′ (for example Λ′′ =Λ∪Λ′), use the hint to express
A =Π−1

Λ′′ (B1), A′ =Π−1
Λ′′ (B2), and write A∪ A′ =Π−1

Λ′′ (B1 ∪B2). This implies A∪ A′ ∈CS .

Exercise 6.4: For example, consider ∆= {0,1}× {0} and Λ= {0,1}2. It then immediately follows from the
high-temperature representation that

〈σ(0,0)σ(1,0)〉∅∆ = tanhβ ,

while
〈σ(0,0)σ(1,0)〉∅Λ = (tanhβ+ tanh3β)/(1+ tanh4β) .

Since these two expressions do not coincide when β> 0, it follows that µ∅
Λ
◦ (ΠΛ

∆
)−1 ̸=µ∅

∆
.

Exercise 6.5: By definition,

πΛπ∆(A |η) =
∑

ωΛ∈ΩΛ
πΛ(ωΛ |η)π∆(A |ωΛηΛc ) ,

which only depends on ηΛc . This also immediately implies that πΛπ∆ is proper.
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Exercise 6.6: If f = 1A ,

µπΛ(1A ) =
∫
πΛ(A |ω)µ(dω) =

∫
πΛ1A (ω)µ(dω) =µ(πΛ1A ) .

For the general case, just approximate f by a sequence of simple functions of the form
∑

i ai 1Ai
.

Exercise 6.7: The proof of the first claim is left to the reader. For the second, observe that, for any A ∈F ,

ρπΛ(A) =
∫
πΛ(A |ω)ρ(dω) =

∫
1A (τΛωΛc )ρΛ(dτΛ)ρ(dωΛc ) = ρ(A) ,

so that ρ ∈ G (π). To prove uniqueness, let µ ∈ G (π) and consider an arbitrary cylinder C =Π−1
Λ

(E) with
baseΛ. Then, one must have

µ(C ) =µπΛ(C ) =
∫
πΛ(Π−1

Λ (E) |ω)µ(dω) =
∫
ρΛ(E)µ(dω) = ρΛ(E) = ρ(C ) ,

and therefore µ must coincide with ρ on all cylinders, which implies that µ= ρ.

Exercise 6.8: To show absolute summability, it suffices to prove that
∑

i∈Zd \{0}

J0i =
∑

r≥1
|∂inB(r )|r−α

is bounded. Since |∂inB(r )| is of order r d−1, the potential is absolutely summable if and only if α> d .

Exercise 6.9: Clearly, d(ω,η) ≥ 0 with equality if and only ifω= η. Since 1{ωi ̸=ηi } ≤ 1{ωi ̸=τi }+1{τi ̸=ηi } for

all i ∈Zd , we have d(ω,η) ≤ d(ω,τ)+d(τ,η), so d(·, ·) is a distance.

Notice that if ωB(r ) = ηB(r ), then d(ω,η) ≤ 2d
∑

k>r (2k +1)d−12−k def= ϵ(r ), with ϵ(r ) → 0 as r →∞.

Suppose that ω(n) → ω∗. In this case, for any r ≥ 1, there exists n0 such that ω(n)
B(r )

= ω∗
B(r )

for all

n ≥ n0. This implies that d(ω(n),ω∗) → 0 as n →∞.
Assume now that d(ω(n),ω∗) → 0. In that case, for any k ≥ 1, one can find n1 such that d(ω(n),ω∗) <

2−k for all n ≥ n1. But this implies that 1
{ω(n)

i ̸=ω∗
i }

= 0 each time ∥i∥∞ ≤ k. This implies that ω(n)
B(k)

=

ω∗
B(k)

for all n ≥ n1. Therefore, ω(n) →ω∗.

Exercise 6.10: Let C =Π−1
Λ

(A) be a cylinder. If ω ∈C , then any configuration ω′ which coincides with ω
on Λc is also in C , which implies that C is open. Now let G ⊂Ω be open. For each ω ∈G , one can find a
cylinder Cω such that G ⊃Cω ∋ω. Therefore, G =⋃

ω∈G Cω. But, since C is countable (Exercise 6.2), that
union is countable. This shows that G ∈F .

Exercise 6.11: Assume f : Ω→ R is continuous but not uniformly continuous. There exist some ϵ > 0
and two sequences (ω(n))n≥1, (η(n))n≥1 ⊂ Ω such that d(ω(n),η(n)) → 0 and | f (ω(n))− f (η(n))| ≥ ϵ for
all n. By Proposition 6.20, there exists a subsequence (ω(nk ))k≥1 and some ω∗ such that ω(nk ) → ω∗.
This implies also d(η(nk ),ω∗) ≤ d(η(nk ),ω(nk ))+d(ω(nk ),ω∗) → 0. But, since ϵ ≤ | f (ω(nk ))− f (ω∗)| +
| f (η(nk ))− f (ω∗)|, at least one of the sequences (| f (ω(nk ))− f (ω∗)|)k≥1, (| f (η(nk ))− f (ω∗)|)k≥1 cannot
converge to zero. This implies that f is not continuous at ω∗, a contradiction. The other two facts are
proved in a similar way.

Exercise 6.12: 1⇒2 is immediate since local functions can be expressed as finite linear combinations of
indicators of cylinders.
2⇒3: Let f ∈C (Ω). Fix ϵ> 0, and let g be a local function such that ∥g − f ∥∞ ≤ ϵ. Then |µn ( f )−µ( f )| ≤
|µn (g )−µ(g )|+2ϵ, and thus limsupn |µn ( f )−µ( f )| ≤ 2ϵ. This implies that µn ( f ) →µ( f ).
3⇒1 is immediate, since for each C ∈C , f = 1C is continuous.

1⇒4: Let mn (k)
def= maxC∈C (B(k)) |µn (C )−µ(C )|. Notice that mn (k) ≤ 1. Fix ϵ> 0. Let k0

def= ϵ−1, Clearly,
as n →∞,

max
1≤k≤k0

mn (k) → 0.

On the other hand, if k > k0, then mn (k)
k ≤ 1

k < ϵ. Therefore,

limsup
n→∞

ρ(µn ,µ) = limsup
n→∞

sup
k≥1

mn (k)

k
≤ ϵ .

4⇒1: Let C ∈ C and fix some ϵ > 0. Let k be large enough so that C ∈ C (B(k)), and let n0 be such that
ρ(µn ,µ) ≤ ϵ

k for all n ≥ n0. For those values of n, we also have

|µn (C )−µ(C )| ≤ max
C ′∈C (B(k))

|µn (C ′)−µ(C ′)| ≤ ϵ .
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Exercise 6.13: Writing πΛ f (ω) =∑
τΛ f (τΛωΛc )πΛ(τΛ |ω) makes the statement obvious.

Exercise 6.14: The construction of µ∅
β,h

, using Exercise 3.16 and Theorem 6.5, is straightforward. We

check that µ∅
β,h

∈G (β,h). Let f be some local function and take ∆⋐Zd sufficiently large to contain the

support of f . Lemma 6.7 (whose proof extends verbatim to the case of free boundary condition) implies
that, for anyΛ⋐Zd containing∆, 〈 f 〉∅

Λ;β,h
= 〈〈 f 〉·

∆;β,h〉
∅
Λ;β,h

. Again, sinceω 7→ 〈 f 〉ω
∆;β,h is local, one can

letΛ ↑Zd , and obtain 〈 f 〉∅
β,h

= 〈〈 f 〉·
∆;β,h〉

∅
β,h

, from which the claim follows.

Exercise 6.15: Assume there exists µ ∈G (π). Notice that

µ(N+ = 0) =µ({η−}) =µπΛ({η−}) =
∫
πΛ({η−} |ω)µ(dω) = 0.

Then, µ(N+ = 1) =∑
i∈Zd µ({η−,i }). However, for allΛ⋐Zd containing i ,

µ({η−,i }) =µπΛ({η−,i }) ≤ 1

|Λ| ,

so that µ({η−,i }) = 0. We conclude that µ(N+ = 1) = 0. Finally, µ(N+ ≥ 2) ≤ ∑
i ̸= j µ({ωi =ω j = +1}) = 0,

since µ({ωi = ω j = +1}) = µπ{i , j }({ωi = ω j = +1}) = 0 for all i ̸= j . All this implies that µ(Ω) = 0, which
contradicts the assumption that µ is a probability measure.

Exercise 6.16: For example,

f (ω) = limsup
n→∞

1

|B(n)|
∑

i∈B(n)
ωi

has∆( f ) = 0, but it is not continuous (see Exercise 6.23). In dimension d = 2, take ϵ> 0 and consider, for
example,

g (ω) =
∑

k≥1

1

k1+ϵ
(

max
j∈B(k)

ω j − min
j∈B(k)

ω j
)

.

Then g ∈C (Ω), but ∆(g ) =∞.

Exercise 6.17: By the FKG inequality, for any ω ∈Ω,

1 ≥µω{i };β,h (σi = 1) ≥µ−{i };β,h (σi = 1) = {
1+e−2h+4dβ}−1 .

Therefore, ∑
ωi =±1

|πi (ωi |ω)−πi (ωi |ω′)| ≤ 2

1+e2h−4dβ
.

Since the expression in the left-hand side is actually equal to 0 when ω j =ω′
j for all j ∼ i , we obtain

c(π) ≤ 4d

1+e2h−4dβ
,

which is indeed smaller than 1 as soon as h > 2dβ+ 1
2 log(4d −1).

Exercise 6.19: Clearly, ci j (π) = 0 whenever j ̸∼ i . Let j ∼ i and consider two configurations ω,η such
that ωk = ηk for all k ̸= j . When s ∈ {0, . . . , q −1} \ {ω j ,η j }, πi (σi = s |η) = πi (σi = s |ω). Let us therefore
assume that ω j = s ̸= η j . In this case,

πi (σi = s |η)−πi (σi = s |ω) = e−β#
{
k∼i :ηk=s

}

Z
η
{i }

{
1−

Z
η
{i }

Zω{i }
e−β

}
.

Now, observe that
Z
η
{i }

Zω{i }
e−β =

〈
e
−β(δσi ,η j −δσi ,ω j +1)〉ω

{i }
∈ [e−2β,1] .

Therefore, |πi (σi = s |η)−πi (σi = s |ω)| ≤ 1/Z
η
{i } ≤ 1/(q −2d). This yields ci j (π) ≤ 2/(q −2d) and thus

c(π) ≤ 4d/(q −2d), which is indeed smaller than 1 as soon as q > 6d .

Exercise 6.20: We have seen in Exercise 6.8 that α > d is necessary for the potential to be absolutely
summable. Then,

b = sup
i∈Zd

∑
B∋i

(|B |−1)∥ΦB ∥∞ =
∑

k≥1

1

kα
#
{

j ∈Zd : j ̸= 0, ∥ j∥∞ = k
}≤ 2d

∑
k≥1

1

k1+(α−d)
def= b0(α,d) .

For all α> d , we have uniqueness as soon as β<β0
def= 1

2b0
. Observe that β0 ↓ 0 when α ↓ d .
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Exercise 6.21: Using the invariance of πΛ in the second equality,

(θ jµ)πΛ(A) =
∫
πΛ(A |θ jω)µ(dω) =

∫
π
θ−1

j Λ
(θ−1

j A |ω)µ(dω) =µπ
θ−1

j Λ
(θ−1

j A) =µ(θ−1
j A) = θ jµ(A) .

Exercise 6.22: Let µ ∈ G (π) (which is not empty by Theorem 6.26) By Theorem 6.24, we can consider a
subsequence along which µn converges: µnk ⇒ µ∗. To see that µ∗ is translation invariant, θiµ∗ = µ∗
for all i ∈Zd , it suffices to observe that, for any local function f ,

∣∣∣
∑

j∈B(nk )
θ j+iµ( f )−

∑
j∈B(nk )

θ jµ( f )
∣∣∣≤C∥ f ∥∞∥i∥d

∞ |∂exB(nk )| .

Then, µ ∈G (π) and Exercise 6.21 imply that µnk ∈G (π) for all k. Since G (π) is closed (Lemma 6.27), this
implies that µ∗ ∈G (π).

Exercise 6.23: Let ω ∈ Ω. Since f is non-constant, there exists ω′ such that f (ω) ̸= f (ω′). Let ω(n) =
ω
B(n)

ω′
B(n)c . Then ω(n) →ω. However, f (ω(n)) = f (ω′) for all n and therefore f (ω(n)) ̸→ f (ω).

Exercise 6.24: Let g be FΛc -measurable. We first assume that g is a finite linear combination
∑

j α j 1A j
,

with A j ∈FΛc . On the one hand,

(gν)πΛ(A) =
∫
πΛ(A |ω)g (ω)ν(dω) =

∑
j
α j

∫

A j

πΛ(A |ω)ν(dω) .

On the other hand,

g (νπΛ)(A) =
∫

A
g (ω′)νπΛ(dω′) =

∑
j
α jνπΛ(A∩ A j ) =

∑
j
α j

∫
πΛ(A∩ A j |ω)ν(dω) .

By Lemma 6.13, we have πΛ(A ∩ A j |ω) = πΛ(A |ω)1A j
(ω). This implies that (gν)πΛ = g (νπΛ). In the

general case, it suffices to consider a sequence of approximations gn (each being a finite linear combi-
nation of the above type) with ∥gn − g∥∞ → 0, and use twice dominated convergence to compute

(gν)πΛ(A) = lim
n→∞(gnν)πΛ(A) = lim

n→∞gn (νπΛ)(A) = g (νπΛ)(A) .

The reader can find counterexamples that show that (6.63) does not hold in general when g is not FΛc -
measurable.

Exercise 6.25: Since 1A = (1+σ0)/2 and 1Bi
= (1+σi )/2,µ(A∩Bi )−µ(A)µ(Bi ) = 1

4

(
µ(σ0σi )−µ(σ0)µ(σi )

)
.

By symmetry, µ+
β,0(σ0σi ) = µ−

β,0(σ0σi ) and µ(σ0) = (2λ− 1)µ+
β,0(σ0), µ(σi ) = (2λ− 1)µ+

β,0(σi ). By the

FKG inequality, µ+
β,0(σ0σi ) ≥ µ+

β,0(σ0)µ+
β,0(σi ). We therefore conclude that µ(σ0σi ) −µ(σ0)µ(σi ) ≥

(
1− (2λ−1)2)(

µ+
β,0(σ0)

)2, which is positive for all β>βc(2) and all λ ∈ (0,1).

Exercise 6.26: Extremality of µ+
β,h implies that, for any ϵ > 0, there exists r such that 0 ≤ 〈σi ;σ j 〉+β,h ≤ ϵ

for all j ̸∈ i +B(r ). Therefore,

Varµ+
β,h

(mB(n)) = |B(n)|−2 ∑
i , j∈B(n)

〈σi ;σ j 〉+β,h

≤ |B(n)|−2 ∑
i∈B(n)

{ ∑
j∈i+B(r )

〈σi ;σ j 〉+β,h︸ ︷︷ ︸
≤1

+
∑

j∈B(n)
j ̸∈i+B(r )

〈σi ;σ j 〉+β,h︸ ︷︷ ︸
≤ϵ

}
≤ |B(r )|

|B(n)| +ϵ .

Letting n → ∞ and then ϵ→ 0 shows that limn→∞ Varµ+
β,h

(mB(n)) = 0. The conclusion follows from

Chebyshev’s inequality (B.18).

Exercise 6.27: On the one hand, if ν is trivial on T∞, then
∫

A
ν(B)ν(dω) = ν(B)ν(A) = ν(A∩B) ,

for all B ∈F and all A ∈T∞, since ν(A) is either 1 or 0. This shows that ν(B) = ν(B |T∞) ν-almost surely.
On the other hand, if the latter condition holds, then, for any A ∈T∞,

ν(A) =
∫

A
1A dν=

∫

A
ν(A |T∞)dν=

∫

A
ν(A)dν= ν(A)2 ,

which implies that ν(A) ∈ {0,1}.
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Exercise 6.28: A simple computation yields

WVn (µVn ) = |Vn |
{

dβm2 +hm − 1+m

2
log

1+m

2
− 1−m

2
log

1−m

2

}
,

where we have introduced m
def= 〈σi 〉ρi . It is now a matter of straightforward calculus to show that the

unique maximum is attained when m satisfies m = tanh(2dβm +h).

Exercise 6.29: By (6.93), we have, for any n ≥ 0,

limsup
k→∞

s(µk ) = limsup
k→∞

inf
Λ∈R

SΛ(µk )

|Λ| ≤ limsup
k→∞

SB(n)(µk )

|B(n)| =
SB(n)(µ)

|B(n)| .

Letting n →∞ yields the desired result.

Exercise 6.32: We show that µπΦ
Λ
=µ for allΛ⋐Zd . For each local function f , we write

µπΦΛ( f ) = {
µπΦΛ( f )−µkπΦΛ( f )

}+{
µkπΦΛ( f )−µkπΦ

k

Λ ( f )
}+µkπΦ

k

Λ ( f ) .

Since Φ has finite range, ω 7→ πΦ
Λ

( f |ω) is local. Therefore, µk ⇒ µ implies that µkπΦ
Λ

( f ) → µπΦ
Λ

( f ) as
k →∞. For the second term, proceeding as in (6.32) gives

|µkπΦΛ( f )−µkπΦ
k

Λ ( f )| ≤
∫
|πΦΛ( f |ω)−πΦk

Λ ( f |ω)|µk (dω) ≤ 2|Λ|∥ f ∥∞
∑

B∋0
∥ΦB −Φk

B ∥∞ ,

which tends to zero when k →∞. Finally, since µk ∈G (Φk ), µkπΦ
k

Λ
( f ) =µk ( f ), and µk ( f ) →µ( f ).

Exercise 6.33: Assume that there is a unique Gibbs measure at (β0,h0). Observe that, setting g = 1
2d

∑
i∼0σ0σi

and λ=β−β0, we have

ψ(λ)
def= lim

Λ⇑Zd

1

|Λ(g )| log
〈

exp
{
λ

∑
j∈Λ(g )

g ◦θ j

}〉+
Λ;β0 ,h0

=ψIsing(β,h0)−ψIsing(β0,h0) .

We deduce that

∂ψ

∂λ−
∣∣∣
λ=0

= ∂ψIsing(β,h0)

∂β−
∣∣∣
β=β0

,
∂ψ

∂λ+
∣∣∣
λ=0

= ∂ψIsing(β,h0)

∂β+
∣∣∣
β=β0

.

Therefore, if ψIsing(β,h0) was not differentiable at β0, then the same would be true of ψ and Proposi-
tion 6.91 would imply the existence of multiple Gibbs measures at (β0,h0), which would contradict our
assumption.

Solutions of Chapter 7
Exercise 7.2: It suffices to show that η enjoys the following property. For each k ≥ 1, η is a minimizer
(possibly not unique) of HB(k);Φ0 among all configurations of Ω

η

B(k)
. To prove this, observe that the

configuration η possesses a unique Peierls contour γ and check that the length of γ∩{
x ∈R2 : ∥x∥∞ ≤ k

}

cannot be decreased by flipping spins in B(k −1).

Exercise 7.3: The following construction relies on a diagonalization argument, as already done earlier in
the book. Fix some arbitrary configuration η ∈Ω. For each n ≥ 0, let ω(n) be a configuration coinciding
with η outside B(n) and minimizing HB(n);Φ. Order the vertices of Zd : i1, i2, . . .. Let (n1,k )k≥1 be a

sequence such that ω
(n1,k )
i1

converges as k →∞. Let then (n2,k )k≥2 be a subsequence of (n1,k )k≥1 such

that ω
(n2,k )
i2

converges. We proceed in the same way for all vertices of Zd : for each m ≥ 1, the sequences

(ω
(nm,k )
im

)k≥1 converges as k →∞. We claim that the configuration ω defined by

ωi
def= lim

m→∞ω
(nm,m )
i , ∀i ∈Zd ,

is a ground state. Indeed, letω′ ∞=ω and choose n so large thatω andω′ coincide outside B(n). Let N be
so large that ω coincides with ω(N ) on B(n + r (Φ)). Then, by our choice of ω(N ),

HΦ(ω′ |ω) =
∑

B∩B(n )̸=∅

{
ΦB (ω′)−ΦB (ω)

}

=
∑

B∩B(n )̸=∅

{
ΦB (ω′

B(N )ηB(N )c )−ΦB (ω(N ))
}=HΦ(ω′

B(N )ηB(N )c |ω(N )) ≥ 0.
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Exercise 7.4: 1. Consider the pressure constructed using a boundary condition η ∈ g per(Φ). On the one

hand, Z
η
Φ

(Λ) ≥ e−βHΛ;Φ(η), which gives ψ(Φ) ≥−eΦ(η). On the other hand, for any ω ∈Ωη
Λ

,

HΛ;Φ(ω) =HΛ;Φ(η)+{
HΛ;Φ(ω)−HΛ;Φ(η)

}=HΛ;Φ(η)+HΦ(ω |η) ≥HΛ;Φ(η) .

This gives

Z
η
Φ

(Λ) ≤ e−βHΛ;Φ(η)|Ωη
Λ
| .

Since |Ωη
Λ
| = |Ω0||Λ|, this yields ψ(Φ) ≤−eΦ(η)+β−1 log |Ω0|.

2. Observe that a configurationω ∈Ωη
Λ

is completely characterized by its restriction to B(ω). Therefore,

Z
η
Φ

(Λ) =
∑

ω∈Ωη
Λ

e−βHΛ;Φ(ω) ≤ e−βHΛ;Φ(η) ∑

ω∈Ωη
Λ

e−βρ|B(ω)| = e−βHΛ;Φ(η) ∑
B⊂Λ

∑

ω∈Ωη
Λ

:
B(ω)∩Λ=B

e−βρ|B |

≤ e−βHΛ;Φ(η)
|Λ|∑

n=0

(
|Λ|
n

)
(|Ω0|e−βρ

)n = e−βHΛ;Φ(η)(1+|Ω0|e−βρ
)|Λ| .

This gives ψ(Φ) ≤−eΦ+β−1 log
(
1+|Ω0|e−βρ

)≤−eΦ+β−1|Ω0|e−βρ .

Exercise 7.5: It is convenient to work with the following equivalent potential:

Φ̃B (ω)
def=

{
ωiω j − h

2d (ωi +ω j ) if B = {i , j }, i ∼ j ,

0 otherwise.

We are going to determine gm (Φ). For any pair i ∼ j ,

φ{i , j } = min
ω
Φ̃{i , j }(ω) =





1− (h/d) if h ≥+2d ,

−1 if |h| ≤ 2d ,

1+ (h/d) if h ≤−2d .

(The three cases correspond to ωi =ω j = 1, ωi =ω j =−1 and ωi ̸=ω j respectively.) The cases h =±2d
are discussed below; for all other cases:

gm (Φ) =





{η+} if h >+2d ,

{η±,η∓} if |h| < 2d ,

{η−} if h <−2d ,

where η±,η∓ are the two chessboard configurations defined by η±i
def= (−1)

∑d
k=1

ik and η∓ def= −η±. When
h =±2d , gm (Φ) contains infinitely many ground states. For example, if h =+2d ,

gm (Φ) = {
ω ∈Ω : ∄i , j ∈Zd , i ∼ j , such that ωi =ω j =−1

}
.

Exercise 7.7: For all {i , j } ∈T , ωiω j is minimal if and only if ωi ̸=ω j , and this cannot be realized simul-
taneously for all three pairs of spins living at the vertices of any given triangle. This implies thatΦ is not
an m-potential.

For the triangle T = {(0,0), (0,1), (1,1)}, let

Φ̃T (ω) =ω(0,0)ω(0,1) +ω(0,1)ω(1,1) +ω(0,0)ω(1,1) .

Define Φ̃ similarly on all translates of T . Then Φ̃ is clearly equivalent to Φ, and can be easily seen to be
an m-potential; each Φ̃T being minimized if the configuration on T contains at least one spin of each
sign. This allows to construct infinitely many periodic ground states for Φ̃. For example, any configu-
ration obtained by alternating the spin values along every column necessarily belongs to gm (Φ̃). Since
this yields two possible configurations for each column, one can alternate them in order to construct
configurations on Z2 of arbitrarily large period.

Exercise 7.8: Clearly, the constant configurations η+ and η− are periodic ground states, and their energy
density equals eΦ =α. Then, any other periodic configuration will necessarily contain (infinitely many)
plaquettes whose energy is δ > α. By Lemma 7.13, this implies that g per(Φ) = {η+,η−}. Examples of
non-periodic ground states are obtained easily, by patching plaquettes with minimal energy.

To see that Peierls’ condition is not satisfied, consider a configuration ω
∞= η−, which coincides

everywhere with η− except on a triangular region of the following type, with L large:
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L

L

Notice that all points along the boundary of the triangle are incorrect, which implies that |B(ω)|
(and therefore |Γ(ω)|) grows linearly with L. Nevertheless, for each L, there are exactly three plaquettes
with a non-zero contribution to HΦ(ω |η), indicated at the three corners of the triangle. This means that
HΦ(ω |η) is bounded, uniformly in L: Peierls’ condition is not satisfied.

Exercise 7.9: Let

W i
B (ω)

def=
{|B(r∗)|−11

{ωB=ηi
B }

if B is a translate of B(r∗),

0 otherwise.

Suppose first that m ∈ I . In that case, setting λi = 0 for all i ∈ I and λ j = λ> 0 for all j ∈ {1, . . . ,m} \ I , we
obtain, for each k ∈ {1,2, . . . ,m},

e
Φ0+∑m−1

i=1 λi W i (ηk ) =
{
eΦ0 +λ if k ∈ {1, . . . ,m} \ I ,

eΦ0 if k ∈ I .

When m ̸∈ I , we proceed similarly by setting λi = 0 for all i ∈ {1, . . . ,m} \ I and λ j =λ< 0 for all j ∈ I .
The reader can check that these potentials do not create new ground states.

Exercise 7.10: By construction,

HΦ̂(ω̂ | η̂) =HΦ(ω |η) ≥ ρ|Γ(ω)| ≥ ρ|B(ω)| ,

where we used Peierls’ condition for Φ. Now, observe that if a vertex î of the renormalized lattice is not
#̂-correct, there must exist a vertex of the original lattice such that j ∈ î r∗+B(3r∗) and j is not #-correct.
Therefore, |B(ω̂)| ≥ |B(3r∗)|−1|B(ω)| ≥ 3−d |B(r∗)|−1|B(ω)|. Thus, since |Γ(ω̂)| ≤ 3d |B(ω̂)|,

ρ|B(ω)| ≥ ρ3−d |B(r∗)|−1|B(ω̂)| ≥ ρ3−2d |B(r∗)|−1|Γ(ω̂)| .
We conclude that Peierls’ condition holds for Φ̂with a constant ρ3−2d |B(r∗)|−1.

Exercise 7.11: Let i , j ∈ Ac
ℓ

and consider a path π = (i1 = i , i2, . . . , in−1, in = j ), with d∞(ik , ik+1) = 1. If

π exits Ac
ℓ

, let s1
def= min

{
k : ik ∈ Aℓ

}− 1 and s2
def= max

{
k : ik ∈ Aℓ

}+ 1. By construction, is1 , is2 ∈ γ.
Since γ is connected, there exists a path from is1 to is2 entirely contained inside γ. But this allows us to
deform π so that it is entirely contained in Ac

ℓ
.

Exercise 7.12: For ease of notation, we treat the case of a single contour; the same argument applies in
the general situation. Proceeding exactly as we did to arrive at (7.34), treating separately the numerator
and the denominator, we arrive at the following representation:

µ#
Λ;Φ

(
Γ′ ∋ γ′)=

∑
Γ∈A1

∏
γ∈Γw#(γ)

∑
Γ∈A0

∏
γ∈Γw#(γ)

=w#(γ′)
∑
Γ∈A2

∏
γ∈Γw#(γ)

∑
Γ∈A0

∏
γ∈Γw#(γ)

≤w#(γ′) ,
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where we have introduced the following families of contours:

A0
def= {Γ compatible} , A1

def= {
Γ ∈A0 : γ′ is an external contour of Γ

}
,

while A2 is the set of all Γ ∈A0 such that each γ ∈ Γ is compatible with γ′ and there does not exist γ ∈ Γ
such that γ′ ⊂ intγ.

Exercise 7.13: Notice that if R1,R2 are two parallelepipeds such that R1∪R2 is also a parallelepiped, then
Ξ(R1∪R2) ≥Ξ(R1)Ξ(R2). Namely, the union of two compatible families contributing toΞ(R1) andΞ(R2)
is always a family contributing to Ξ(R1 ∪R2). One can then use Lemma B.6.

Solutions of Chapter 8
Exercise 8.1: One could use a Gaussian integration formula, but we prefer to provide an argument that
also works for more general gradient models. We can assume that Λ is connected. Consider a spanning
tree 1 T of the graph (Λ,EΛ) and denote by T0 the tree obtained by adding to T one vertex i0 ∈ ∂exΛ

and an edge of E b
Λ

between i0 and one of the vertices of T ; we consider i0 to be the root of the tree
T0 = (V0,E0). Clearly,

HΛ;β,m (ω) ≥ β

4d

∑
{i , j }∈E0

(ωi −ω j )2 def= H̃T0 ;β(ω) .

Of course,

Z
η

Λ;β,m
≤

∫
e
−H̃T0;β(ωV0ηi0

) ∏
i∈Λ

dωi .

Let i ∈Λ be a leaf 2 of the tree T0. Then, denoting by j the unique neighbor of i in T0,
∫ ∞

−∞
e
− β

4d

(
ωi −ω j

)2

dωi =
∫ ∞

−∞
e−

β
4d x2

dx =
√

4πd/β .

We can thus integrate over each variable in Λ, removing one leaf at a time. The end result is the upper
bound

Z
η

Λ;β,m
≤ {

4πd/β
}|Λ|/2 .

Exercise 8.2: The problem arises from the fact that, when no spins are fixed on the boundary, all spins
inside Λ can be shifted by the same amount without changing the energy. This can already be seen in
the simple case whereΛ= {0,1} ⊂Z, with free boundary condition:

Z∅
Λ;β,0

=
∫ {∫

e−
β

4d (ω0−ω1)2
dω1

}
dω0 =

√
4dπ

β

∫
dω0 =+∞ .

Exercise 8.3: The first claim follows from the fact ϕi1 · · ·ϕi2n+1 is an odd function, so its integral with
respect to the density (8.10) (with aΛ = 0) vanishes.

Let us turn to the second claim. First, observe that one can assume that all vertices i1, . . . , i2n are
distinct; otherwise for each vertex j appearing r j > 1 times, introduce r j − 1 new random variables,
perfectly correlated with ϕ j .

The desired expectation can be obtained from the moment generating function by differentiation:

EΛ[ϕi1 . . .ϕi2n ] = ∂2n

∂ti1 · · ·∂ti2n

EΛ
[
e tΛ·ϕΛ ]∣∣∣

tΛ≡0
.

The identity (8.9) allows one to perform this computation in another way. First,

exp
{ 1

2 tΛ ·ΣΛtΛ
}=

∑
n≥0

1
n! 2−n{ ∑

j ,k∈Λ
ΣΛ( j ,k)t j tk

}n .

Therefore,

∂2n

∂ti1 · · ·∂ti2n

exp
{ 1

2 tΛ ·ΣΛtΛ
}∣∣∣

tΛ≡0
= 1

n!

∑
{ j1 ,k1},...,{ jn ,kn }⊂Λ⋃n

m=1{ jm ,km }={i1 ,...,i2n }

n∏
m=1

ΣΛ( jm ,km ) ,

where the factor 2−n was canceled by the factor 2n accounting for the possible interchange of jm and
km for each m = 1, . . . ,n. Now, we can rewrite the latter sum in terms of pairings as in the claim. Note
that, doing so, we lose the ordering of the n pairs { jm ,km }, so that we have to introduce an additional
factor of n!, canceling the factor 1/n!. The claim follows.

1A spanning tree of a graph G = (V ,E) is a connected subgraph of G which is a tree and contains all
vertices of G .

2A leaf of a tree if a vertex of degree 1 distinct from the root.
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Exercise 8.4: The procedure is very similar to the one used in the previous exercise. We write Ci j =
E(ϕiϕ j ). Then, using (8.11) and (8.12),

E
[
e tΛ·ϕΛ ]=

∑
n≥0

∑
(ri )i∈Λ⊂Z≥0 :∑

i ri =2n

E
[∏

i
ϕ

ri
i

] ∏
i

t
ri
i

=
∑

n≥0

∑
(ri )i∈Λ⊂Z≥0 :∑

i ri =2n

{∑
P

∏
{ℓ,ℓ′}∈P

Cℓℓ′
} ∏

i
t

ri
i

=
∑

n≥0

∑
(ri )i∈Λ⊂Z≥0 :∑

i ri =2n

1
n! 2−n

{ ∑
{ j1 ,k1},...,{ jn ,kn }⊂Λ∑n

m=1(1{ jm=i }+1{km=i })=ri ,∀i∈Λ

n∏
m=1

Cim jm

} ∏
i

t
ri
i

=
∑

n≥0

1
n! 2−n

{ ∑
{ j1 ,k1},...,{ jn ,kn }⊂Λ

n∏
m=1

Cim jm tim t jm

}

=
∑

n≥0

1
n! 2−n

{ ∑
i , j∈Λ

Ci j ti t j

}n = exp
{ ∑

i , j∈Λ
1
2 Ci j ti t j

}
.

Exercise 8.6: Let (ξi )i=−n−1,...,n be i.i.d. random variables with distribution ξi ∼ N (0,2). Let Ln
def=

ξ−n−1 + ·· · + ξ−1 and Rn
def= ξ0 + ·· · + ξn . The density of ϕ0 coincides with the conditional probability

density of Ln given that Ln +Rn = 0, which is equal to

fLn (x) fRn (−x)

fLn+Rn (0)
=

{ 1p
4π(n+1)

e
− 1

2
x2

2(n+1)
}2

1p
8π(n+1)

= 1p
2π(n+1)

e
− 1

2
x2

(n+1) ,

so that ϕ0 ∼N (0,n +1).

Exercise 8.7: Since ϕ is centered, ϕ̃ also is. Then, observe that

E0
Λ;0

[
eitΛ·ϕ̃Λ ]= E0

Λ;0

[
eit̃Λ·ϕΛ ]

,

where t̃i
def= ti for all i ̸= 0 and t̃0 =−∑

j∈Λ\{0} t j . From (8.8), we get

E0
Λ;0

[
eit̃Λ·ϕΛ ]= exp

{− 1
2

∑
i , j∈Λ

GΛ(i , j )t̃i t̃ j
}= exp

{− 1
2

∑
i , j∈Λ\{0}

G̃Λ(i , j )ti t j
}

,

with G̃Λ(i , j ) given in (8.34).

Exercise 8.10: When d = 1, (− 1
2d ∆+m2)u = 0 becomes

uk+1 = 2(1+m2)uk −uk−1 .

For any pair of initial values u0,u1 ∈R, we can then easily verify that uk , k ≥ 2, is of the form

uk = Azk++B zk− ,

where z± = 1+m2 ±
√

2m2 +m4 and A,B are functions of u0,u1. The conclusion follows, since z− =
1/z+.

Solutions of Chapter 9
Exercise 9.1: Since 〈Si ·S j 〉µ→ 0 uniformly as ∥ j − i∥2 →∞, we can find, for any ϵ> 0, a number R such
that 〈Si ·S j 〉µ ≤ ϵ for all i , j such that ∥ j − i∥2 > R. Consequently, for any i ∈B(n),

∑
j∈B(n)

〈Si ·S j 〉µ ≤ |B(R)|+ϵ|B(n)| .

It follows that

limsup
n→∞

〈∥mB(n)∥2
2 〉µ = limsup

n→∞
|B(n)|−2 ∑

i , j∈B(n)
〈Si ·S j 〉µ ≤ limsup

n→∞
|B(n)|−1 max

i∈B(n)

∑
j∈B(n)

〈Si ·S j 〉µ ≤ ϵ.

Since ϵ was arbitrary, the conclusion follows.
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Exercise 9.3: Simply take θSW
i = (

1− (∥i∥∞/n)
)
π.

Exercise 9.4: First, observe that

∑

{i , j }∈E b
B(n)

(
f (∥i∥∞)− f (∥ j∥∞)

)2 ≥
n−1∑
k=ℓ

kd−1(
f (k)− f (k +1)

)2 .

By the Cauchy–Schwarz inequality,

{n−1∑
k=ℓ

(
f (k)− f (k +1)

)}2 ≤
{n−1∑

k=ℓ
kd−1(

f (k)− f (k +1)
)2

}{n−1∑
k=ℓ

k−(d−1)
}

.

Therefore,

∑

{i , j }∈E b
B(n)

(
f (∥i∥∞)− f (∥ j∥∞)

)2 ≥
{n−1∑

k=ℓ

(
f (k)− f (k +1)

)}2{n−1∑
k=ℓ

k−(d−1)
}−1

≥ (
f (ℓ)− f (n)

)2
{ ∑

k≥ℓ
k−(d−1)

}−1 =
{ ∑

k≥ℓ
k−(d−1)

}−1
.

Exercise 9.5: Fix M ≥ 2 and partition (−π,π] into intervals I1, . . . , IM of length 2π/M . Write νr
def=

µ
η

B(n);β
(ϑ0 ∈ Ir ). Then, (9.9) implies that |νr −νs | ≤ c/Tn (d) for all 1 ≤ r, s ≤ M and thus |νr − 1

M | =
1

M |∑M
s=1(νr −νs )| ≤ c/Tn (d). The first claim follows. The second claim is an immediate consequence of

the first one.

Exercise 9.7: Writing Si = (cosϑi , sinϑi ) gives Si ·S j = cos(ϑi −ϑ j ), so the partition function with free
boundary condition can be written as

Z∅
B(n);β

=
∫ π

−π
dθ−n · · ·

∫ π

−π
dθn

n∏
i=−n+1

eβcos(θi −θi−1) .

Now, observe that ∫ π

−π
dθn eβcos(θn−θn−1) =

∫ π

−π
dτeβcosτ = 2πI0(β) .

One can then continue integrating successively over θn−1, . . . ,θ−n+1, getting each time a factor 2πI0(β),
with a final factor 2π for the last integration (over θ−n ). Therefore,

Z∅
B(n);β

= (2π)|B(n)|I0(β)|B(n)|−1 ,

and, thus, ψ(β) = limn→∞ |B(n)|−1 logZ∅
B(n);β

= log(2π)+ log I0(β). The computation of the numerator

of the correlation function 〈S0 ·Si 〉∅B(n);β
is similar. We assume that i > 0. Integration over θn , . . . ,θi+1 is

carried out as before and yields I0(β)n−i . The integration over θi yields, using the identity cos(s + t ) =
cos s cos t + sin s sin t ,

∫ π

−π
dθi eβcos(θi −θi−1) cos(θi −θ0) =

∫ π

−π
dτeβcosτ cos(τ+θi−1 −θ0)

= cos(θi−1 −θ0)
∫ π

−π
dτeβcosτ cos(τ) = 2πI1(β)cos(θi−1 −θ0) .

The integration over θi−1, . . . ,θ1 is performed identically. Then, the integration over θ0, . . . ,θ−n is done
as for the partition function. We thus get, after simplification,

〈S0 ·Si 〉∅B(n);β
= 2π

(
2πI0(β)

)n(
2πI1(β)

)i (2πI0(β)
)n−i

2π
(
2πI0(β)

)2n
=

( I1(β)

I0(β)

)|i |
.

Letting n →∞ yields 〈S0 ·Si 〉µ = (I1(β)/I0(β))i .



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik
www.unige.ch/math/folks/velenik/smbook

541

Solutions of Chapter 10
Exercise 10.2: Suppose first thatΘ(µ) =µ. In this case, for any f , g ∈A+(Θ),

〈 f Θ(g )〉µ = 〈Θ( f Θ(g ))〉µ = 〈Θ( f )g 〉µ .

Conversely, suppose that 〈 f Θ(g )〉µ = 〈g Θ( f )〉µ, for all f , g ∈A+(Θ). Let A ⊂ΩTL,+(Θ)
0 , B ⊂ΩTL,−(Θ)

0 be

arbitrary measurable sets and set Ā
def= A ×ΩTL,−(Θ)

0 , B̄
def= Ω

TL,+(Θ)
0 ×B , f = 1Ā and g = 1Θ(B̄). We then

have
µ(Ā∩ B̄) = 〈 f Θ(g )〉µ = 〈Θ( f )g 〉µ =µ(Θ(Ā∩ B̄)) .

Since events of the form Ā∩ B̄ generate the product σ-algebra, we have shown that µ=Θ(µ).

Exercise 10.3: Consider Ω0 = {±1}. Let ω′,ω′′ ∈ ΩL be defined as follows: ω′
i = (−1)

∑d
k=1

ik , ω′′
i = −ω′′

i .

Let µ
def= 1

2 (δω′ + δω′′ ). Then µ is translation invariant but not reflection positive. Namely, let Θ be

any reflection through the edges and let e = {i , j } ∈ EL be such that j = Θ(i ). Let f (ω)
def= ωi . Then

〈 f Θ( f )〉µ =−1 < 0.

Exercise 10.4: As a counterexample to such an identity, one can consider, for example, the Ising model
on T8 with blocks of length B = 2 and the four Λ2-local functions given by f0 = 1++, f1 = 1+−, f2 =
1−−, f3 = 1−+, where 1ss′

def= 1{σ0=s,σ1=s′}.

Exercise 10.5: Write f (Si ,S j ) = −αSi ·S j − (1−α)S1
i S1

j . The first term is minimal if and only if Si = S j .

The second term is minimal if and only if S1
i = S1

j =±1. The claim follows.

Exercise 10.6: This is immediate using the following elementary identities:

|T⋆L |−1 ∑

p∈T⋆L
ei( j−k)·p = δ j ,k for all j ,k ∈TL , and |TL |−1 ∑

j∈TL

ei(p−p′)· j = δp,p′ for all p, p ′ ∈T⋆L .

Exercise 10.7: We will use twice an adaptation of the discrete Green identity (8.14) on the torus. First,
since (using

∑
i∈TL

(∆h)i = 0 for the last identity)

ZL;β(h)

ZL;β(0)
=

〈
exp

{
−2β

∑
{i , j }∈EL

(Si −S j ) · (hi −h j )−β
∑

{i , j }∈EL

∥hi −h j ∥2
2

}〉
L;β

=
〈

exp
{

2β
∑

i∈TL

Si · (∆h)i −β
∑

{i , j }∈EL

∥hi −h j ∥2
2

}〉
L;β

=
〈

exp
{

2β
∑

i∈TL

(Si −S0) · (∆h)i −β
∑

{i , j }∈EL

∥hi −h j ∥2
2

}〉
L;β

,

the equivalence of (10.43) and (10.45) follows.
Now, observe that the Boltzmann weight appearing in νL;β can be written as a product:

exp
(
−β

∑
{i , j }∈EL

∥Si −S j ∥2
2

)
=

ν∏
k=1

exp
(
− 1

4d

∑
{i , j }∈EL

(ϕk
i −ϕk

j )2
)

,

where we defined the collections ϕk
i

def=
√

4dβSk
i . Therefore, the families (ϕk

i )i∈TL
and (ϕℓi )i∈TL

are
independent of each other if k ̸= ℓ and each is distributed as a massless Gaussian Free Field on TL .
Of course, the latter is ill-defined on the torus. However, notice that the expectation we are interested

in only involves the field ϕ̃k
i

def= ϕk
i −ϕk

0 . Adapting the arguments of Chapter 8 (working on TL with
0 boundary condition at the vertex {0}), the reader can check that the latter is a well-defined centered
Gaussian field with covariance matrix

GTL \{0}(i , j )
def=

∑
n≥0

Pi (Xn = j ,τ0 > n) ,

that is, the Green function of the simple random walk on TL , killed at its first visit at 0. Moreover, this
Green function is the inverse of the discrete Laplacian − 1

2d ∆ on TL .
We can thus fix k ∈ {1,2, . . . ,ν}, define

hk = (hk
i )i∈TL

, t k
L

def= (√
β/d(∆hk )i

)
i∈TL

, ϕk
L

def= (ϕk
i )i∈TL

,
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and use (8.9):
〈

exp
{

2β
∑

i∈TL

(∆hk )i (Sk
i −Sk

0 )
}〉

νL;β
=

〈
e t k

L ·ϕ̃k
L
〉
νL;β

= exp
( 1

2 t k
L ·GTL \{0}t k

L

)
.

Changing back to the original variables and using the fact that the Green function is the inverse of the
discrete Laplacian, the conclusion follows:

1
2 t k

L ·GTL \{0}t k
L =−β∆hk ·{GTL \{0}

(− 1
2d ∆

)
hk }=−β∆hk ·hk .

Solutions of Appendix B
Exercise B.1: For the first inequality, it suffices to write y as y =αx+(1−α)z, withα= (z−y)/(z−x). The
second follows by subtracting f (x) on both sides of (B.5).

Exercise B.4: Assume first that f ′′(x) ≥ 0 for all x ∈ I . Then, for all x, y ∈ I ,

f (y) = f (x)+
∫ y

x
f ′(u)du = f (x)+

∫ y

x

{
f ′(x)+

∫ u

x
f ′′(v)dv

}
du ≥ f (x)+ f ′(x)(y −x) .

This implies that f has a supporting line at each point of I and is thus convex by Theorem B.13. Now if f
is convex, then, for all x ∈ I and all h ̸= 0 (small enough), ( f ′(x +h)− f ′(x))/h ≥ 0, since f ′ is increasing.
By letting h → 0, it follows that f ′′(x) ≥ 0.

Exercise B.5: Assume f is affine on some interval I = [a,b], and consider a < a0 < b0 < b. On the one
hand, by Theorem B.12 and since each fn is differentiable, 0 = f ′(b0)− f ′(a0) = limn ( f ′n (b0)− f ′n (a0)).
On the other hand, f ′′n ≥ c and the Mean Value Theorem implies that, uniformly in n, f ′n (b0)− f ′n (a0) ≥
c(b0 −a0) > 0, a contradiction.

Exercise B.6: It suffices to write, for all x, y1, y2 and α ∈ [0,1],

x(αy1 + (1−α)y2)− f (x) =α{
x y1 − f (x)

}+ (1−α)
{

x y2 − f (x)
}≤α f ∗(y1)+ (1−α) f ∗(y2) .

Exercise B.7: By explicit computation: f ∗1 (y) = 1
2 y2, f ∗2 (y) = 3

44/3 y4/3, f ∗3 (y) = |y |, which are all convex.

Furthermore, f ∗∗1 = f1, f ∗∗2 = f2 but f ∗∗3 ̸= f3 since f ∗∗3 (x) = 0 if |x| ≤ 1, +∞ otherwise.

Exercise B.8:
f ∗∗(x) = sup

y

{
x y − sup

z

(
y z − f (z)

)

︸ ︷︷ ︸
≥y x− f (x)

}≤ f (x) .

Exercise B.10:

−1 1 x
f (x)

−1 1
x

f ∗(x) −1 1 x
f ∗∗(x)

Exercise B.11: Let xn → x. Then, for any z ∈ I ,

liminf
n→∞ f ∗(xn ) = liminf

n→∞ sup
y∈I

{
xn y − f (y)

}≥ liminf
n→∞

{
xn z − f (z)

}= xz − f (z) .

Therefore, liminfn→∞ f ∗(xn ) ≥ supz∈I
{

xz − f (z)
}= f ∗(x).

Exercise B.12: Since f (x) ≥ f (x0)+m(x − x0) for all x, we have f ∗(m) = x0m − f (x0). By definition,
f ∗(y) = supx {y x − f (x)}, and so

f ∗(y) ≥ x0 y − f (x0) = x0(y −m)+ (x0m − f (x0)) = x0(y −m)+ f ∗(m) .

Exercise B.14: Since epi(g ) is convex, closed and contains epi( f ) (since g ≤ f ), we have

CE f (x) = inf
{

y : (x, y) ∈C
}≥ inf

{
y : (x, y) ∈ epi(g )

}= g (x) .

Exercise B.15: Let µ be the counting measure on (N,P(N)): µ(n)
def= 1 for all n ∈ N. Let (xn )n≥1 ⊂ I be

any sequence converging to x0 and consider the sequence ( fn )n≥1 of functions fn : N→ R defined by

fn (k)
def= ξk (xn ). Then

∑
k ξk (xn ) = ∫

fn dµ, so the result follows from Theorem B.40.


