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I - Motivations



Goal

To compute the spectrum and predict the properties of spectral measures of
a self-adjoint operator encoding the quantum motion of an electron in Rd

(d = 1, 2, 3) submitted to an aperiodic but homogeneous potential.

This should represent the independent electron approximation used
to investigate the electronic properties of aperiodic solids or liquids.

By computing it is meant both a mathematical method permitting to
study it and a potential algorithm liable to compute numerically the
results.



Crystals

If the potential is periodic with a discrete co-compact period group
G ⊂ Rd, the translation symmetry can be used to simultaneously
diagonalize the Hamiltonian and the G-action. (Bloch Theory, 1928))

Additional point symmetries help computing further (Wigner, Seitz, 1933).

Usual Results:

• Band spectrum

• Absolutely continuous spectral measures.



Disordered Systems

An additional potential is added, random in space but time-independent
(quenched disorder) (Anderson, 1958).

Example: semiconductors at very low temperature.

Results:

• Strong Localization: when the kinetic energy is dominated by po-
tential energy.
Pure point spectrum, only few gaps (proved) (Pastur, Molcanov 1978, Fröhlich,

Spencer 1981, and many others until now).

•Weak Localization: when the kinetic energy dominates the potential
energy.
Expected (predicted by Physicists, unproved yet): a.c. simple
spectrum, diffusive quantum motions.



Quasicrystals
Long Range Order, points symmetries, inflation symmetry, algorith-
mic structure (cut-and-project method) (Schechtman, et al. 1984)

Expected Results:
• Cantor spectrum at low energy, no gap at high energy in d ≥ 2.

• s.c. spectrum in the gapped region

• a.c. simple spectrum at high energy, with level repulsion

• sub-diffusive motion at high energy, in d ≥ 3 (insulating phase).

In real Materials:
• Additional weak disorder, from structural origin (phason modes)

or structural defects (flip-flops).
• Implies weak or strong localization at very low temperature

(observed in few experiments).



II - Methods, Results



Specific Models
• d = 1 systems: ψ(n+1)+ψ(n−1+V(n)ψ(n) = Eψ(n) use the transfer

matrix method (dynamical cocycles).

– Almost Mathieu: V(n) = 2λ cos 2π(x − nα) α < Q
(Hofstadter 1976, Jitomirskaya 1998 and many others)

– Fibonacci: V(n) = χ[0,α)(x − nα) α = (
√

5 − 1)/2
(Damanik, Gorodetzki, et al 1992-2016)

– Automatic sequences: Thue-Morse (JB 1988, 1993; Liu, Qu 2015, many others).
Calculation of spectral gap edges, gap labeling, Hausdorff di-
mension. Spectral type of the spectral measure

• Cluster Approximation: numerical method (Khomoto et al, 1985-86) strong
boundary effects.

• Periodic Approximation : (Hofstader 1976, Benza-Sire 1992), exponentially small
error in the period (Prodan 2012), level repulsion (U. Grimm et al, 1998).



• Conclusion:

– Small number of results except in specific examples, mostly
d = 1 models with nearest neighbor influence, using transfer
matrix and dynamical systems.

– No systematic method for d ≥ 2. Only accurate numerical
methods.

– Need of new mathematical approach.



III - Approximations
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Examples

• Tilings with finite local complexity (FLC), or, equivalently, Delone
sets of finite type (Anderson, Putnam, 1998, Lagarias 1999, Gähler 2002, JB, Benedetti, Gambaudo,

2006). Anderson and Putnam have proposed a construction of a
sequence of CW-complex, describing accurately the tiling space
by inverse limit, and providing an accurate finite volume approx-
imation.

• Delone sets used in Condensed Matter Physics, including liquids (JB,

2015). Use the time-scale separation between electronic and atomic
movements. The local description through the Voronoi tiling and
the Delaunay triangulation, gives predictions observed in numeri-
cal simulations. A realistic simplified model for viscosity in liq-
uids can be derived then (JB, Egami, 2018).



Approximation of Subshifts

• For A a finite set (alphabet), and d ∈ N, the full d-shift is the
compact metrizable Hausdorff space Ω = AZ

d
equipped with the

Zd-action by translation (taξ)m = ξm−a.

• The space J of all closed Zd-invariant subsets is equipped with the
Hausdorff topology. It is itself compact, metrizable and Hausdorff.

• A pattern of radius R > 0 in M ∈ J, is the restriction of taξ to the
ball {m ∈ Zd ; |m| ≤ R} for some a ∈ Zd and some ξ ∈M.

Theorem Given M ∈ J, a sequence (Mn)n∈N in J converges to M if and
only for any R > 0, there is N ∈ N such that for any n > N, Mn and M
share the same patterns of radius R.



Groupoid Approach
(Ramsay ‘76, Connes, 79, Renault ‘80)

In most practical situation there is no symmetry group at all. How-
ever, the structure and the translation action, can always be ex-
pressed in terms of a groupoid.

A groupoid G is a category the object of which G0 and the morphism
of which G make up two sets.



Groupoid Approach
More precisely

• there are two maps r, s : G→ G0 (range and source)

• (γ, γ′) ∈ G2 are compatible whenever s(γ) = r(γ′)

• there is an associative composition law (γ, γ′) ∈ G2 7→ γ ◦ γ′ ∈ G,
such that r(γ ◦ γ′) = r(γ) and s(γ ◦ γ′) = s(γ′)

• a unit e is an element of G such that e ◦ γ = γ and γ′ ◦ e = γ′

whenever compatibility holds; then r(e) = s(e) and the map e →
x = r(e) = s(e) ∈ G0 is a bijection between units and objects;

• each γ ∈ G admits an inverse such that γ ◦ γ−1 = r(γ) = s(γ−1) and
γ−1
◦ γ = s(γ) = r(γ−1)



Locally Compact Groupoids

• A groupoid G is locally compact whenever

– G is endowed with a locally compact Hausdorff 2nd countable
topology,

– the maps r, s, the composition and the inverse are continuous func-
tions.

Then the set of units is a closed subset of G.

• A Haar system is a family λ = (λx)x∈G0 of positive Borel measures
on the fibers Gx = r−1(x), such that

– if γ : x→ y, then γ∗λx = λy

– if f ∈ Cc(G) is continuous with compact support, then the map
x ∈ G0 7→ λx( f ) is continuous.



Groupoid C∗-algebra

Let G be a locally compact groupoid with a Haar system λ. Then

• like with locally compact groups, it is possible to define a convo-
lution algebra, endowed with an adjoint operation;

• in order to include the influence of magnetic fields (more generally
of gauge fields), this convolution algebra must be twisted, using a
2-cocycle;

• even a non uniform magnetic fields, provided it is bounded and
uniformly continuous, can be represented this way to the expense
of modifying the underlying groupoid in a controlled way;

• using the concept of representation, the twisted convolution al-
gebra can be completed to make up a C∗-algebra;



Groupoid C∗-algebra

• like for groups, there is a concept of amenability for groupoids
(Anantharam-Delaroche, Renault ‘99); then if non-amenable, the corresponding
C∗-algebra may not be unique, with a minimal one called reduced,
and a maximum one, called full; amenability leads to coincidence
of all such C∗-algebras;

• in all practical cases met in Condensed Matter Physics, the groupoid
used is amenable and C∗-algebras defined above is the smallest
such algebra generated by the energy (translation in time) and the
action of the translation in space twisted by the magnetic field.



Continuous Fields of Groupoids
(N. P. Landsman, B. Ramazan, 2001)

• A field of groupoid is a triple (G,T, p), where G is a groupoid, T a
set and p : G→ T a map, such that,
if p0 = p �G0, then p = p0 ◦ r = p0 ◦ s

• Then the subset Gt = p−1
{t} is a groupoid depending on t.

• If G is locally compact, T a Hausdorff topological space and p contin-
uous and open, then (G,T,P) = (Gt)t∈T is called a continuous field of
groupoids.

• The concept of continuous field of 2-cocycle can also be defined
(Rieffel ‘89, JB, Beckus, De Nittis ‘18).



The Tautological Groupoid
Let G be a locally compact groupoid with G0 compact and a Haar
system λ.

• Two units x, y ∈ G0 are equivalent, denoted by x ∼ y, if there is
γ ∈ G such that r(γ) = x and s(γ) = y. This is an equivalence
relation.

• A subset M ⊂ G0 of the unit space is called invariant whenever
if x ∈ M and y ∼ x implies y ∈ M. Then its closure M is also
invariant.

• Let J(G) be the set of all closed invariant subsets of G0. Equipped
with the Hausdorff topology, it is compact.



The Tautological Groupoid

• The set T(Γ) of pairs (M, γ) such that both r(γ) and s(γ) are in M,
is a groupoid called the tautological groupoid of G.

• The map pG : T(G)→ J(G) defined by pG(M, γ) = M is continuous
and open so that (T(G), J(G), pG) is a continuous field of groupoid,
called the tautological field.

• If σ is a continuous 2-cocycle over T(G), then it can be restricted to
any M ∈ J(G) leading to a continuous field (σM)M∈J(G) of 2-cocycles.



The Main Theorem

Theorem If G is amenable, then the field (AM)M∈J(G) of C∗-algebras
defined as the algebra of the sub-groupoids p−1

G (M) and the cocyacle σM is
continuous.

If (AM)M∈J(G) is a continuous section of self-adjoint elements of this field,
then the spectrum ΣM of AM is continuous w.r.t. M in the space K (R) of
compact subspaces of R equipped with the Hausdorff topology.



IV - Periodic Approximations in 1D
S. Beckus, J. Bellissard, G. De Nittis,
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Periodic Approximation in 1D

In one dimension, all FLC tiling (or finite type Delone set) are given
by a subshift in Ω = AZ for some finite alphabet A. The analogue
of the Anderson-Putnam complex is given by a sequence of finite
graphs, called here the GAP-graphs, encoding the subwords Wn of
given length n, interpreted as collared dots or collared letters.



Subshifts
Let A be a finite alphabet, let Ω = AZ be equipped with the shift S.
Let Σ ∈ I(Ω) be a subshift. Then

• given l, r ∈N an (l, r)-collared dot is a dotted word of the form u · v
with u, v being words of length |u| = l, |v| = r such that uv is a
sub-word of at least one element of Σ

• an (l, r)-collared letter is a dotted word of the form u · a · v with
a ∈ A, u, v being words of length |u| = l, |v| = r such that uav is
a sub-word of at least one element of Σ: a collared letter links two
collared dots

• let Vl,r be the set of (l, r)-collared dots, let El,r be the set of (l, r)-
collared letters: then the pairGl,r = (Vl,r,El,r) gives a finite directed
graph, which will be called the GAP-graphs
(Flye 1894, de Bruijn ‘46, Good ‘46, Rauzy ‘83, Anderson-Putnam ‘98, Gähler ‘01)



The Fibonacci Tiling

• Alphabet: A = {a, b}

• Fibonacci sequence: generated by the substitution a→ ab , b→ a
starting from either a · a or b · a

Left: G1,1 Right: G8,8



The Full Shift on Two Letters

• Alphabet: A = {a, b} all possible word allowed.

G1,2 G2,2



GAP-Graphs

The GAP-graphs are

• simple: between two vertices there is at most one edge,

• connected: if the sub-shift is topologically transitive, (i.e. one orbit is
dense), then between any two vertices, there is at least one path
connected them,

• has no dandling vertex: each vertex admits at least one ingoing and
one outgoing vertex,

• if n = l + r = l′+ r′ then the graphs Gl,r and Gl′,r′ are isomorphic and
denoted by Gn.



Strongly Connected Graphs
(S. Beckus, PhD Thesis, 2016)

A directed graph is called strongly connected if any pair x, y of vertices
there is an oriented path from x to y and another one from y to x.

Proposition: If the sub-shift Σ is minimal (i.e. every orbit is dense), then
each of the GAP-graphs is stongly connected.

Main result:

Theorem: A subshift Σ ⊂ AZ can be Hausdorff approximated by a se-
quence of periodic orbits if and only if it admits is a sequence of strongly
connected GAP-graphs.



V - Lipshitz Continuity
S. Beckus, J. Bellissard, H. Cornean,

Hölder Continuity of Spectra of a Class of Aperiodic Schrödinger Operators,
in preparation.



Lipshitz Continuity

Spectral continuity is insufficient at evaluating the speed of con-
vergence. Lipshitz continuity of a continuous field of self-adjoint
operators might actually help getting better estimates.



Hamiltonian

• The lattice L ⊂ Rd is a discrete co-compact subgroup. ∗ is a finite
alphabet.

• Ξ = AL is the full shift, with L-action by the shift operators
{ta ; a ∈ L}.

•Hilbert space of quantum statesH = `2(L)⊗CN on which L acts
by

(U(a)ψ)(m) = ψ(m − a) , ψ(m) ∈ CN , ψ = (ψ(m))m∈L



Finite Range Hamiltonians

Then H = (Hξ)ξ∈Ξ is the continuous field of self-adjoint operators

(Hξψ)(m) =
∑
h∈R

th(t−nξ)ψ(m − n) ,

with 0 ∈ R finite and invariant by h → −h. The th are continuous
functions on Ξ such that th(ξ) = t−h(t−hξ) (for the self-adjointness of
Hξ).

A continuous function f : Ξ→ C will be called cylindrical or pattern
equivariant if it depends only upon a finite number of components
of the point ξ ∈ Ξ (Kellendonk ‘03).
H will be called finite range if R is finite and pattern equivariant if all
the th’s are pattern equivariant.



Metric

• Let d be a metric on A.
For x = (x1, · · · , xd) ∈ Rd let |x|∞ = maxi|xi|.
Then dΞ is the metric on Ξ defined by

dΞ(ξ, η) = min
{
1, inf

{1
r

; d(ξ(m), η(m)) ≤
1
r
, m ∈ L , |m|∞ ≤ r

}}
• Then dH

ξ
denotes the corresponding Hausdorff metric on the space

J of closed shift invariant subsets of Ξ.

• For ξ ∈ Ξ, its Hull is the smallest set Ξξ ∈ J containing ξ.



Main Result

Theorem Let H = (Hξ)ξ∈Ξ be a continuous field of pattern equivari-
ant self-adjoint operators with finite range. Then there is a constant C
depending on H such that

dH(σ(Hξ), σ(Hη)) ≤ C dH
Ξ (Ξξ,Ξη)

where σ(A) ⊂ R denotes the spectrum of the self-adjoint operator A and
dH is the Hausdorf metric on the space of compact subset of R defined by
the Euclidean metric on R.



Thanks for Listening!!


