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Indeed, since my first academic steps, my scientific guiddlams
been and still is that ‘good’ mathematical theory shouldehav
palpable influence on the construction of algorithms, while
‘good’ algorithms should be as firmly as possible backed by a
transparently underlying theory. Only on such a basis,
algorithms will be efficient enough . (P. Deuflhard 2004)
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(For Saint Boniface, see the Conclusion.)



1. Convergence Theory of Extrapolation Methods.
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Theorem (Laurent 1963, Bauer—Rutishauser—Stiefel 1963)
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Examples.
Romberg sequence (1955): 1,2,4,8,16, 32,64, 128,256,512,
Bulirsch sequence: 1,2,3,4,6,8,12,16,24,32,48,64. ..

Mein Verzicht auf das Restglied war leichtsinnig. F.L. Baue
bewies es mit der Euler-Maclaurin-Summenforme

Restglied. (W. Romberg, handwritten notice to P. Dd.,
1979)
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Bulirsch sequence: 1,2,3,4,6,8,12,16,24,32,48,64. ..

Mein Verzicht auf das Restglied war leichtsinnig. F.L. Baue
bewies es mit der Euler-Maclaurin-Summenforme
Restglied. (W. Romberg, handwritten notice to P. Dd.,

1979)

But theharmonicsequence: 1.2.3,4,5,6,7,8,9, 10,11, ...

(Deuflhard 1983) is numerically the best! (“Surprisinghet
harmonic sequencgéy occurs”, code DIFEX1).

Numerical Example.
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Gragg Algorithm (Gragg 1964).
Gragg Alg. fory’ = —\y

smoothing step
\ ‘/\V)'E 1\

y1 = Yo + hf(zo,vo)
Yir1 = Yi—1 + 2hf (i, ;)

Sp = i (Y2n—1+2Yon+Yons1) 0
(smoothing step)

Is the smoothing step necessar(Shampine & Baca 1983).
H.—N.-W. (93) : “ However, since the method Is anyway
followed by extrapolation, this step is not of great impada
... the differences are seen to be tiny.”
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Order and Stepsize Control.

e Bulirsch—Stoer (1966)ise of interpolation error formula;
e Deuflhard (1983)Work min. + Information Theor. Model ;
e H.—N.-W. (1987)Work minimization only (ODEX);

PN WD
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Rounding Errors

Since the sensitivity to round-off of the extrapolation g&es
Increases with the order of extrapolatian the program
computes onI;Tk(i) for k£ < 6 which has proved reasonable for
machine accuracy of 40 bits.. (Bulirsch—Stoer,
Num. Math.1966, p. 8)

Tll

Clever trick: T. FukushimaAstron. J.1996), extrapolating the
iIncrementsand not thél'-values.



Theory of rational extrapolation (Bulirsch—Stoer 1964).

Beispiele zeigen die Uberlegenheit dieses Verfahrens,.das
allen untersuchten Fallen nicht schlechter, meistensrsoga
erheblich besser konvergierte als entsprechende
Polynom-Verfahren. (Bulirsch—Stoddum. Math.1963,
p. 414)

Moreover, polynomial extrapolation turned out to be slight
preferable to rational extrapolation.. (Deuflhard,
Num. Math.1983, p. 413)
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2. Order Theory of Runge-Kutta Methods

Not being a pure mathematician | was never quite sure of what
was talking about. It is difficult to keep a cool head when
discussing the various derivatives of one variable witipeesto
another and | think this would justify a solid attack by a pure
mathematician to put everything on a sound basis. | did hewev
see the one-one correspondence between the trees and e “I
operators”. . . (Dr. S. Gill, in a discussion 1956)

Classical Runge-Kutta Theory

e order 2 and 3 by Runge (1895) and Heun (1900) ;
e Order 4 by Kutta (1901);

e order 5 by Nystrom (1925) ;

e Oorder 6 by Hut'a (1956) ;

hopelesdor higher orders.
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Butcher’s First Theorem (Butcher 1963).
Numerical solution:
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Simplifying assumptions:
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Achievements:

1200 Ny, of equations Hairer &

Construction of RK methods
of orders 2-10

Curtis

Runget Kutta NyStr('jm Hut aﬁutcher

A —(B— | —(6)—<6
1920 1940 1960

None of these methods Is actually in use




Error Estimation and Step-Size Control

Das besondere Schmerzenskind sind die
Fehlerabschatzungen. (L. Collatz 1950)

1. Error estimation with embedded method(Merson 1957,
Ceschino 1961, Fehlberg 1969);: higher order result used for
error estimation.

Y1
e returns ‘bad’ numerical result; 7l .

/7
e if y; optimized= %yl ,

dangerous underestimation. y‘o | |

error est.




2. Local extrapolation
To start with, recall the well-knowdilemmaof error estimation:
once a good error estimate is computed, one will certaintyiad
to the associated approximation — thus obtainimgfimed
approximation, which then, however, dosst have an associated

error estimate ! (P. Deuflhartilum. Math.1983, p. 403)
(Dormand & Prince 1980, 1989, Dd 1983). Optimize
Y1 /

e excellent numerical result:

Y

/\

e Save error and step-size handllnq -7

| new |

local extrap.




3. ‘Stretched’ error estimator (Hairer 1993).

In DOPR86 necessaribyi, = 312, error insensitive at = ¢1:
= DOP853 withtwo error estimators:;, e;
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Remark. Smoothing step in Gragg algs- ‘Stretched’ error est.



3. Butcher's Second TheorengButcher 1969, 1972).
At the Dundee Conference in 1969, a paper by J. Butcher was

read which contained a surprising result. (H.J. Stetted 19/
1
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Applications.
e Butcher’s “effective orderRK5o RK5 o = order 5,
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) =
() = a(0) - a(W) +a(+) - a(-)a(z) + a(7) -a(7) + a(1) - a(-
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Applications.

e Butcher’s “effective orderRK5o RK5o RK5H = order 5;

a) a) a) a)
ST e B e
> T T T i T

u

e compos. ofB-seriesB(a, B(a,vyq)) = B(aa,yo) = B(a, 1), ;

) =
a(v) = a(0) - (V) + al+) -a()a(7) + a(z) - a(z) + a(7) - al-
+a(v) - al+) +a(}) - a() + a(v)

e General Multivalue Methods (K. Burrage and P. Moss 198(
e General Linear Methods (Burrage and Butcher 1980) ;

e Rosenbrock methods (Ngrsett, Wolfbrandt, Kaps, Rentrop
e Multiderivative RK methods (Kastlunger 1972) ;



e Partitioned ODE'’s, P-series (Hairer 1981) ;

¢ \olterra Integral EQ’s, V-series (Brunner-Hairer-Ngt<s£i82) ;

e Index 1 DAE’s and Singular Pert. Pr., (Roche 1988, HLR 19¢
e Index 2 DAE’s (A. Kvaerno 1990, Hairer-Lubich-Roche 1989
e Manifolds (Crouch-Grossmann 1993, Owren and Martinsery
e Equations on Lie Groups (Munthe-Kaas 1995, 1997);

e Stochastic Diff. Eg. (K. and P.M. Burrage 2000, Cirilli 2002

e ROCK Methods for PDE’s. Abdulle—Medovikov 1999) ;

e Hamiltonian Syst., Sympl. B-series. (Calvo and Sanz-S&8%
e Sympl. Integrators ; Backward Error Anal. (Hairer and Lunoic

e B -series for Composition Meth. (Murua and Sanz-Serna 1



Connection with Hopf Algebras and Quantum Field Theory

The algebraic structure of the above Butcher Group leads to
mappingA : ' H — 'H ® H, for example

A= 1@V + @t QI L@tV R+ R. VD]

which defines &oproducton the algebra generated by families
of rooted trees, and has proved to be extremely useful in
Theoretical Physics for simplifying the intricate comidmracs

of renormalization (Connes, Kreimer 1998), (Brouder 2000)
An unexpected connection. ...and a nice citation:

We regard Butcher’s work on the classification of numerical
Integration methods as an impressive example that concrete
problem-oriented work can lead to far-reaching conceptual
results. (A. Connes, cited from Chr. Brouder, talk in
Trondheim 2003)



4. Stiff Equations ; Dahlquist’s Second Barrier
... Around 1960, things became completely different and
everyone became aware that the world was full of stiff
problems. (G. Dahlquist in 1985)

% expl. Eulerh = 0.039

o
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Theorem (Dq 1963).

Multistep methodd-stable = p < 2.
For p = 2 best error constant by Trap. Rule.
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4. Stiff Equations ; Dahlquist’s Second Barrier
... Around 1960, things became completely different and
everyone became aware that the world was full of stiff

problems. (G. Dahlquist in 1985)
% expl. Eulerh=0.039|[ ' Trap. Ruleh=0.25 impl. Euler,h=0.5
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Prothero-Robinson 1974 : A-stabllity is not enough'!

Method must betiffly accurate
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Example. The heat equation

Expl. Euler



Ehle’s Con,

N //

Conjecture. A-stable & k£ <j <k + 2.




Ehle’s Conjecture; Order Stars

Theorem. A-stable & £ <j<k+ 2.
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5. The Controversy between Multistep and
Runge-Kutta

The greater accuracy and the error-estimating ability of
predictor-corrector methods make them desirable for systw
any complexity.. . . Runge-Kutta methods still find applications
In starting the computation . (A. Ralston,Math. Comput.
1962)

But surely the predictor-corrector techniques (Milne'’s fo
example) will result in one getting an answer to the same
accuracy in a shorter time simply because information datali
single interval iIs used. You can choose formulae so that the
theoretical truncation error is of any order you

wish. (Dr. J.M. Bennett, Sydney, in a discussion 1956)



Theorem of Jeltsch—Nevanlinna.

Two explicit methods
with comparable numerical work
... have also comparable
stability domains.

In answer to Dr. Bennett’s first question, | have found that th
predictor-corrector formulae do not have the wide stabrbinge
of R. Kutta processes. (Mr. R.H. Merson (In Reply))
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6. Symplectic Integration of Hamiltonian Systems

— o pi(A)

1 2 q 3 1 2 q 3

Geometric Numerical Integration
Structure-Preserving Algorithms for Ordinary DifferexitEquations
E. Hairer, C. Lubich, G. Wanner, Springer 2002



Example. The outer solar system.

_explicit Euler,h = 10 implicit Euler,h = 10




Counter-Example. (Sanz-Serna, Calvo)
The Kepler with eccentricity = 0.6.
Method: Stormer—Verlet

Error estimator: imbedded symplectic Euler and standard ste
Size strategy

o001 EITOrIN Hamiltonian

0001 )4
' N(% fixed step sizel, 250, 000 steps

D

0 1000 2000 3000 4000 5000




Counter-Example : asymplecticmethod which isbad.
For the harmonic oscillator p = —¢q, ¢ =p we put (EH)

Pn+1 — DPn — hgn
dn+1 = (Qn + hpn—i—l

=\
)

h = .38

N\

7




Counter-Example : asymplecticmethod which isbad.
For the harmonic oscillator p = —¢q, ¢ = p we put (EH)

Pn+1 = Dn — hgy — h27pn+17
Gnt1 = Gn + hppi1 — h27 dn

wherey = 0.25/(p7., + 6172@).

7 .
\\ " = /

H \\\

== —

h = .38 h = .38
This curious method isymplecti¢but is of no use anyway !




“I'll tell you In two words : inpossble !” (Laurel & Hardy)
Theorem (Tang 1993, Hairer—Leone 1997).

Symplectic (true) multi-value methods are impossible.

Discovery : (Quinlan—Tremaine) Multistep methods can be
excellent!

Example. (A) : Yn+3 — Yn+2 + Ynt1 — Yn = h(foro + for1)
(B) L An43 T Antl = 2hgn+2-

EX

method (A)

method (AB)

—

plication : new paper by E.

Hairer and C. Lubich.



Conclusion.

“Ora et Labora”

(The Regula Benedichromoted by Saint Boniface)



Conclusion.

“Ora et Labora”

(The Regula Benedichromoted by Saint Boniface)

Thanks to E. Hairer and C. Lubich
thanks to Martin Hairer.









	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

