
The Fibonacci Hamiltonian

David Damanik
Rice University

SMS-DMV Workshop on Groups and Dynamics

Spectra and L2-Invariants

Geneva, Switzerland

September 10–13, 2018



The Fibonacci Hamiltonian

The Fibonacci Hamiltonian is the bounded self-adjoint operator

[H
(Fib)
λ,ω ψ](n) = ψ(n+1)+ψ(n−1)+λχ[1−α,1)(nα+ω mod 1)ψ(n)

in `2(Z), with the coupling constant λ > 0 and the phase ω ∈ T.

The frequency is given by α =
√

5−1
2 . This operator has been

studied in a large number of papers since the early 1980’s.
It is of interest for a variety of reasons:

I It is the central model in the study of one-dimensional
quasicrystals.

I It is one of the few explicit Schrödinger operators with
non-trivial spectral analysis that can be carried out more or
less completely.

I It builds a bridge between spectral theory and dynamical
systems.

I The orthogonal polynomials display unusual behavior.



The Spectrum

The spectrum σ(H
(Fib)
λ,ω ) ⊂ R is easily seen to be independent of ω

and may therefore be denoted by Σλ.

Theorem (Sütő 1989)

For every λ > 0, Σλ is a Cantor set of zero Lebesgue measure.

Here is a plot of (a numerical approximation of) Σλ for 0 ≤ λ ≤ 2:



The Trace Map Formalism

Recall that the potential takes the form

Vλ,ω(n) = λχ[1−α,1)(nα + ω mod 1)

Let us consider the case ω = 0 and form the standard transfer
matrices

M(n,E ) =

(
E − Vλ,0(n) −1

1 0

)
· · ·
(
E − Vλ,0(1) −1

1 0

)
Considering these matrices at Fibonacci sites,

Mk = Mk(E ) = M(Fk ,E )

the following remarkable identity holds:

Mk+1 = Mk−1Mk



The Trace Map Formalism
Passing to half-traces, xk = 1

2trMk , it then follows that

xk+1 = 2xkxk−1 − xk−2

We are naturally led to the definition of the Fibonacci trace map,
which is given by

T : R3 → R3, T (x , y , z) = (2xy − z , x , y)

and in particular satisfies

T (xk , xk−1, xk−2) = (xk+1, xk , xk−1)

The function

I (x , y , z) = x2 + y2 + z2 − 2xyz − 1

is invariant under the action of T and hence T preserves the
surfaces

SI =
{

(x , y , z) ∈ R3 : I (x , y , z) = I
}



The Surface S0.5
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The Surface S0.2
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The Surface S0.1
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The Trace Map as a Surface Diffeomorphism

It is therefore natural to consider the restriction TI of the trace
map T to the invariant surface SI . That is, TI : SI → SI ,
TI = T |SI .

We denote by ΛI the set of points in SI whose full orbits under TI

are bounded.

Denote by `λ the line

`λ =

{(
E − λ

2
,
E

2
, 1

)
: E ∈ R

}
It is easy to check that `λ ⊂ Sλ2

4

.



ΛI is a Locally Maximal Hyperbolic Set

Let us recall that an invariant closed set Λ of a diffeomorphism
f : M → M is hyperbolic if there exists a splitting of the tangent
space TxM = E s

x ⊕ Eu
x at every point x ∈ Λ such that this splitting

is invariant under Df , the differential Df exponentially contracts
vectors from the stable subspaces {E s

x }, and the differential of the
inverse, Df −1, exponentially contracts vectors from the unstable
subspaces {Eu

x }.

A hyperbolic set Λ of a diffeomorphism f : M → M is locally
maximal if there exists a neighborhood U of Λ such that

Λ =
⋂
n∈Z

f n(U)

It is known (Casdagli 1986, Damanik-Gorodetski 2009, Cantat
2009) that for I > 0, the set ΛI is a locally maximal hyperbolic set
of TI : SI → SI .



Spectrum and Bounded Trace Map Orbits

The key to the fundamental connection between the spectral
properties of the Fibonacci Hamiltonian and the dynamics of the
trace map is the following result:

Proposition (Sütő 1987)

An energy E ∈ R belongs to the spectrum of the discrete Fibonacci

Hamiltonian H
(Fib)
λ,ω if and only if the positive semiorbit of the point

(E−λ2 , E2 , 1) under iterates of the trace map T is bounded.

In terms of the structure coming from the hyperbolicity of the set
ΛI , this can be rephrased as follows:

An energy E ∈ R belongs to the spectrum of the discrete

Fibonacci Hamiltonian H
(Fib)
λ,ω if and only if the point (E−λ2 , E2 , 1)

belongs to the stable manifold of a point in Λλ2

4

.



Spectrum and Bounded Trace Map Orbits

This suggests that a dynamical-spectral connection may be
established via the stable manifolds. That is, the structure of the
Cantor set Λλ2

4

⊂ Sλ2

4

, including local and global fractal

dimensions, should be connected to the structure of the Cantor set
Σλ ⊂ R. Similarly, there should be a connection between
dynamically defined measures on these sets.

In order to actually implement this connection, the following result
is crucial:

Theorem (D.-Gorodetski-Yessen 2016)

The stable manifold of a point in Λλ2

4

intersects the line

`λ =

{(
E − λ

2
,
E

2
, 1

)
: E ∈ R

}
transversally.



The Dynamical-Spectral Dictionary and Applications

With this transversality result in hand, DGY were able to establish
several results about the Fibonacci Hamiltonian. Let us mention a
few:

Theorem (D.-Gorodetski-Yessen 2016)

For every λ > 0, Σλ is a dynamically defined Cantor set. In
particular, for every E ∈ Σλ and every ε > 0, we have

dimH ((E − ε,E + ε) ∩ Σλ) = dimB ((E − ε,E + ε) ∩ Σλ)

= dimH Σλ

= dimB Σλ.



The Dynamical-Spectral Dictionary and Applications

Before we state further results, let us recall the following
definitions. By the spectral theorem, there are Borel probability
measures µλ,ω on R such that

〈δ0, g(Hλ,ω)δ0〉 =

∫
g(E ) dµλ,ω(E )

for all bounded measurable functions g . The density of states
measure νλ is given by the ω-average of these measures with
respect to Lebesgue measure, that is,∫

T
〈δ0, g(Hλ,ω)δ0〉 dω =

∫
g(E ) dνλ(E )

for all bounded measurable functions g .

The distribution function of the density of states measure νλ is
called the integrated density of states and denoted by Nλ.



The Dynamical-Spectral Dictionary and Applications

By general principles, the density of states measure is non-atomic
and its topological support is Σλ. The fact that Σλ has zero
Lebesgue measure therefore implies that νλ is singular continuous
for every λ > 0.

The density of states measure can also be obtained by counting
the number of eigenvalues per unit volume, in a given energy
region, of restrictions of the operator to finite intervals (which
explains the terminology). Indeed, for any real a < b,

νλ(a, b) = lim
L→∞

1

L
#
{

eigenvalues of Hλ,ω|[1,L] that lie in (a, b)
}
,

uniformly in ω. Here, for definiteness, Hλ,ω|[1,L] is defined with
Dirichlet boundary conditions.



The Dynamical-Spectral Dictionary and Applications

Finally, in this case it is also true that the density of states
measure νλ is the equilibrium measure associated with the
spectrum Σλ in the sense of logarithmic potential theory.

We will also be interested in the optimal Hölder exponent γλ of νλ.
That is, γλ is the unique number in [0, 1] such that the following
two properties hold.

1. For any γ < γλ and any sufficiently small interval I ⊂ R, we
have νλ(I ) < |I |γ ;

2. For any γ̃ > γλ and any ε > 0, there exists an interval I ⊂ R
such that |I | < ε and νλ(I ) > |I |γ̃ .



The Dynamical-Spectral Dictionary and Applications

Theorem (D.-Gorodetski-Yessen 2016)

For every λ > 0, all gaps allowed by the gap labeling theorem are
open. That is,

{Nλ(E ) : E ∈ R \ Σλ} = {{mα} : m ∈ Z} ∪ {1}.

There are many similarities between the Fibonacci Hamiltonian and
the critical almost Mathieu operator, which has the potential
V (n) = 2 cos(2π(nα+ω)). For the latter, a result like the theorem
above is conjectured, but still not known.

Avila-Bochi-D. showed in 2012 that all gaps allowed by the gap
labeling theorem are generically open in the C 0 topology.



The Dynamical-Spectral Dictionary and Applications

Theorem (D.-Gorodetski-Yessen 2016)

For every λ > 0, the density of states measure νλ is
exact-dimensional. Namely, for every λ > 0, the limit (called the
scaling exponent of νλ at E )

lim
ε↓0

log νλ(E − ε,E + ε)

log ε

νλ-almost everywhere exists and is constant.



The Dynamical-Spectral Dictionary and Applications

Theorem (D.-Gorodetski-Yessen 2016)

For every λ > 0, we have

dimH Σλ =
hµλ

Lyapuµλ

dimH νλ = dimH µλ,max =
htop(Tλ)

Lyapuµλ,max
=

log(1 + α)

Lyapuµλ,max

γλ =
log(1 + α)

supp∈Per(Tλ) Lyap
u(p)

In this theorem, µλ,max denotes the measure of maximal entropy of
Tλ|Λλ

and µλ denotes the equilibrium measure of Tλ|Λλ
that

corresponds to the potential − dimH Σλ · log ‖DTλ|Eu‖.



The Dynamical-Spectral Dictionary and Applications

The identities from the previous theorem enable one to determine
the asymptotics of the various quantities as λ→∞ or 0.

Theorem
We have

lim
λ→∞

dimH Σλ · log λ = log(1 +
√

2) ≈ 1.83156 log(1 + α)

lim
λ→∞

dimH νλ · log λ =
5 +
√

5

4
log(1 + α) ≈ 1.80902 log(1 + α)

lim
λ→∞

γλ · log λ = 1.5 log(1 + α)

lim
λ→0

dimH Σλ = 1

lim
λ→0

dimH νλ = 1

lim
λ→0

γλ =
1

2



The Dynamical-Spectral Dictionary and Applications

The asymptotics suggest strict inequalities, which can actually be
proved, again via the dynamical-spectral connection, for every
value of the coupling constant:

Theorem (D.-Gorodetski-Yessen 2016)

For every λ > 0, we have

γλ < dimH νλ < dimH Σλ

The second inequality was conjectured by Simon.



Further Related Developments

I One can consider multi-dimensional Schrödinger operators
with separable potentials built from the Fibonacci potential.
This leads to the consideration of sums of 1d spectra and
convolutions of 1d measures. Studying such objects is highly
non-trivial, but leads to very interesting results.

I One can consider other types of operators such as Jacobi
matrices, CMV matrices, and continuum Schrödinger
operators. There are new phenomena since in these cases, the
curve of initial conditions is no longer a line and, more
importantly, no longer lies in a single invariant surface. This
necessitates the use of partially hyperbolic dynamics and one
loses certain properties. For example, the spectrum is no
longer a dynamically defined Cantor set, and local dimensions
are no longer constant throughout the spectrum.


