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Cayley graphs

Definition
G = 〈S〉 is a group. The (undirected) Cayley graph
Γ(G,S) has

vertex set G and
edge set {{g,ga} : g ∈ G,a ∈ S}.

Definition
The diameter of Γ(G,S) is

diam Γ(G,S) = max
g∈G

min
k

g = s1 · · · sk , si ∈ S ∪ S−1.

(Same as graph theoretic diameter.)
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How large can the diameter be?

The diameter can be very small:

diam Γ(G,G) = 1

The diameter also can be very big:
G = 〈x〉 ∼= Zn, diam Γ(G, {x}) = bn/2c

More generally, G with a large abelian quotient may have
Cayley graphs with diameter proportional to |G|.

For generic G, however, diameters seem to be much
smaller than |G|. Example: for the group G of
permutations of the Rubik cube and S the set of moves,
|G| = 43252003274489856000, but diam (G,S) = 20
(Davidson, Dethridge, Kociemba and Rokicki, 2010)
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The diameter of groups
Definition

diam (G) := max
S

diam Γ(G,S)

Conjecture (Babai, in [Babai,Seress 1992])
There exists a positive constant c: such that
G finite, simple, nonabelian⇒ diam (G) = O(logc |G|).

Conjecture true for

PSL(2,p), PSL(3,p) (Helfgott 2008, 2010)
PSL(2,q) (Dinai; Varjú); work towards PSLn, PSp2n
(Helfgott-Gill 2011)
groups of Lie type of bounded rank (Pyber, E. Szabó
2011) and (Breuillard, Green, Tao 2011)

But what about permutation groups? Hardest: what about
the alternating group An?
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Alternating groups, Classification Theorem

Reminder: a permutation group is a group of
permutations of n objects.

Sn = group of all permutations (S = “symmetric”)
An = unique subgroup of Sn of index 2 (A = “alternating”)

An asymptotic person’s view of the Classification
Theorem: The finite simple groups are (a) finite groups of
Lie type, (b) An, (c) a finite number of unpleasant things
(“sporadic”).
Finite numbers of things do not matter asymptotically. We
can thus focus on (a) and (b).
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Diameter of the alternating group: results

Theorem (Helfgott, Seress 2011)

diam (An) ≤ exp(O(log4 n log log n)).

Corollary

G ≤ Sn transitive⇒ diam (G) ≤ exp(O(log4 n log log n)).

The corollary follows from the main theorem and
(Babai-Seress 1992), which uses the Classification. (As
pointed out by Pyber, there is an error in (Babai-Seress
1992), but it has been fixed.)

The Helfgott-Seress theorem also uses the Classification.
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Product theorems

Since (Helfgott 2008), diameter results for groups of Lie
type have been proven by product theorems:

Theorem
There exists a polynomial c(x) such that if G is simple,
Lie-type of rank r , G = 〈A〉 then A3 = G or

|A3| ≥ |A|1+1/c(r).

In particular, for bounded r , we have |A3| ≥ |A|1+ε for
some constant ε.

Given G = 〈S〉, O(log log |G|) applications of the theorem
gives all elements of G.
Tripling the length O(log log |G|) times gives diameter
3O(log log |G|) = (log |G|)c .
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(Pyber, Spiga) Product theorems are false in
An.

Example
G = An, H ∼= Am ≤ G, g = (1,2, . . . ,n) (n odd).
S = H ∪ {g} generates G, |S3| ≤ 9(m + 1)(m + 2)|S|.

Related phenomenon: for G of Lie type, rank unbounded,
we cannot remove the dependence of the exponent
1/c(r) on the rank r .

Powerful techniques, developed for Lie-type groups, are
not directly applicable:

dimensional estimates (Helfgott 2008, 2010;
generalized by Pyber, Szabo, 2011; prefigured in
Larsen-Pink, as remarked by Breuillard-Green-Tao,
2011)
escape from subvarieties (cf. Eskin-Mozes-Oh, 2005)
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Aims

Product theorems are useful, and not just because they
imply diameter bounds. They directly imply bounds on
spectral gaps, mixing times, etc.

Our aims are:
1 a simpler, more natural proof of Helfgott-Seress,

2 a weak product theorem for An,
3 a better exponent than 4 in exp((log n)4 log log n),

4 removing the dependence on the Classification
Theorem.

Here we fulfill aims (1) and (2). L. Pyber is working on (4).
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A weak product theorem for An (or Sn)

Theorem (Helfgott 2018)
There are C, c > 0 such that the following holds. Let
A ⊂ Sn be such that A = A−1 and A generates An or Sn.
Assume |A| ≥ nC(log n)2

. Then either

|AnC | ≥ |A|1+c
log

log |A|
log n

(log n)2 log log n

or
diam (Γ(〈A〉,A)) ≤ nC max

A′⊂G
G=〈A′〉

diam (Γ(G,A′)),

where G is a transitive group on m ≤ n elements with no
alternating factors of degree > 0.9n.

Immediate corollary (via Babai-Seress): Helfgott-Seress
bound on the diameter of G = An (or G = Sn), or rather
diam G� exp(O(log4 n(log log n)2)).



Growth in
permutation

groups and linear
algebraic groups

H. A. Helfgott

Introduction

Diameter bounds

New work on
permutation
groups

A weak product theorem for An (or Sn)

Theorem (Helfgott 2018)
There are C, c > 0 such that the following holds. Let
A ⊂ Sn be such that A = A−1 and A generates An or Sn.
Assume |A| ≥ nC(log n)2

. Then either

|AnC | ≥ |A|1+c
log

log |A|
log n

(log n)2 log log n

or
diam (Γ(〈A〉,A)) ≤ nC max

A′⊂G
G=〈A′〉

diam (Γ(G,A′)),

where G is a transitive group on m ≤ n elements with no
alternating factors of degree > 0.9n.

Immediate corollary (via Babai-Seress): Helfgott-Seress
bound on the diameter of G = An (or G = Sn), or rather
diam G� exp(O(log4 n(log log n)2)).



Growth in
permutation

groups and linear
algebraic groups

H. A. Helfgott

Introduction

Diameter bounds

New work on
permutation
groups

Dimensional estimates and their analogues, I
The following is an example of a dimensional estimate.

Lemma
Let G = SL2(K ), K finite. Let A ⊂ G generate G; assume
A = A−1. Let V be a one-dimensional subvariety of SL2.
Then either |A3| ≥ |A|1+δ or

|A ∩ V (K )| ≤ |A|
dim V

dim SL2
+O(δ)

= |A|1/3+O(δ).

A more abstract statement:

Lemma
Let G be a group. Let R,B ⊂ G, R = R−1. Let k = |B|.
Then ∣∣∣∣(∪g∈BgRg−1

)2
∣∣∣∣ ≥ |R|1+ 1

k∣∣∩g∈B∪{e}gR−1Rg−1
∣∣ .

If R is special, try to make the denominator trivial.
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Dimensional estimates and their analogues, II
In linear groups, “special” just means “on a subvariety”.

What could it mean in a permutation group?

Lemma (Special-set lemma)

Let G be a permutation group. Let R,B ⊂ G, R = R−1,
B = B−1, 〈B〉 2-transitive. If R2 has no orbits of length
> ρn, 0 < ρ < 1, then∣∣∣∣(∪g∈Br gRg−1

)2
∣∣∣∣ ≥ |R|1+

cρ
log n ,

where r = O(n6) and cρ > 0 depends only on ρ.

This can again be put in the form: for R = A ∩ special,
either A grows (since (∪g∈Ar gRg−1)2 ⊂ A2r+4), or R is
small compared to A. Idea of proof: produce a small
subset D of Br by random walks of length r . Then
∩g∈DgR2g−1 is probably trivial (much as in: Babai’s
CFSG-free bound on the size of doubly transitive groups).
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B = B−1, 〈B〉 2-transitive. If R2 has no orbits of length
> ρn, 0 < ρ < 1, then∣∣∣∣(∪g∈Br gRg−1

)2
∣∣∣∣ ≥ |R|1+

cρ
log n ,

where r = O(n6) and cρ > 0 depends only on ρ.

This can again be put in the form: for R = A ∩ special,
either A grows (since (∪g∈Ar gRg−1)2 ⊂ A2r+4), or R is
small compared to A.

Idea of proof: produce a small
subset D of Br by random walks of length r . Then
∩g∈DgR2g−1 is probably trivial (much as in: Babai’s
CFSG-free bound on the size of doubly transitive groups).
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Building a prefix, I

Use basic data structures for computations with
permutation groups (Sims, 1970)
Given G, write G(α1,...,αk ) for the group

{g ∈ G : g(αi) = αi ∀1 ≤ i ≤ k}

(the pointwise stabilizer).

Definition
A base for G ≤ Sym(Ω) is a sequence of points
(α1, . . . , αk ) such that G(α1,...,αk ) = 1.
A base defines a point stabilizer chain

G[1] ≥ G[2] ≥ G[3] · · · ≥

with G[i] = G(α1,...,αi−1).
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Building a prefix, II
Choose α1, . . . , αj greedily so that, at each step, the orbit∣∣∣∣α(A−1A)(α1,...,αi−1)

i

∣∣∣∣
is maximal.

Stop when it is of size < ρn.

By the special set lemma, (A−1A)(α1,...,αj ) must be
smallish (or else A grows). This implies
j � (log |A|)/(log n)2.

Let Σ = {α1, . . . αj−1}. Because the orbits in all but the
last link in the chain are long, the setwise stabilizer
(A2n)Σ, projected to SΣ, is large, and generates A∆ or S∆

for ∆ ⊂ Σ large. We call this the prefix.

The pointwise stabilizer (A2n)(Σ′) restricted to the
complement of Σ′ = Σ ∪ {αj} is the suffix.

The setwise stabilizer (A2n)Σ′ acts on the suffix by
conjugation.
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Induction (warning for vegans: Babai-Seress
uses Classification)
The suffix has no orbits of size ≥ ρn.

What about the group H generated by the setwise
stabilizer (A2n)Σ?

If it has no orbits of size ≥ 0.9n, then
its diameter is not much larger than that of Ab0.9nc, by
(Babai-Seress 1992). This is relatively small, by
induction.

The prefix, a projection of the setwise stabilizer, contains
a copy of A∆ or S∆, ∆ not tiny. By Wielandt, this means
that H contains an element g 6= e of small support. By
(Babai-Beals-Seress 2004), this means that
diam (An,A ∪ {g}) is� nO(1). Since g lies in a subgroup
of relatively small diameter, we are done.

So, H has a long orbit, and in fact acts like Am or Sm on it
(m ≥ 0.9n).
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Use of special lemma, action

Set ρ = 0.8. Since H acts like Am or Sm, m ≥ 0.9n, and
the suffix S has no orbits of size ≥ 0.8n, we can use the
special-set lemma.

This shows that |SnO(1) | ≥ |S|1+1/ log n.

This ensures that |AnO(1) | ≥ |A||S|1/ log n. But how large is
S?

We can find� log log n elements in AnO(1)
of the pointwise

stabilizer of Σ generating a group with a large orbit. This
means that no element of the prefix can act trivially on
them all. This guarantees that |S| � |prefix|δ/ log log n.

We obtain growth.
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Summary of proof techniques

Subset analogues of statements in group theory, in
particular:

Orbit-stabilizer for sets; lifting and reduction
statements for approximate subgroups (following
Helfgott, 2010); basic object: action G→ X , A ⊂ G.
Subset versions of results by Bochert, Liebeck about
large subgroups of An.

Random-walk analogues of the probabilistic method in
combinatorics: uniform probability distribution (can’t do)
replaced by outcomes of short random walks (can do).
Thus: subset versions of results by Babai (splitting
lemma), Pyber about 2-transitive groups.

Previous results on diam (An): (BS1992), (BBS 2004).
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Moral

Worth studying for every group:
action by multiplication G→ G/H
(⇒ lifting and reduction lemmas);
action by conjugation G→ G
(⇒ conjugates and centralizers (tori)).

Also, for linear algebraic groups:
natural geometric actions PSLn → Pn

(→ dimensional analysis, escape from subvarieties)

Also, for permutation groups:
natural actions by permutation An → {1,2, . . . ,n}k
(→ stabilizer chains, random walks, effective splitting
lemmas)
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