Sarnak-Xue and Applications

Amitay Kamber

joint work with Konstantin Golubev

11/09/2018

Introduction

We will describe some generalizations and applications of the work of Sarnak and Xue on limit multiplicities.

The idea is that their limit on multiplicity can be used as a replacement to the Ramanujan property to prove "optimal" results.

Limit Multiplicities

• *G* a real or *p*-adic s.s. algebraic group, $\Gamma_1 \subset G$ cocompact lattice, $\Gamma_N \subset \Gamma_1$ a sequence of f.i. subgroups.

•
$$V_N = Vol(\Gamma_N \setminus G) \asymp [\Gamma_1 : \Gamma_N] \to \infty.$$

 $L^2(\Gamma_N \setminus G) \cong \bigoplus_{\pi \in \hat{G}} m(\pi, \Gamma_N)$

Various results concerning the limit of $m(\pi, \Gamma_N)$ as $N \to \infty$, following Degeorge-Wallach(1978).

Sauvageot (1997)- assuming Benjamini-Schramm convergence (e.g. increasing injective radius)

$$\mu_{N} = \frac{1}{V_{N}} \sum_{\pi \in \hat{G}} m(\pi, \Gamma_{N}) \, \delta_{\pi} \to \mu_{\mathsf{pl}}$$

Simple result:

 $m(\pi,\Gamma_N)\ll V_N$

Sarnak-Xue Hypothesis

Let $p(\pi) = \inf \{p : K \text{-finite matrix coeff. are in } L^p(G)\}$. If $p(\pi) > 2 \pi$ is called **non-tempered**. Then it is not in the support of the Plancherel measure.

Benjamini-Schramm implies that for $p(\pi) > 2$, π non-trivial,

$$m(\pi,\Gamma) \rightarrow 0.$$

Naive Ramanujan Hypothesis says that for $p(\pi) > 2$, π non-trivial,

$$m(\pi,\Gamma)=0.$$

Definition (Sarnak-Xue 1991)

 $\{\Gamma_N\}$ satisfies Sarnak-Xue (pointwise) hypothesis if

$$m(\pi,\Gamma_N)\ll_{\pi,\epsilon} V_N^{\frac{2}{p(\pi)}+\epsilon}.$$

Sarnak-Xue Hypothesis

Definition (Sarnak-Xue 1991)

 $\{\Gamma_N\}$ satisfies **Sarnak-Xue (pointwise) hypothesis** if for every $\pi \in \hat{G}$, $\epsilon > 0$,

$$m(\pi, \Gamma_N) \ll_{\pi, \epsilon} V_N^{\frac{2}{p(\pi)} + \epsilon}$$

Theorem (Sarnak-Xue)

The pointwise hypothesis holds for (cocompact) principal congruence subgroups of arithmetic subgroups of $SL_2(\mathbb{R})$ and $SL_2(\mathbb{C})$.

Conjecture (Sarnak-Xue)

The pointwise hypothesis holds for cocompact principal congruence subgroups of general arithmetic lattices of Lie groups.

Sarnak's Density Hypothesis For $A \subset \hat{G}$ compact let

$$m(A, \Gamma_N, p) = \sum_{\pi \in A, p(\pi) \ge p} m(\pi, \Gamma_N)$$

Definition (Sarnak 2018)

 $\{\Gamma_N\}$ satisfies **Sarnak's density hypothesis** if for $A \subset \hat{G}$ compact,

$$m(A, \Gamma_N, p) \ll_{A, \epsilon} V_N^{\frac{2}{p}+\epsilon}.$$

Conjecture (Sarnak 2018)

The density hypothesis holds for cocompact congruence subgroups of arithmetic lattices of Lie groups.

Spherical Density

A spherical representation of G is a representation having a non-trivial K-fixed vectors. Its K-fixed vectors appear in the spectral decomposition of $L^2(\Gamma_N \setminus G/K)$.

For G of rank 1 or p-adic, the non-tempered spherical representations are easily described and are pre-compact in the unitary dual \hat{G} .

Definition

(*G p*-adic or rank 1)- $\{\Gamma_N\}$ satisfies **spherical density** if

$$m\left(\hat{G}_{sph},\Gamma_{N},p\right)\ll_{\epsilon}V_{N}^{\frac{2}{p}+\epsilon}.$$

Sarnak and Xue actually proved spherical density for principal congruence subgroups of arithmetic subgroups of $SL_2(\mathbb{R})$ and $SL_2(\mathbb{C})$.

Theorem (Golubev-K,2018)

If G is p-adic then $\{\Gamma_N\}$ satisfies Sarnak's density hypothesis if and only if it satisfies spherical density.

Amitay Kamber

Density for Graphs and Hyperbolic Surfaces

For a family of q + 1 regular graphs $\{X_N\}$, A_N the adjacency matrix:

• X_N is **Ramanujan** if

$$\mathsf{spec} A_{\mathcal{N}} \subset [-2\sqrt{q}, 2\sqrt{q}] \cup \{\pm (q+1)\}$$

• $\{X_N\}$ satisfies **Sarnak-Xue density** if

$$\#\left\{\lambda\in\mathsf{spec}\mathcal{A}_{N}:|\lambda|\geq q^{\frac{1}{p}}+q^{1-\frac{1}{p}}\right\}\ll_{\epsilon}|X_{N}|^{\frac{2}{p}+\epsilon}.$$

The spherical density for **LPS graphs** was proved (implicitly) using elementary methods by Davidoff-Sarnak-Vallete.

For a family of hyperbolic surfaces X_N , Δ_N the Laplacian:

• X_N is **Ramanujan** (or satisfies Selberg's conjecture) if

$$\operatorname{\mathsf{spec}}\Delta_{N}\subset \{0\}\cup \left[rac{1}{4},\infty
ight).$$

• {X_n} satisfies Sarnak-Xue density if

$$\#\left\{\lambda\in\mathsf{spec}\Delta_{N}:|\lambda|\geq\frac{1}{4}-\left(\frac{1}{2}-p^{-1}\right)^{2}\right\}\ll_{\epsilon}V_{N}^{\frac{2}{p}+\epsilon}.$$

Amitay Kamber

Sarnak-Xue Density and Applications

Diameter of Graphs

In recent years there have been a number of results about optimal behavior of Ramanujan graphs. Let us recall some classical results.

Theorem

Let X be a (q + 1)-regular graph. If X is a $(\lambda_0$ -)expander then

 $diam(X) \leq C_{\lambda_0} \log_q(|X|)$

(LPS) If X is Ramanujan then

 $diam(X) \le (2 + o(1)) \log_q(|X|)$

This is the best known bound for the diameter of LPS graphs - twice the optimal value $\log_q (|X|)$. (Sardari, 2015)- The diameter for LPS graphs is at least $(\frac{4}{3} + o(1)) \log_q (|X|)$, and is therefore not optimal.

Almost-Diameter of Graphs

Optimal Diameter and Almost-Diameter of a Family

A family $\{X_N\}$ of graphs has: **Optimal Diameter** if:

 $\forall x, y \in X_N \ d(x, y) \le (1 + o(1)) \log_q \left(|X_N| \right)$

Optimal Almost-Diameter if:

 $\forall x \in X_N \ \# \left\{ y \in X : d(x, y) > (1 + o(1)) \log_q(|X_N|) \right\} < o(|X_N|)$

Optimal Average-Distance if:

$$\#\left\{x,y\in X: d(x,y)>\left(1+o(1)
ight)\log_q\left(|X_N|
ight)
ight\}< o\left(|X_N|^2
ight)$$

For Cayley graphs, Optimal Average-Distance and Optimal Almost-Diameter are the same.

Amitay Kamber

Sarnak-Xue Density and Applications

Almost-Diameter of Ramanujan graphs

Theorem (Lubetzky-Peres 2015, Sardari 2015)

If $\{X_N\}$ is a family of Ramanujan graphs, then it has optimal almost-diameter.

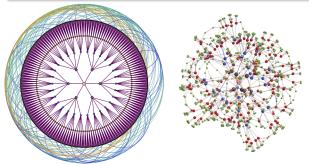


FIGURE 1. A ball of radius 4 in the Lubotzky–Phillips–Sarnak 6-regular Ramanujan graph on n = 12180 vertices via $PSL(2, \mathbb{F}_{29})$.

Similar results, in a slightly different context, came up in the work of Parzanchevski-Sarnak on Golden-Gates.

Amitay Kamber

Sarnak-Xue Density and Applications

Almost-Diameter and Density

Theorem (Golubev-K (2018)

If $\{X_N\}$ is an expander family of graphs satisfying Sarnak-Xue density, then it has optimal average-distance. In particular, if the graphs are Cayley, the family has optimal almost-diameter.

As a matter of fact, optimal diameter, almost-diameter and average distance can be defined for a general family of quotients $\Gamma_N \setminus G/K/$, once a metric is chosen.

Theorem (Golubev-K (2018)

Assume that *G* is *p*-adic or rank 1. If $\{\Gamma_N\}$ is a family with a spectral gap which satisfies Sarnak-Xue spherical density, then the quotients $\Gamma_N \setminus G/K$ have optimal average-distance.

In particular, if $\Gamma_N \subset \Gamma_1$ is normal, then the quotients have optimal almost-diameter.

Almost-Diameter and Density

Applying the last theorem to principal congruence subgroup of $SL_2(\mathbb{Z})$ (and playing a little with the definitions), we get the following theorem. Sarnak called it **optimal strong approximation**.

The spherical density for this case is a result of Huxley from 1984. Note that the lattice $SL_2(\mathbb{Z})$ is not cocompact, but in $SL_2(\mathbb{R})$ it is not a problem.

Theorem (Sarnak 2015)

For all but $o(SL_2(\mathbb{Z}/N\mathbb{Z}))$ of $g \in SL_2(\mathbb{Z}/N\mathbb{Z})$ there exists a lift $\tilde{g} \in SL_2(\mathbb{Z})$ with $\|\tilde{g}\| \ll_{\epsilon} N^{\frac{3}{2}+\epsilon}$.

The exponent 3/2 is optimal, as otherwise there will not be enough elements of SL₂ (\mathbb{Z}).

Cutoff (Lubetzky-Peres)

Let X be a (q + 1)-regular graph and $x_0 \in X$. Consider the distribution $A^m \delta_{x_0}$ of the random walk starting at x_0 . Notice that $\frac{q-1}{q+1}$ is the rate of divergence on the tree, so one needs $\frac{q+1}{q-1} \log_q(|X|)$ steps to reach almost all of X.

Theorem - Cutoff (Lubetzky-Peres) Assume that X is a Ramanujan graph. For $m < (1 - \epsilon) \frac{q+1}{q-1} \log_q (|X|)$ we have $\|A^m \delta_{x_0} - \pi\|_1 = 2 - o(1).$ For $m > (1 + \epsilon) \frac{q+1}{q-1} \log_q (|X|)$ we have $\|A^m \delta_{x_0} - \pi\|_1 = o(1).$

This behavior of the random walk is called Cutoff. For Cayley graphs, one may replace here the Ramanujan assumption by Sarnak-Xue density. Amitay Kamber Sarnak-Xue Density and Applications 11/09/2018 14/15

Thank You!