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Introduction

We will describe some generalizations and applications of the work of
Sarnak and Xue on limit multiplicities.

The idea is that their limit on multiplicity can be used as a replacement to
the Ramanujan property to prove "optimal” results.
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Limit Multiplicities

@ G a real or p-adic s.s. algebraic group, I'; C G cocompact lattice,
'y C M1 a sequence of f.i. subgroups.

) VN = Vol(FN\G) = [F1 . FN] — 0Q.
LP(TW\G) =& __em(m,Ty)

Various results concerning the limit of m (7, 'y) as N — oo, following
Degeorge-Wallach(1978).

Sauvageot (1997)- assuming Benjamini-Schramm convergence (e.g.
increasing injective radius)

1
un = VN Zm(ﬂ,r/v)éw — Hpl
TeG

Simple result:
m(m, Ty) < Vi
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Sarnak-Xue Hypothesis

Let p(m) = inf {p : K -finite matrix coeff. are in LP(G)}.

If p(7) > 2 7 is called non-tempered. Then it is not in the support of the
Plancherel measure.

Benjamini-Schramm implies that for p (7) > 2, 7 non-trivial,

m (7, ) — 0.
Naive Ramanujan Hypothesis says that for p (7) > 2, 7 non-trivial,

m(m, ) =0.

Definition (Sarnak-Xue 1991)
{l'n} satisfies Sarnak-Xue (pointwise) hypothesis if

2
2+
m (7, Ty) <ze VI ‘.
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Sarnak-Xue Hypothesis

Definition (Sarnak-Xue 1991)

{l'n} satisfies Sarnak-Xue (pointwise) hypothesis if for every m € G,
€e> 0,

2
2+
m(m,Ty) Knxe V,\';(”) ‘.

Theorem (Sarnak-Xue)

The pointwise hypothesis holds for (cocompact) principal congruence
subgroups of arithmetic subgroups of SLy(R) and SL>(C).

Conjecture (Sarnak-Xue)

The pointwise hypothesis holds for cocompact principal congruence
subgroups of general arithmetic lattices of Lie groups.

Amitay Kamber Sarnak-Xue Density and Applications 11/09/2018 5/15



Sarnak'’s Density Hypothesis

For Ac G compact let

m(ATn,p)= Y m(mly)
n€A,p(T)>p

Definition (Sarnak 2018)
{T'n} satisfies Sarnak’s density hypothesis if for A C G compact,

2

m (A, Tn,p) <ae Vi

Conjecture (Sarnak 2018)

The density hypothesis holds for cocompact congruence subgroups of
arithmetic lattices of Lie groups.
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Spherical Density

A spherical representation of G is a representation having a non-trivial
K-fixed vectors. lts K-fixed vectors appear in the spectral decomposition
of L2(IT'y\G/K).

For G of rank 1 or p-adic, the non-tempered spherical representations are
easily described and are pre-compact in the unitary dual G.

Definition
(G p-adic or rank 1)- {I'y} satisfies spherical density if

A g—‘,—e
i (Gsph,r,\,,p) < V'

Sarnak and Xue actually proved spherical density for principal congruence
subgroups of arithmetic subgroups of SLy(R) and SL>(C).

Theorem (Golubev-K,2018)

If G is p-adic then {I'y} satisfies Sarnak’s density hypothesis if and only if
it satisfies spherical density.
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Density for Graphs and Hyperbolic Surfaces

For a family of g + 1 regular graphs {Xy}, Ay the adjacency matrix:
e Xy is Ramanujan if

specAy C [-21/q,2\/q]U{£ (g + 1)}
o {Xy} satisfies Sarnak-Xue density if

1

1 _ 2
# {)\ € specAy : |\ > gr + g P} < | Xnlpte.

The spherical density for LPS graphs was proved (implicitly) using
elementary methods by Davidoff-Sarnak-Vallete.
For a family of hyperbolic surfaces Xy, Ay the Laplacian:
e Xy is Ramanujan (or satisfies Selberg’s conjecture) if

1
specAy C {0} U [4,00) .

e {X,} satisfies Sarnak-Xue density if

1 /1 2 24
# )\ESpecAN:])\|>4—(2—p_1> }<<E vy ‘.
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Diameter of Graphs

In recent years there have been a number of results about optimal
behavior of Ramanujan graphs. Let us recall some classical results.

Theorem

Let X be a (q + 1)-regular graph.
If X is a (Mo-)expander then

diam (X) < Gy, log, (|X])
(LPS) If X is Ramanujan then

diam(X) < (2+ o(1)) Iogq (1X])

This is the best known bound for the diameter of LPS graphs - twice the
optimal value log, (|X]).

(Sardari, 2015)- The diameter for LPS graphs is at least

(5 + o(1)) log, (IX]), and is therefore not optimal.
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Almost-Diameter of Graphs

Optimal Diameter and Almost-Diameter of a Family

A family {Xy} of graphs has:
Optimal Diameter if:

Vx,y € Xn d(x,y) < (1 + o(1)) log, (| Xn)
Optimal Almost-Diameter if:
Vx € Xy # {y € X :d(x,y) > (1+o(1)) log, (]XN|)} < o(|Xn])

Optimal Average-Distance if:

#{x,y € X1 d(x,y) > (1 + o(1)) logg (1Xn])} < o (1Xn[?)

For Cayley graphs, Optimal Average-Distance and Optimal
Almost-Diameter are the same.
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Almost-Diameter of Ramanujan graphs

Theorem (Lubetzky-Peres 2015, Sardari 2015)

If {Xn} is a family of Ramanujan graphs, then it has optimal
almost-diameter.
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FIGURE 1. A ball of radius 4 in the Lubotzky—Phillips—Sarnak
6-regular Ramanujan graph on n = 12180 vertices via PSL(2, Fag).

Similar results, in a slightly different context, came up in the work of
Parzanchevski-Sarnak on Golden-Gates.
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Almost-Diameter and Density

Theorem (Golubev-K (2018)

If {Xn} is an expander family of graphs satisfying Sarnak-Xue density,
then it has optimal average-distance.

In particular, if the graphs are Cayley, the family has optimal
almost-diameter.

As a matter of fact, optimal diameter, almost-diameter and average
distance can be defined for a general family of quotients 'y\G/K/, once a
metric is chosen.

Theorem (Golubev-K (2018)

Assume that G is p-adic or rank 1. If {T'y} is a family with a spectral gap
which satisfies Sarnak-Xue spherical density, then the quotients I'y\G/K
have optimal average-distance.

In particular, if [y C 1 is normal, then the quotients have optimal
almost-diameter.

v
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Almost-Diameter and Density

Applying the last theorem to principal congruence subgroup of SL(Z)
(and playing a little with the definitions), we get the following theorem.
Sarnak called it optimal strong approximation.

The spherical density for this case is a result of Huxley from 1984. Note
that the lattice SL»(Z) is not cocompact, but in SLy(R) it is not a
problem.

Theorem (Sarnak 2015)

For all but o (SLy (Z/NZ)) of g € SLy (Z/NZ) there exists a lift
& € SLy (Z) with ||g| < N2*€.

The exponent 3/2 is optimal, as otherwise there will not be enough
elements of SL» (Z).
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Cutoff (Lubetzky-Peres)

Let X be a (g + 1)-regular graph and xp € X. Consider the distribution
AT, of the random walk starting at xg.
Notice that 1 is the rate of divergence on the tree, so one needs

q+1 1 log, (|X|) steps to reach almost all of X.

Theorem - Cutoff (Lubetzky-Peres)

Assume that X is a Ramanujan graph.
For m < (1 — e)g—ﬂ log,, (|X]) we have

|A™0x = 7lly =2 = o(1).
For m > (1+ e)g—ﬂ log,, (|X]) we have

|A™0x — 7|y = o(1).

This behavior of the random walk is called Cutoff.
For Cayley graphs, one may replace here the Ramanujan assumption by

dK-/AU den
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Thank Youl

Amitay Kamber k-Xue Density and Applications



